Дисертації з теми "Système quantique à N-Corps"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Système quantique à N-Corps".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Molineri, Anaïs. "Un nouveau dispositif pour étudier la relaxation d'un système quantique à N corps." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLO013/document.
Повний текст джерелаThis manuscript presents the first steps of a new ultracold atoms experiment using strontium 84. The aim of this experiment is to study the relaxation dynamics of quantum gases initially prepared in an out-of-equilibrium state. This experiment will include a quantum gas microscope, allowing us to measure spatial correlation functions in two-dimensionnal systems. The current state of the construction allows us to generate both magneto-optical trap of strontium: along its wide transition at 461 nm and its narrow transition at 689 nm. Concurrently with the experimental setup, we carried out works on a reconstruction algorithm required for the future data processing of the microscope images. This manuscript details experimental aspects, justifying their choices, and presents the current state of work on the reconstruction algorithm. There are still steps to complete the experimental setup: add a chamber where we will make the measurements to the vaccuum system, set up the quantum gaz microscope and all the required optics to transport the atomic clouds between two vaccuum chambers, to reach Bose-Einstein condensation and to confine the atoms in two-dimensionnal optical traps
Silva, Fernanda Deus da. "Contributions aux propriétés de transport d'un système à N Corps." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GRENY007/document.
Повний текст джерелаWe study some important problems related to the transport properties of many body systems. It is divided in three parts, each one focusing in a specific topic. We obtain relevant results that improve our understanding of these systems. We investigate the effect of dissipation and time-dependent external sources, in the phase diagram of a many body system at zero and finite temperature. In the presence of time-dependent perturbations, dissipation is essential for the system to attain a steady, time independent state. In order to treat this time dependent problem, we use a Keldysh approach within an adiabatic approximation that allows us to study the phase diagram of this system as a function of the parameters of the system and temperature. We also discuss the nature of the quantum phase transitions of the system. Next, we study an important concept in the physics of metallic multi-band systems, that of hybridization, and how it affects the superconducting properties of a material. A constant or symmetric $k$-dependent hybridization in general act in detriment of superconductivity. We show here that when hybridization between orbitals in different sites assumes an anti-symmetric character having odd-parity it {it{enhances}} superconductivity. The antisymmetric hybridization in a problem study in this thesis (present in Chapter 3) allow us to propose a new system where it is possible to investigate Majorana fermions, even in absence of spin-orbit interactions. In the last part of this thesis we study the effect of spin-orbit coupling (SOC) on transport properties in magnetic nanostructures. In this system SOC plays an important role, because surfaces (or interfaces) introduce symmetry breaking which is a source of spin-orbit interaction. We study the role of Dzyaloshinshkii-Moriya (DM) interaction on spin-transport in a 3 layer system. We show that there is a DM interaction between magnetics ions in the layers and spin of conduction electrons. We study the influence of this DM interaction on transport within a simple model where each layer is represented by a point
Atas, Yasar Yilmaz. "Quelques aspects du chaos quantique dans les systèmes de N-corps en interaction : chaînes de spins quantiques et matrices aléatoires." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112221/document.
Повний текст джерелаMy thesis is devoted to the study of some aspects of many body quantum interacting systems. In particular we focus on quantum spin chains. I have studied several aspects of quantum spin chains, from both numerical and analytical perspectives. I addressed especially questions related to the structure of eigenfunctions, the level densities and the spectral properties of spin chain Hamiltonians. In this thesis, I first present the basic numerical techniques used for the computation of eigenvalues and eigenvectors of spin chain Hamiltonians. Level densities of quantum models are important and simple quantities that allow to characterize spectral properties of systems with large number of degrees of freedom. It is well known that the level densities of most integrable models tend to the Gaussian in the thermodynamic limit. However, it appears that in certain limits of coupling of the spin chain to the magnetic field and for finite number of spins on the chain, one observes peaks in the level density. I will show that the knowledge of the first two moments of the Hamiltonian in the degenerate subspace associated with each peak give a good approximation to the level density. Next, I study the statistical properties of the eigenvalues of spin chain Hamiltonians. One of the main achievements in the study of the spectral statistics of quantum complex systems concerns the universal behaviour of the fluctuation of measure such as the distribution of spacing between two consecutive eigenvalues. These fluctuations are very well described by the theory of random matrices but the comparison with the theoretical prediction generally requires a transformation of the spectrum of the Hamiltonian called the unfolding procedure. For many-body quantum systems, the size of the Hilbert space generally grows exponentially with the number of particles leading to a lack of data to make a proper statistical study. These constraints have led to the introduction of a new measure free of the unfolding procedure and based on the ratio of consecutive level spacings rather than the spacings themselves. This measure is independant of the local level density. By following the Wigner surmise for the computation of the level spacing distribution, I obtained approximation for the distribution of the ratio of consecutive level spacings by analyzing random 3x3 matrices for the three canonical ensembles. The prediction are compared with numerical results showing excellent agreement. Finally, I investigate eigenfunction statistics of some canonical spin-chain Hamiltonians. Eigenfunctions together with the energy spectrum are the fundamental objects of quantum systems: their structure is quite complicated and not well understood. Due to the exponential growth of the size of the Hilbert space, the study of eigenfunctions is a very difficult task from both analytical and numerical points of view. I demonstrate that the groundstate eigenfunctions of all canonical models of spin chain are multifractal, by computing numerically the Rényi entropy and extrapolating it to obtain the multifractal dimensions
Garioud, Renaud. "When perturbation theory goes non-perturbative : applications to strongly-correlated systems." Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAX052.
Повний текст джерелаThis thesis focuses on developing new algorithms for the study of strongly correlated materials. They are quantum systems in which interactions between electrons, such as the Coulomb repulsion, play a major role and give rise to remarkable physical properties (like high temperature superconductivity) which can't be described using a one-body formalism. To fully understand these phenomenon one has to treat the full system of many particles and their interactions : this is the many body problem.The project of this thesis is developing, analyzing and applying numerical methods called diagrammatic to these systems. A lots of fundamental questions remain unanswered about the using of perturbative methods to describe a system which is, by definition, in a non-perturbative regime. What are the limits of these approaches? How do correlations effects control the structure of the perturbative series ?Algorithmic developments will be applied to the study of strongly correlated systems, such as the Hubbard model, which will allow to cope with current topics of interest in condensed matter physics, in particular with the physics of correlated magnetism and of the pseudo gap in cuprate superconductors, or with the existence of a Mott phase transition with no preexisting ordered phase as it has been recently observed in experiments on organic materials
Thibaut, Jérôme. "Corrélations, intrication et dynamique des systèmes quantiques à N Corps : une étude variationnelle." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEN021/document.
