Зміст
Добірка наукової літератури з теми "Systèmes de Saint-Venant"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Systèmes de Saint-Venant".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Systèmes de Saint-Venant"
Cazelles, B., and D. Fontvieille. "Modélisation d'un système lotique pollué par une charge organique : prise en compte de l'activité des microorganismes benthiques." Revue des sciences de l'eau 2, no. 4 (April 12, 2005): 511–41. http://dx.doi.org/10.7202/705041ar.
Повний текст джерелаBouheniche, Salaheddine, and Bénina Touaibia. "Modélisation numérique du transport solide du système « barrage - cours d’eau, transport - déposition » : cas du barrage de Sidi Mohamed Ben Aouda (SMBA) sur l’oued Mina, en zone semi-aride." Revue des sciences de l’eau 26, no. 1 (March 18, 2013): 21–31. http://dx.doi.org/10.7202/1014916ar.
Повний текст джерелаBuyer, M., J. Vazquez, and B. Bremond. "Modélisation du comportement hydraulique des déversoirs d’orage latéraux en régime transcritique." Revue des sciences de l'eau 18, no. 1 (April 12, 2005): 25–46. http://dx.doi.org/10.7202/705548ar.
Повний текст джерелаBlanpain, O., and B. Chocat. "Un système d'aide au choix de modèles hydrologiques et hydrauliques pour simuler les réseaux d'assainissement : application aux modèles de propagation en conduite." Revue des sciences de l'eau 12, no. 2 (April 12, 2005): 317–32. http://dx.doi.org/10.7202/705354ar.
Повний текст джерелаSAHMIM, Slah, and Fayssal Benkhaldoun. "Schéma SRNHS Analyse et Application d'un schéma aux volumes finis dédié aux systèmes non homogènes." Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées Volume 5, Special Issue TAM... (September 27, 2006). http://dx.doi.org/10.46298/arima.1870.
Повний текст джерелаBesson, Olivier, Soulèye Kane, and Mamadou Sy. "On a 1D-Shallow Water Model: Existence of solution and numerical simulations." Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées Volume 9, 2007 Conference in... (November 20, 2008). http://dx.doi.org/10.46298/arima.1901.
Повний текст джерелаEl Dabaghi, F., A. El Kacimi, and B. Nakhlé. "Flood simulation via shallow water numerical model based on characteristic method." Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées Volume 5, Special Issue TAM... (October 7, 2006). http://dx.doi.org/10.46298/arima.1874.
Повний текст джерелаДисертації з теми "Systèmes de Saint-Venant"
Morales, de Luna Tomás. "Schémas entropiques pour la résolution de systèmes de type Saint Venant." Paris 6, 2007. http://www.theses.fr/2007PA066078.
Повний текст джерелаThe purpose of this dissertation is to contribute to the numerical study of hyperbolic conservations laws and to the concept of entropy inequality. We introduce the notion of entropy inequality for a quasi-linear system which allows the definition of stable numerical schemes. We focus first on the Saint Venant system. We present a scheme that preserves all subsonic equilibria and is semi-discrete entropy satisfying. Then, we study the two layers shallow water equations. Schemes that solve each layer independently and control instabilities using entropy inequalities are proposed. The simple Suliciu solver, which is used for the numerical simulations, is generalized in order to have a semi-discrete entropy satisfying scheme that captures exactly the shocks for Saint Venant. Finally, we introduce a model of Saint Venant type for gravity driven shallow water flows that has an entr
Mullaert, Chloé. "Étude mathématique des équations de Saint-Venant et de Navier-Stokes." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2011. http://tel.archives-ouvertes.fr/tel-00825556.
Повний текст джерелаNOBLE, Pascal. "Méthodes de variétés invariantes pour les équations de Saint Venant et les systèmes hamiltoniens discrets." Phd thesis, Université Paul Sabatier - Toulouse III, 2003. http://tel.archives-ouvertes.fr/tel-00004405.
Повний текст джерелаNoble, Pascal. "Méthodes de variétés invariantes pour les équations de Saint Venant et les systèmes hamiltoniens discrets." Toulouse 3, 2003. http://www.theses.fr/2003TOU30181.