Повний текст джерелаThis thesis presents a study of quantum many-body systems at zero temperature, where the behavior of the system is purely driven by the quantum effects. I will introduce a variationnal approach developped with Tommaso Roscilde, my PhD supervisor, and Fabio Mezzacapo, my co-supervisor, in order to study these systems.This approach is based on a parametrisation of the quantum state (named Ansatz) on which we apply a variational optimisation, allowing us reproduce the system's evolution under Schrödinger's equation with a limited number of variables.By considering an imaginary-time evolution, it is possible to reconstruct the system's ground state. I focused on S=1/2 XX spin chain, where the long-range quantum correlations complicate a variational study; and I have specifically targeted our Ansatz in order to reproduce the correlations and the entanglement of the ground state. Moreover I considered the antiferromagnetic S=1/2 J1-J2 spin chain, where the non-trivial sign structure of the coefficients of the quantum state introduces an important challenge for the quantum Monte Carlo approach; and where the magnetic frustration induces a quantum phase transition (from a state with long range correlations to a non-magnetic state in the form of a valence-bond crystal).Finally I focused on the time evolution of a quantum many-body system starting from a non-stationary state. I studied the ability of our approach to reproduce the linear increase of the entanglement during time, which is a fondamental obstacle for other approaches such as the density-matrix renormalization group
Frerot, Irénée. "Corrélations quantiques : une approche de physique statistique." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEN061/document.
Повний текст джерелаThe notion of coherence, intimately related to the notion of wave-particle duality, plays a central role in quantum mechanics. When quantum coherence extends over several particles inside a system, the description in terms of individual objects becomes impossible, due to the development of quantum correlations (or entanglement). In this manuscript, we focus on equilibrium systems, for which we show that coherent fluctuations add up to the fluctuations predicted by thermodynamic identities, valid for classical systems only. In the ground state, coherent fluctuations are the only ones to subsist, an in this case we study their relationship with entanglement entropy. We show in particular that an hypothesis of effective temperature, spatially modulated, captures the structure of entanglement in a many-body system, and we show how this temperature can be reconstructed from usual correlation functions. Our results also enable for a refined understanding of quantum phase transitions. We show in particular that the phase transition between a bosonic Mott insulator and a superfluid gives rise to a singularity of entanglement entropy induced by amplitude fluctuations of the phase of the condensate. We finally identify a coherence length governing the scaling behaviour of coherent fluctuations inside the quantum critical region in the finite-temperature vicinity of a quantum critical point, and open novel perspectives for the metrological advantage offered by the exceptional coherence which develops close to quantum critical points, based on the example of the quantum Ising model
Huillery, Paul. "Few and MaPhysique à quelques et à N- corps dans les gaz de Rydberg froidsny-body Physics in cold Rydberg gases." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00817418.
Повний текст джерелаScarlatella, Orazio. "Driven-Dissipative Quantum Many-Body Systems." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS281/document.
Повний текст джерелаMy PhD was devoted to the study of driven-dissipative quantum many-body systems. These systems represent natural platforms to explore fundamental questions about matter under non-equilibrium conditions, having at the same time a potential impact on emerging quantum technologies. In this thesis, we discuss a spectral decomposition of single-particle Green functions of Markovian open systems, that we applied to a model of a quantum van der Pol oscillator. We point out that a sign property of spectral functions of equilibrium systems doesn't hold in the case of open systems, resulting in a surprising ``negative density of states", with direct physical consequences. We study the phase transition between a normal and a superfluid phase in a prototype system of driven-dissipative bosons on a lattice. This transition is characterized by a finite-frequency criticality corresponding to the spontaneous break of time-translational invariance, which has no analog in equilibrium systems. Later, we discuss the mean-field phase diagram of a Mott insulating phase stabilized by dissipation, which is potentially relevant for ongoing experiments. Our results suggest that there is a trade off between the fidelity of the stationary phase to a Mott insulator and robustness of such a phase at finite hopping. Finally, we present some developments towards using dynamical mean field theory (DMFT) for studying driven-dissipative lattice systems. We introduce DMFT in the context of driven-dissipative models and developed a method to solve the auxiliary problem of a single impurity, coupled simultaneously to a Markovian and a non-Markovian environment. As a test, we applied this novel method to a simple model of a fermionic, single-mode impurity
Lasseri, Raphaël-David. "Distribution spatiale de fermions fortement corrélés en interaction forte : formalisme, méthodes et phénoménologie en structure nucléaire." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS248/document.
Повний текст джерелаThe atomic nucleus is intrinsically a complex system, composed of strongly correlated non-elementary fermions, sensitive to strong and electroweak interaction. The description of its internal structure is a major challenge of modern physics. In fact the complexity of the nucleon-nucleon interaction generates correlations which are responsible of the diversity of shapes that the nuclei can adopt. Indeed the nuclei can adopt either quasi-homogeneous shapes when nucleons are delocalized or shapes where spatially localized structure can emerge, namely nuclear clusters. This work is an extension of relativistic mean-fields approach (RMF), which allows an universal treatment of nuclear phenomenology. In a first time we will present the necessary formalism to construct such an approach starting with the fundamental interactions underlying nucleons dynamics within the nucleus. However this approach doesn't allow an accurate reproduction of experimental properties: a purely mean-field approach neglects to many correlations. Existing methods to treat both particle-hole (deformation), particle-particle (pairing) correlations will be discussed. First we will propose a new diagrammatic method, which take correlation into account in a perturbative way, the implementation of this approach using combinatory theory will be discussed. Then we will get back to a phenomenological treatment of particle-hole correlations, to focus on the impact of particle-particle. Formation of nucleonic pair will be discussed in the language of graph theory, allowing several formal simplifications and shed a different light on pairing. Pairing correlations will be at first treated using a relativistic Hartree-Bogolioubov approach. Nevertheless this formalism doesn't conserve particle number, and thus we will present a projective approach to restore it. The effect of this restoration will also be studied. Then to describe general nuclear deformation, several implementations and optimizations developed during this PhD will be presented. With this tools, clusterisation will be investigated as phenomenon emerging for certain class of correlations. Localization measure will be derived allowing a clearer understanding of cluster physics. The analysis of theses quantities makes possible a first unified description of cluster formation both for light nuclei (Neon) or for heavy alpha emitters (Polonium). Cluster emergence will be described as a quantum phase transition, an order parameter will be displayed and this formation will be characterized as a Mott transition. The influence of pairing correlations on cluster formation is studied and a detailed study of pairs spatial properties is performed for nuclei from several mass regions. Lastly a method allowing treatment of 4-body correlations (quartteting) is proposed to explain cluster emergence as alpha particle preformation
Reimann, Thomas. "Resonant spin dynamics and 3D-1D dimensional crossovers in ultracold Fermi gases." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEE029/document.
Повний текст джерелаThe exploration of strongly correlated quantum many-body systems represents one of the most challenging fields of research of contemporary physics. Over the past thirty years, dilute vapors of neutral atoms suspended in vacuum and controlled with laser light have become a versatile and powerful platform for the study of such systems. At the very heart lies the ability to arbitrarily tune the interaction strength by means of magnetically induced Feshbach resonances as well as the possibility to create a wide range of potential landscapes via precisely tailored optical fields. This thesis reports on the recent results of the FerMix experiment, which is dedicated to the study of fermionic quantum many-body-systems at ultralow temperatures using the Alkali atoms 40K and 6Li. The main results presented in this text are twofold. First, we report on the experimental characterization of a novel (s,d)-wave Feshbach resonance in 6Li, the results of which are compared to the corresponding theoretical predictions. In particular, the spectrum of the inelastic loss rate is determined for different temperatures and trap depths, which enables us to identify the losses as two-body processes. Moreover, the dominant entrance channel is confirmed to be s-wave in nature. Using rate equation models we analyze the observed heating of the atomic ensemble and find the behavior to be consistent with the predicted L = 2 bound state present in the exit channel. Finally, we investigate experimentally the dynamics of the spin populations driven by resonantly enhanced inelastic collisions in dwave, observing good agreement with our numerical models. Second, we summarize our progress towards the study of dimensional crossovers between the Tomonaga-Luttinger liquid in 1D and the Landau-Fermi liquid in 3D using Fermi gases of 40K confined in a large spacing optical lattice. This includes both the fundamental design considerations as well as the implementation of the required experimental hardware
Schelle, Alexej. "Environment-induced dynamics in a dilute Bose-Einstein condensate." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2009. http://tel.archives-ouvertes.fr/tel-00438496.
Повний текст джерелаHuillery, Paul. "Few and Many-body Physics in cold Rydberg gases." Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112040/document.
Повний текст джерелаUring this thesis, the Physics of interacting systems has been investigated experimentally using Cold Rydberg gases. Rydberg atoms are highly excited atoms and have the property to interact together through long-range electrostatic interactions.The first highlight of this thesis is the direct experimental observation of a 4-body process. This process consists in the exchange of internal energy between 4 Rydbergs atoms due to their mutual interactions. In addition to its observation, it has been possible to describ this process theoretically at a quantum level.The laser excitation of strongly interacting Rydberg gases has been also investigated during this thesis. In this regime, the interactions between Rydberg atoms give rise to very interesting many-body behaviors. In addition to fundamental interest, such systems could be used to realyze quantum simulators or non-classical light sources.A second highlight of this thesis is the experimental observation of a highly sub-poissonian, i.e correlated, excitation statistics. This result confirms the many-body character of the investigated system.The third highlight of this thesis is the development of a theoretical model to describ the laser excitation of strongly interacting Rydberg gases. Using the so-called Dicke collective states it has been possible to point out new mechanismes related to the many-body character of strongly atomic interacting systems
Angelone, Adriano. "Strongly correlated systems of bosons and fermions : a diagrammatic, variational and path integral Monte Carlo study." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAF028/document.
Повний текст джерелаThe focus of my thesis is the investigation, via numerical approaches, of strongly correlated models of bosons and fermions. I study bosonic lattice Hamiltonians with extended--range interactions, of interest for experiments with cold Rydberg-dressed atoms, via Path Integral MonteCarlo simulations. My main result is the demonstration of a superglass in the absence of frustration sources in the system. I also study the fermionic $t-J$ model in the presence of two holes via Variational Monte Carlo with the Entangled Plaquette States Ansatz. My study is foundational to the extension of this approach to other fermionic systems, of interest for high temperature superconductivity, where the physical picture is still under debate (such as, e.g., the $t-J$ model in the case of finite hole concentration). Finally, I discuss my work on an implementation of the Diagrammatic Monte Carlo algorithm
Ricaud, Julien. "Symétrie et brisure de symétrie pour certains problèmes non linéaires." Thesis, Cergy-Pontoise, 2017. http://www.theses.fr/2017CERG0849.
Повний текст джерелаThis thesis is devoted to the mathematical study of two quantum systems described by nonlinear models: the anisotropic polaron and the electrons in a periodic crystal. We first prove the existence of minimizers, and then discuss the question of uniqueness for both problems. In the first part, we show the uniqueness and nondegeneracy of the minimizer for the polaron, described by the Choquard--Pekar anisotropic equation, assuming that the dielectric matrix of the medium is almost isotropic. In the strong anisotropic setting, we leave the question of uniqueness open but identify the symmetry that can possibly be degenerate. In the second part, we study the electrons of a crystal in the periodic Thomas--Fermi--Dirac--Von~Weizsäcker model, varying the parameter in front of the Dirac term. We show uniqueness and nondegeneracy of the minimizer when this parameter is small enough et prove the occurrence of symmetry breaking when it is large
Magnan, Eric. "Spontaneous decoherence in large Rydberg systems." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLO008/document.
Повний текст джерелаQuantum simulation consists in engineering well-controlled artificial systems that are ruled by the idealized models proposed by the theorists. Such toy models can be produced with individual atoms, where laser beams control individual atomic states and interatomic interactions. In particular, exciting atoms into a highly excited state (called a Rydberg state) allows to control individual atoms and taylor interatomic interactions with light. In this thesis, we investigate experimentally two different types of Rydberg-based quantum simulators and identify some possible limitations.At the Joint Quantum Institute, we observe the decoherence of an ensemble of up to 40000 Rydberg atoms arranged in a cubic geometry. Starting from the atoms prepared in a well-defined Rydberg state, we show that the spontaneous apparition of population in nearby Rydberg states leads to an avalanche process. We identify the origin of the mechanism as stimulated emission induced by black-body radiation followed by a diffusion induced by the resonant dipole-dipole interaction. We describe our observations with a steady-state mean-field analysis. We then study the dynamics of the phenomenon and measure its typical timescales. Since decoherence is overall negative for quantum simulation, we propose several solutions to mitigate the effect. Among them, we discuss the possibility to work at cryogenic temperatures, thus suppressing the black-body induced avalanche.In the experiment at Laboratoire Charles Fabry (Institut d'Optique), we analyze the limitation of a quantum simulator based on 2 and 3 dimensional arrays of up to 70 atoms trapped in optical tweezers and excited to Rydberg states. The current system is limited by the lifetime of the atomic structure. We show that working at cryogenic temperatures could allow to increase the size of the system up to N=300 atoms. In this context, we start a new experiment based on a 4K cryostat. We present the early stage of the new apparatus and some study concerning the optomechanical components to be placed inside the cryostat
Minganti, Fabrizio. "Out-of-Equilibrium Phase Transitions in Nonlinear Optical Systems." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC004/document.