Повний текст джерелаWe analyze in this thesis two different problems with invariant manifold methods: the roll-waves phenomenon in hydraulic and the existence of discrete breathers in nonlinear discrete lattices. Roll-waves are periodic and discontinuous travelling waves, entropic solutions of the Saint Venant equations. With the help of Fenichel theorems, we prove the existence of continuous "viscous" roll-waves close to the discontinuous roll-waves when we add a small viscous term in the equations. Then, we study the linear stability of these discontinuous roll-waves. Finally, we prove the existence of small amplitude roll-waves in a channel with a periodic bottom. Discrete breathers are periodic and spatially localized excitations in nonlinear discrete lattices. We first analyze the diatomic Fermi-Pasta-Ulam (FPU) chain. The problem is formulated as a mapping in a loop space. Using a centre manifold reduction, we prove the existence of small amplitude breathers in a diatomic chain with an arbitrary mass ratio. We also use this technique to prove the existence of discrete breathers in ferromagnetic spin chains
Grappe, Benjamin. "Modèles d'écoulement à surface libre pour la simulation à long terme de la migration des systèmes méandriformes." Phd thesis, Ecole Nationale Supérieure des Mines de Paris, 2014. http://pastel.archives-ouvertes.fr/pastel-01038004.
Повний текст джерелаSahmim, Slah. "Un schéma aux volumes finis avec matrice signe pour les systèmes non homogènes." Paris 13, 2005. http://www.theses.fr/2005PA132012.
Повний текст джерелаMelliani, Saïd. "Solutions mesures de Dirac de systèmes de lois de conservation (Equations de Saint-Venant 2D) et diffusion acoustique." Lyon 1, 1994. http://www.theses.fr/1994LYO10318.
Повний текст джерелаAdamy, Karine. "Contribution à l'étude théorique et numérique de certains systèmes de mécanique des fluides." Paris 11, 2008. http://www.theses.fr/2008PA112060.
Повний текст джерелаThis thesis is oomposed of four chapters which deal with the theoretical and numerical study of two systems coming from fluid mechanics which describe the propagation of surface waves: the Shallow Water system and a Boussinesq system. Aft~r a first introduction chapter we espose in a second chapter the resolution of an initial boundary value problem on the semi infinite space and on a finite intervall for this Boussinesq system. A uniqueness result and the proof of the peristence of finite regularity for the solutions to the Cauchy problem are also presented. The third chapter is dedicated to the study of a boundary value problem for the linearized two-dimensionnal Shallow Water equations. The fourth chapter deals with the numerical resolution of the two-dimensionnal Shallow Water system with a multilevel method based on a finite volume scheme. The method is presented and analysed on different test cases on a square domain with periodic boundary conditions; it is first validated on an analyticaJ test case, then we show its efflCiency (reduction of the CPU time and preservation of the ooncervativity) on a test case which was used for the simulation of oceanic or atmospheric turbulent flows
Hayat, Amaury. "Stabilisation de systèmes hyperboliques non-linéaires en dimension un d’espace." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS131.
Повний текст джерелаThis thesis is devoted to study the stabilization of nonlinear hyperbolic systems of partial differential equations. The main goal is to find boundary conditions ensuring the exponential stability of the system. In a first part, we study general systems that we aim at stabilizing in the C^1 norm by introducing a certain type of Lyapunov functions. Then we take a closer look at systems of two equations and we compare the results with the stabilization in the H^2 norm. In a second part we study a few physical equations: Burgers' equation and the density-velocity systems, which include the Saint-Venant equations and the Euler isentropic equations. Using a local dissipative entropy, we show that these systems can be stabilized with very simple boundary controls which, remarkably, do not depend directly on the parameters of the system, provided some physical admissibility condition. Besides, we develop a way to stabilize shock steady-states in the case of Burgers' and Saint-Venant equations. Finally, in a third part, we study proportional-integral (PI) controllers, which are very popular in practice but seldom understood mathematically for nonlinear infinite dimensional systems. For scalar systems we introduce an extraction method to find optimal conditions on the parameters of the controller ensuring the stability. Finally, we deal with the Saint-Venant equations with a single PI control
SAHMIM, Slah. "Un schéma aux volumes finis avec matrice signe pour les systèmes non homogènes." Phd thesis, Université Paris-Nord - Paris XIII, 2005. http://tel.archives-ouvertes.fr/tel-00010000.
Повний текст джерелаКниги з теми "Systèmes de Saint-Venant"
Paris), Symposium Saint-Venant (1997. Analyse multiéchelle et systèmes physiques couplés: Symposium Saint-Venant = Multiple scale analyses and coupled physical systems : Saint-Venant Symposium. Paris: Presses de l'Ecole nationale des ponts et chaussés, 1997.
Знайти повний текст джерела