Повний текст джерелаIn this thesis we theoretically study driven-dissipative nonlinear systems, whosedynamics is capture by a Lindblad master equation. In particular, we investigate theemergence of criticality in out-of-equilibrium dissipative systems. We present a generaland model-independent spectral theory relating first- and second-order dissipative phasetransitions to the spectral properties of the Liouvillian superoperator. In the critical region,we determine the general form of the steady-state density matrix and of the Liouvillianeigenmatrix whose eigenvalue defines the Liouvillian spectral gap. We discuss the relevanceof individual quantum trajectories to unveil phase transitions. After these general results,we analyse the inset of criticality in several models. First, a nonlinear Kerr resonator in thepresence of both coherent (one-photon) and parametric (two-photon) driving and dissipation.We then explore the dynamical properties of the coherently-driven Bose-Hubbard and of thedissipative XYZ Heisenberg model presenting a first-order and a second-order dissipativephase transition, respectively. Finally, we investigate the physics of photonic Schrödingercat states in driven-dissipative resonators subject to engineered two-photon processes andone-photon losses. We propose and study a feedback protocol to generate a pure cat-likesteady state
Baboux, Florent. "Effets spin-orbite géants sur les modes collectifs de spin de puits quantiques." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2013. http://tel.archives-ouvertes.fr/tel-01020564.
Повний текст джерелаMalpetti, Daniele. "Thermodynamics of strongly interacting bosons on a lattice : new insights and numerical approaches." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEN065/document.
Повний текст джерелаCold atoms in optical lattices offer unprecedented control over strongly correlatedmany-body states. For this reason they represent an excellent tool for the implementation ofa “quantum simulator”, which can be used to realize experimentally several Hamiltonians ofsystems of physical interest. In particular, they enable the engineering of artificial gaugefields, which gives access to the physics of frustrated magnetism. In this work, we study thethermodynamics of cold atoms both from a theoretical and a numerical point of view. Atpresent days, the most effective method used in this field is the quantum Monte Carlo. Butbecause of the so-called “sign problem” it can only be applied to a limited class of systems,which for example do not include frustrated systems. The interest of this thesis is to developof a new approximated method based on a Monte Carlo approach. The first part of this workis dedicated to theoretical considerations concerning the spatial structure of quantum andclassical correlations. These results permit to develop, in the second part, an approximationcalled quantum mean-field. This latter allows to propose, in the third part, a numericalmethod that we call “auxiliary-field Monte Carlo” and that we apply to some systems ofphysical interest, among which the frustrated triangular lattice
Botzung, Thomas. "Study of strongly correlated one-dimensional systems with long-range interactions." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAF062.
Повний текст джерелаDuring this Ph.D., we studied one-dimensional systems with long-range couplings. In the first part, we demonstrate that power-law couplings lead to an algebraic decay of correlations at long distances in disordered quantum wires. In the second chapter, we analysed an extended Hubbard model where particles interact via a finite-range potential that induces frustration and new exotic phases. In the third chapter, we demonstrated that restoring energy extensivity has an influence on the low-energy properties of quantum model in the thermodynamic limit. Finally, we provide preliminary results on the modification of Anderson localization due to the coupling to a cavity mode
Iftimovici, Andrei. "Etude des propriétés de propagation pour des systèmes quantiques du type N-corps à noyaux durs." Paris 7, 1994. http://www.theses.fr/1994PA077043.
Повний текст джерелаMoutenet, Alice. "Nouveaux algorithmes pour l’étude des propriétés d’équilibre et hors d’équilibre des systèmes quantiques fortement corrélés." Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX026.
Повний текст джерелаWhat do stars in a galaxy, drops in a river, and electrons in a superconducting cuprate levitating above a magnet all have in common? All of these systems cannot be described by the isolated motion of one of their parts. These singular properties emerge from particles and their interactions as a whole: we talk about the emph{many-body problem}.In this Thesis, we focus on properties of strongly-correlated systems, that obey quantum mechanics. Analytical methods being rapidly limited in their understanding of these materials, we develop novel numerical techniques to precisely quantify their properties when interactions between particles become strong.First, we focus on the equilibrium properties of the layered perovskite Sr2IrO4, a compound isostructural to the superconducting cuprate La2CuO4,where we prove the existence of a pseudogap and describe the electronic structure of this material upon doping.Then, in order to address the thermodynamic limit of lattice problems, we develop extensions of determinant Monte Carlo algorithms to compute dynamical quantities such as the self-energy. We show how a factorial number of diagrams can be regrouped in a sum of determinants, hence drastically reducing the fermionic sign problem.In the second part, we turn to the description of nonequilibrium phenomena in correlated systems.We start by revisiting the real-time diagrammatic Monte Carlo recent advances in a new basis where all vacuum diagrams directly vanish.In an importance sampling procedure,such an algorithm can directly addressthe long-time limit needed in the study of steady states in out-of-equilibrium systems.Finally, we study the insulator-to-metal transition induced by an electric field in Ca2RuO4, which coexists with a structural transition.An algorithm based on the non-crossing approximation allows us to compute the current as a function of crystal-field splitting in this material and to compare our results to experimental data
Besse, Grégoire. "Description théorique de la dynamique nucléaire lors des collisions d'ions lourds aux énergies de Fermi." Thesis, Nantes, 2017. http://www.theses.fr/2017NANT4061/document.
Повний текст джерелаThis PhD-work is about nuclear physics for low and intermediate energies, the incident energy from tens MeV to energies about the Fermi-energy. This work consists essentially in the development of microscopic models describing the N-body nuclear problem, the main goal is to provide some theoretical tools adapted to the study of phenomena linked to international experimental programs such as LNL-FAZIA, GANILSpiral 2, GSI-FAIR and LBL-FRIB. These new experiments will produce high-quality radioactive beams that will provide us to explore nuclear matter far from stability, especially in isospin and therefore to progress in the comprehension of fundamental interactions. Interdisciplinary applications in the field of compact stars can be envisaged as due to this work. Indeed, astrophysics and nuclear physics are two disciplines that intertwine inextricably. In particular, experiments with new radioactive beams will enable us to obtain information on rare isotopes having an important role in astrophysical processes and to answer basic questions about the nature of neutron stars
Masella, Guido. "Exotic quantum phenomena in cold atomic gases : numerical approaches." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAF061.
Повний текст джерелаThe central aim of this thesis is the study of the low-energy and low-temperature properties of strongly correlated systems of bosonic particles interacting via finite- and long-range potentials, and relevant to experimental realization with cold atomic gases. This study is carried out with a combination of state-of-the-art numerical techniques such as Path Integral Monte Carlo and analytical techniques. The main result of my work is the demonstration of the existence of a stripe supersolid phase and of a rare transition between isotropic and anisotropic supersolids in a finite-range interacting model of hard-bosons on a square lattice. I also investigate the out-of-equilibrium scenarios of such models via simulated temperature quenches. Finally, I investigate how restoring energy extensivity in long-range interacting systems can have a profound incidence on the low-energy properties in the thermodynamic limit
Vuatelet, Vincent. "Localisation dynamique à N-corps d'un gaz de Tonks-Girardeau." Electronic Thesis or Diss., Université de Lille (2022-....), 2022. http://www.theses.fr/2022ULILR033.
Повний текст джерелаThe Kicked Rotor, paradigm of quantum chaos, is the analog in momentum space of a disordered Anderson system, due to the fact that the system displays the phenomenon of so-called dynamic localization. We study the effect of interactions on dynamical localization in a strongly interacting Bose gas, called the Tonks-Girardeau gas. Exploiting this limit and the Bose-Fermi mapping, we study the physics of a Tonks-Girardeau gas kicked through the reduce one-body density matrix of the system. We find similarity of the system with a Bose gas at finite temperature, we characterize the observables of the system, in particular its energy, its momentum distribution, and the correlations. We relate the emerging effective temperature to the localization characteristics of the system, being in a dynamically localized N-body phase. We also present a characterization of the quasi-periodic version of the Kicked Rotor, analog of a three-dimensional Anderson system, marked by a phase transition between a localized and diffusive regime. We finally analyze the momentum distribution at the critical threshold, and characterize its behavior in its center, at small and large momenta, marked by three different scalings
CHAU, Huu-Tai. "Symétrie et géométrie du problème à N-corps. Application à la physique nucléaire." Phd thesis, Université de Caen, 2002. http://tel.archives-ouvertes.fr/tel-00002252.
Повний текст джерелаYalkinoglu, T. Bora. "Sur l'arithmétique des systèmes de Bost-Connes." Paris 6, 2011. http://www.theses.fr/2011PA066609.
Повний текст джерелаIdier, Déborah. "Modélisation d'un système de nucléons : Propriétés statiques et dynamiques ; fluctuations de densité." Nantes, 1993. http://www.theses.fr/1993NANT2018.
Повний текст джерелаPuertas, Javier. "Interaction lumière-matière dans le régime à N-corps des circuits quantiques supraconducteurs." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAY021/document.
Повний текст джерелаUnderstanding the way light and matter interact remains a central topic in modern physics despite decades of intensive research. Owing to the large light-matter interaction in superconducting circuits, it is now realistic to think about experiments where the dynamics of environments containing many degrees of freedom becomes relevant. It suggests that bridging many-body physics, usually devoted to condensed matter, and quantum optics is within reach.In this work we present a fully tunable system for studying light-matter interaction with many bodies at different coupling regimes. The circuit consists of a transmon qubit (“the matter”) capacitively coupled to an array of 4700 Josephson junctions in a squid geometry, sustaining many electromagnetic or plasma modes (“the light”). Thanks to the large kinetic inductance of Josephson junctions, the array shows a high characteristic impedance that enhances the qubit-modes coupling. The squids in the transmon and in the array allow us to tune the strength of this coupling via an external magnetic flux.We observe the three required ingredients to explore many-body physics: an environment with a high density of electromagnetic modes, the ultra-strong light-matter coupling regime and a non-linearity comparable to the other relevant energy scales. Moreover, we present a method to treat the effect of the vacuum fluctuations of all these degrees of freedom. Thus we provide a quantitative and parameter-free model of this large quantum system. Finally, from the phase shift induced by the transmon on the modes of the array, the transmon phase shift, we quantify the hybridization of the transmon qubit with several modes in the array (up to 10) and obtain the transmon resonance frequency and its width, demonstrating that we are in the ultra-strong coupling regime.This work demonstrates that quantum circuits are a very powerful platform to explore many-body quantum optics in a fully controlled way. Combining superconducting metamaterials and qubits could allow us to observe qualitative many-body effects such as giant lambshift, non-classical states of light and particle productions or to simulate quantum impurity problems (such as the Kondo model or the sine-Gordon model) and dissipative quantum phase transitions
Falakshahi, Houman. "Etude de la fusion quantique du cristal de Wigner." Paris 11, 2004. http://www.theses.fr/2004PA112279.
Повний текст джерелаWe study the behaviour of a two-dimensional electrons system as a function of the density of the particles at zero temperature and zero disorder. At high density, the system is in a Fermi liquid state. At low density, the Coulomb repulsion locates the electrons on a periodic lattice (Wigner crystal, 1934). As the density increases, the Wigner crystal melts because of quantum fluctuations. The understanding of this transition is still an open question. According to the usual hypothesis, the crystal melts directly into the Fermi Liquid. In this case the critical density was precisely estimated by Quantum Monte Carlo methods (Tanatar and Ceperley, 1989). But according to other studies another phasis may exist in between theses two phases (Pichard 2003, Andreev and Lifchitz 1969). This work contains two different sections. In the first part, we show that in some experimental samples, the atomic lattice upon which the electrons are traped modify the physical behaviour of the electronic system. In the second part, we study the melting of the Wigner crystal. At first we reproduced the result of Tanatar and Ceperley with supposing that the cristal melts directly to the Fermi Liquid. But the principle result of this work is the finding of a new phasis of lower energy than the liquid and the crystal. This phasis has the same symmetry than the crystal but has new properties. For instance the electrons are located around the crystal sites and are also delocalised everywhere in the system. This result shows that at least a new quantum phasis exists in between the Fermi liquid and the Wigner crystal
Pomeransky, Andrei A. "Intrication et imperfections dans le calcul quantique." Toulouse 3, 2004. http://www.theses.fr/2004TOU30132.
Повний текст джерелаQuantum information is a new domain of physics, which studies the applications of quantum systems to the computation and to the information transmission. The quantum computers use the lows of quantum mechanics to perform the calculations much more efficiently than all currently existing computers can. The quantum computers will be influenced by all kinds of perturbations. We study, in the case of two very different quantum computations, the efficiency of the quantum computers in the presence of the static imperfections. One of the fundamental reasons of the extraordinary efficiency of the quantum computers is the effect of quantum entanglement. In the present thesis we study certain important properties of a widely used quantitative measure of entanglement. We consider also the average informational entropy of quantum states, find an explicit expression for this quantity and study some its most important properties
Van, Groenendael Augustin. "Usage de l'algèbre de Lie su(n) dans l'étude des systèmes quantiques à n états." Lille 1, 1987. http://www.theses.fr/1987LIL10054.
Повний текст джерелаChau, Huu-Tai Pierre. "Symétrie et géométrie du problème à N-corps : application à la physique nucléaire." Caen, 2002. http://www.theses.fr/2002CAEN2029.
Повний текст джерелаRech, Jérôme. "Phénomènes quantiques macroscopiques dans les systèmes d'électrons fortement corrélés." Phd thesis, Université Paris Sud - Paris XI, 2006. http://tel.archives-ouvertes.fr/tel-00197118.
Повний текст джерелаLienhard, Vincent. "Physique quantique expérimentale à N corps dans des matrices d'atomes de Rydberg. Des modèles de spins à la matière topologique." Thesis, Université Paris-Saclay (ComUE), 2019. https://pastel.archives-ouvertes.fr/tel-02949007.
Повний текст джерелаRydberg-based platforms, involving single atoms trapped in arrays of optical tweezers and excited to Rydberg states, have recently proven attractive to perform quantum simulation of many-body physics. In this thesis, we first demonstrated the generation of arrays of optical tweezers fully loaded by single ground-state atoms. The trapping technique was then extended for Rydberg atoms. The latest are repelled from high-intensity regions via the ponderomotive force, so we created holographically dark regions surrounded by light to confine them. We also studied spin-spin correlations in artificial Ising or XY magnets, engineered by using either the van der Waals or the resonant dipolar coupling between Rydberg atoms. In the Ising case, we observed the growth of antiferromagnetic correlations during a dynamical tuning of the Hamiltonian, revealing an effective velocity for the spreading of correlations, and a typical site to site build-up mechanism. In the XY case, we demonstrated the preparation of a controlled number of spin excitations, and the generation of 1D XY ferromagnets and a 2D stripy order phase (ferromagnetic chains anti-aligned with respect to each other). Finally, we used additional exchange terms of the dipole-dipole interaction to engineer complex hopping amplitudes for an effective particle. This resulted in the emergence of an artificial gauge field, characterized on a minimal three-atom system, and opens the way to the observation of chiral edge states, a signature of topological insulators
Rambaux, Nicolas. "Modèle spin-orbite à N-corps : application à l'étude comparée de la rotation des planètes telluriques." Toulouse 3, 2004. http://www.theses.fr/2004TOU30050.
Повний текст джерелаLe, Boité Alexandre. "Strongly correlated photons in arrays of nonlinear cavities." Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCC109.
Повний текст джерелаIn recent years, the control of photon-photon interactions in optical nonlinear media has led to the realization of quantum fluids of light. One of the current challenges is to increase the strength of these interactions and enter the so-called strongly correlated regime. To achieve this goal, arrays of nonlinear cavities are a very promising candidate. In this thesis, theoretical results on arrays of nonlinear cavities described by a driven¬dissipative Bose-Hubbard model are presented. In particular, a general method to compute the mean-field phase diagram of this model is described. Due to the finite life time of photons, the system is intrinsically dissipative : cavity losses must be compensated by an external driving field. This nonequilibrium nature gives rise to interesting features, such as a transition between monostable and bistable phases induced by tunneling. In the limit of weak dissipation and weak driving, analytical results describing generalized Mott insulating phases are derived. These states survive up to a critical tunneling strength, above which a crossover to a classical coherent state takes place. Finally, the issue of how to go beyond the mean-field approximation is addressed by performing exact numerical simulations. Large arrays of cavities were simulated by implementing a new method specifically tailored for driven-dissipative systems
Voliotis, Dimitrios. "Contribution à l’étude des chaînes de spin quantique avec une perturbation aléatoire ou apériodique." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0253/document.
Повний текст джерелаIn the present thesis, the critical and off-critical behaviors of quantum spin chains in presence of a random or an aperiodic perturbation of the couplings is studied. The critical behavior of the Ising and Potts random quantum chains is known to be governed by the same Infinite-Disorder Fixed Point. We have implemented a numerical version of the Strong-Disorder Renormalization Group (SDRG) to test this prediction. We then studied the quantum random Ashkin-Teller chain by Density Matrix Renormalization Group. The phase diagram, previously obtained by SDRG, is confirmed by estimating the location of the peaks of the integrated autocorrelation times of both the spin-spin and polarization-polarization autocorrelation functions and of the disorder fluctuations of magnetization and polarization. Finally, the existence of a double-Griffiths phase is shown by a detailed study of the decay of the off-critical autocorrelation functions. As expected, a divergence of the dynamical exponent is observed along the two transition lines. In the aperiodic case, we studied both the Ising and Potts quantum chains. Using numerical SDRG, we confirmed the known analytical results for the Ising chains and proposed a new estimate of the magnetic scaling dimension.For the quantum q-state Potts chain, we estimated the magnetic scaling dimension for various aperiodic sequences and showed that it is independent of q for all sequences with a vanishing wandering exponent. However, we observed that the dynamical exponent is finite and increases with the number of states q. In contrast, for the Rudin-Shapiro sequence, the results are compatible with an Infinite-Disorder Fixed Point with a diverging dynamical exponent, equipe de renormalization
Mora, Christophe. "Systèmes quantiques en interaction : physique mésoscopique et atomes froids." Habilitation à diriger des recherches, Université Paris-Diderot - Paris VII, 2012. http://tel.archives-ouvertes.fr/tel-00712112.
Повний текст джерелаBertrand, Corentin. "Algorithme Monte-Carlo pour les systèmes quantiques à fortes interactions et hors d'équilibre en nanoélectronique." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAY030.
Повний текст джерелаNon-equilibrium quantum many-body problems are attracting increasingly more attention in condensed matter physics. For instance, systems of interacting electrons submitted to an external (constant or varying) electric field are studied in nanoelectronics, and more recently in materials, for the search of novel non-equilibrium states of matter. In this thesis, we developed a new numerical generic method for these problems, and apply it to the Anderson impurity model. This model is a good representation of a quantum dot coupled to one or several leads, and gives rise at equilibrium to the Kondo effect --- a manifestation of Coulomb interactions within the dot. We apply our method to compute the collapse of the Kondo effect when the quantum dot is driven out of equilibrium by a voltage bias. Our method is based on a diagrammatic Quantum Monte Carlo (QMC) algorithm. The QMC is an optimized version of the algorithm of Profumo et al. [Phys. Rev. B 91, 245154 (2015)], which computes time-dependent observables or correlation functions as perturbation series in the interaction strength U. To address the problem of diverging series at large U, we constructed a robust resummation scheme which analyses the analytical structure of the series in the U complex plane, for proposing a tailor-made regularization method using a conformal transform of the complex plane. As a post-treatment, a Bayesian technique allows to introduce non-perturbative information to tame the exacerbation of error bars caused by the resummation. We emphasize the potential application to study non-equilibrium materials through "quantum embedding" schemes, such as the Dynamical Mean Field Theory (DMFT), which allow to study lattice models through solving a self-consistent impurity model
Gohaud, Neil. "Etude ab initio des spectres vibrationnels de systèmes de grande dimension : Application aux composés (CH3X)n, avec X=Li, Na, K." Pau, 2006. http://www.theses.fr/2006PAUU3049.
Повний текст джерелаVibrational spectroscopy field is still quite active nowadays: actually, its quickness of acquisition and its ability to identify functional groups make it a perfectly suitable device for characterisation of very reactive and/or short-life compounds. A spectrum analysis becomes very complex with the growth of studied systems’ size and presence of parasite molecules. Thus, recent methodological breakthroughs couple together with improvements in the computing area enable from now on an accurate theoretical assessment for systems up to 4-5 atoms, but the chemist is quickly limited in his investigations when larger molecules are considered. The aim of this thesis is to provide a computing tool designed to process a direct variational algorithm, which is the only one able to treat explicitly phenomena such as resonances, on chemical systems up to 20 atoms. In order to reach this goal, a parallel coding approach has been considered. This software, called P_Anhar, has then been used to perform a complete vibrational study on a chemical family, namely the methylalkali. From a spectroscopic point of view, there is a strong discrepancy between theoretical and experimental works dealing with these systems. Using P_Anhar has brought some parts of an answer to this discrepancy, and an interpretation of reference experimental spectra is consequently proposed, in order to revisit them
Ayouz, Mehdi Adrien. "Étude théorique de la dynamique de systèmes quantiques à petit nombre de corps : structure et dynamique de formation de la molécule H3¯ dans l'espace." Paris 11, 2010. http://www.theses.fr/2010PA112361.
Повний текст джерелаThe H3¯ molecule, considered as the simplest negative triatomic molecular ion, is a benchmark system because it allows testing theoretical and numerical methods due to its weak particle mass, prior to be applied to heavier species. To study this molecule and describe its dynamics, we have determined the ground potential energy and permanent dipole moment surfaces. Using the potential energy surface we established the structure of this molecule and its isotopologues. We have developed a theory of radiative association (RA) of H2 + H¯ → H3¯ + hbar ω which could occur in cold and dense interstellar medium (ISM). The obtained permanent dipole moment surface allows us to calculate the formation rate of this molecule in this medium. It appears that the formation is possible for H¯ and para H2 collisions. An eventual observation of H3¯ would be a proof for the presence of H¯ in the interstellar medium. This ion is known to play a role in ISM chemistry especially in the formation process of negative ions. Finally a methodological and numerical developments have been also carried out in order to describe the dynamics of H3¯ in collectives coordinates and compute cross sections for exchange nuclei in its isotopologues
Hansen, Hubert. "Méthodes non-perturbatives en théorie quantique des champs : au-delà du champ moyen, l'approximation de la phase aléatoire." Phd thesis, Université Claude Bernard - Lyon I, 2002. http://tel.archives-ouvertes.fr/tel-00003814.
Повний текст джерелаEn se plaçant au-delà du champ moyen où seules sont prises en compte les corrélations entre une particule et un potentiel "moyen" à un corps, la RPA va permettre de rajouter dans le calcul de l'état fondamental des corrélations entre particules.
Afin de mettre en place le formalisme, on applique la RPA, sons différentes formes (standard, renormalisée, en termes de fonctions de Green), à l'une des plus simples théories des champs en interaction, la théorie scalaire lambda x phi^4. On montre qu'il se produit une transition de phase due à une brisure dynamique de symétrie dont le paramètre critique se rapproche des résultats obtenus sur réseaux et par la technique des "clusters". Les résultats sont aussi présentés à température finie pour le champ moyen.
On étudie également un modèle effectif réaliste de la transition de phase chirale, le modèle sigma-linéaire et on montre que le théorème de Goldstone est restauré, contrairement à l'approximation gaussienne.
Enfin pour éclaircir quelques points de la RPA et, aller au-delà des corrélations obtenues dans la forme renormalisée, on considère l'oscillateur anharmonique en mécanique quantique, en introduisant les corrélations minimales au-delà du champ moyen et on montre que les corrélations RPA améliorent grandement le résultat obtenu en champ moyen.
Chambrion, Thomas. "Systèmes contrôlés invariants à gauche sur des groupes de Lie semi-simples compacts : application aux problèmes de contrôle optimal de systèmes quantiques à n niveaux." Dijon, 2004. http://www.theses.fr/2004DIJOS027.
Повний текст джерелаHubert, Mickaël. "Relativistic coupled cluster theory for excited states at a general excitation rank : applications to diatomic molecules." Toulouse 3, 2013. http://thesesups.ups-tlse.fr/2046/.
Повний текст джерелаThis thesis focuses on methodological developments of the theoretical evaluation of the quantum and relativistic energy of electronically excited states of an atom or a molecule. The wave-function method Coupled Cluster (CC) is currently one of the most accurate methods to calculate these states for many-body systems. The implementation presented is based on the many-body relativistic 4-component Dirac-Coulomb Hamiltonian and a Coupled Cluster wave function at arbitrary excitation rank. The excited states are evaluated using linear response theory by diagonalizing the Coupled Cluster Jacobian matrix. The work focuses on the evaluation of these second-quantized elements using a new commutator-based algorithm, and on its adaptation to a Dirac 4-component relativistic formalism. Finally, I present some applications of the code to challenging diatomic molecules
Bidzhiev, Kemal. "Out-of-equilibrium dynamics in a quantum impurity model." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS352/document.
Повний текст джерелаThe fields of in- and out-of-equilibrium quantum many-body systems are major topics in Physics, and in condensed-matter Physics in particular. The equilibrium properties of one-dimensional problems are well studied and understood theoretically for a vast amount of interacting models, from lattice spin chains to quantum fields in a continuum. This progress was allowed by the development of diverse powerful techniques, for instance, Bethe ansatz, renormalization group, bosonization, matrix product states and conformal field theory. Although the equilibrium characteristics of many models are known, this is in general not enough to describe their non-equilibrium behaviors, the latter often remain less explored and much less understood. Quantum impurity models represent some of the simplest many-body problems. But despite their apparent simplicity, they can capture several important experimental phenomena, from the Kondo effect in metals to transport in nanostructures such as point contacts or quantum dots. In this thesis consider a classic impurity model - the interacting resonant level model (IRLM). The model describes spinless fermions in two semi-infinite leads that are coupled to a resonant level -- called quantum dot or impurity -- via weak tunneling and Coulomb repulsion. We are interested in out-of-equilibrium situations where some particle current flows through the dot, and study transport characteristics like the steady current (versus voltage), differential conductance, backscattered current, current noise or the entanglement entropy. We perform extensive state-of-the-art computer simulations of model dynamics with the time-dependent density renormalization group method (tDMRG) which is based on a matrix product state description of the wave functions. We obtain highly accurate results concerning the current-voltage and noise-voltage curves of the IRLM in a wide range parameter of the model (voltage bias, interaction strength, tunneling amplitude to the dot, etc.).These numerical results are analyzed in the light of some exact out-of-equilibrium field-theory results that have been obtained for a model similar to the IRLM, the boundary sine-Gordon model (BSG).This analysis is in particular based on identifying an emerging Kondo energy scale and relevant exponents describing the high- and low- voltage regimes. At the two specific points where the models are known to be equivalent our results agree perfectly with the exact solution. Away from these two points, we find that, within the precision of our simulations, the transport curves of the IRLM and BSG remain very similar, which was not expected and which remains somewhat unexplained
Beets, Eric. "Modélisation des systèmes mécaniques articulés flexibles par utilisation des coordonnées naturelles et des équations de Kane : expérimentation et validation numérique." Valenciennes, 1997. http://www.theses.fr/1997VALE0039.
Повний текст джерелаThe simulation of multibody dynamics has known an important expand since the 60's. Until the end of the 70's, bodies were considered as rigid in the most of software packages. Results are excellent as long as deformations remain weak. However, the simulation of large sizes or high-speed revolving mechanisms, as well as the optimization of masses, needs to take structural flexibilities into account. During the development of a flexible multibody formalism, it is necessary to choose the descriptive coordinates systems allowing to position the moving reference frame and the type of the motion equations. The former affects directly the facility of the mechanism description as well as the operative cost. We have therefore chosen to develop a method based on Kane’s equations in natural coordinates. These last lead to a simple and “natural” description of the mechanism and to a limited number of descriptive coordinates. Kane’s equation generate besides a minimal number of motion equations. The finite element method is here employed to introduce the elastic coordinates and the component mode s used in order to reduce the number of degrees of freedom. It is also possible to increase the step of the numerical integration method. A software based on this method has therefore been developed. Two benchmarks allow us to conclude that, for similar results, CPU times are inferior to classical methods based on the one hand on Lagrange’s equations in absolute coordinates and on the other hand on Lagrange’s equation in natural coordinates. Moreover, the realization of an experimental flexible four bars mechanism allows showing that the method gives results close to effective working conditions
Shevate, Sayali. "Preparation and Rydberg excitation of large arrays of microscopic atomic ensembles." Thesis, Strasbourg, 2021. http://www.theses.fr/2021STRAE003.
Повний текст джерелаUltracold atoms in optical tweezer arrays have emerged as one of the most versatile platforms for quantum many-body physics, quantum simulation and quantum computation. In this thesis, I report a way to achieve fully occupied tweezer arrays to sizes well beyond 200 sites by exploiting elastic collisions as compared to light-assisted inelastic collisions and along the way greatly advance the feasibility of quantum simulations based on trapped atomic ensembles with programmable geometries. We demonstrate, for the first time, fully filled versatile arrays of atomic ensembles > 400 tweezers prepared using a digital micromirror device, where each tweezer contains ~ 60 atoms in a microscopic volume, high atom number and remarkably low atom number fluctuations. As a necessary pre-requisite to performing the coherent manipulation of the Rydberg excitation of these atomic ensembles, I present experiments on narrow line with two-photon Rydberg excitation of these large arrays of atomic ensembles. I also discuss an analysis of the effects causing spectral broadening. This work paves the way towards detailed analysis of many-body effects in a structured Rydberg gas-an important step towards building a quantum simulator based on trapped atomic ensembles in optical tweezer arrays. This opens up applications ranging from quantum simulation of exotic quantum spin models, quantum dynamics including transport and many-body localization and quantum cellular automat a with programmable spatial configurations and versatile Rydberg mediated interactions
Drissi, Mehdi. "Renormalization invariance of many-body observables within pionless effective field theory." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS414/document.
Повний текст джерелаThe current paradigm to describe the nuclear interaction is within the frame of Chiral Effective Field Theory (ₓEFT) which organizes contributions to observables in a serie of decreasing importance. It happens that the leading contribution already requires to solve exactly the Schrödinger equation with a particular Hamiltonian. The same requirement is at play in pionless EFT which considers only nucleonic degrees of freedom. Such calculations are numerically intractable for A-body observables with A >> 10. One must design an additional expansion and truncation for many-body observables. In this thesis, non-perturbative approximations on the basis self-consistent Green’s function (SCGF) and on many-body perturbation theory (MBPT) are considered together with a pionless EFT. The goal of the present thesis is to investigate, in such framework, the renormalization invariance of many-body observables computed in A-body sectors with A >> 10. Hopefully the lessons learnt can be extended to ₓEFT. Analysis of numerical calculations realized with a state-of-the-art SCGF code reveals a critical numerical approximation leading to renormalization dependent observables. A necessary fix is proposed and must be implemented before any calculations based on SCGF and EFT in the future. This emphasizes the criticality of numerical approximations for any calculation within a pionless EFT. At the same time, renormalization invariance of observables computed within MBPT is studied formally, opening the path to formulate the renormalization of a wide range of many-body truncation schemes in the future
Gauthé, Olivier. "Méthodes de réseaux de tenseurs pour les systèmes de spins SU(N)." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30279.
Повний текст джерелаThe study of strongly correlated electron systems is one of the most challenging target of modern condensed matter physics. Beyond the Mott transition, these systems are magnetic insulators that can be described by a spin wavefunction. This concept can be generalized by replacing the spin variable by an irreducible representation of the group SU(N), which is relevant in some cold atomic gases experiments. This thesis aims to determine the physical properties of paradigmatic wavefunctions of condensed matter systems ruled by SU(N) symmetry using tensor network algorithms. These methods have already proven to be efficient to tackle problems with discrete variables on a lattice. Here, the formalism of Projected Entangled Pair States (PEPS) is used to design elementary tensors with intrinsic SU(N) symmetry that describe quantum spin liquid phases. This method is first applied to the generalization to SU(3) symmetry group and in two dimensions on the square lattice of the Affleck-Kennedy-Lieb-Tasaki (AKLT) wavefunction. It is shown to belong to the class of symmetry protected topological phases. Subsequently, the generalization to SU(N) of resonant valence bond (RVB)-like states on the square lattice is investigated, first for staggered fundamental-conjugate representations. A system of two SU(4) fermions per site is then considered and described with generalized RVB wavefunctions. These states are shown to represent a Z2 topological quantum spin liquid, possibly chiral, that does not break any spatial symmetry. A reasonable, short-range Hamiltonian able to stabilize this phase is proposed
Mei, Pu. "Corrélations spatiales des particules dans l’Hélium-6 et dans l’Hélium-8." Caen, 2011. http://www.theses.fr/2011CAEN2066.
Повний текст джерелаIn a nuclear system, each nucleon is subject to nuclear forces exerted by the others, and the structure of states provides evidence of the nature of the interactions. On the other hand, the nuclear wave function is a measure of the probability of a particular geometry. As such, it provides an illustrative picture of the geometric structures inside the nucleus. Knowledge of the geometries of nuclear matter in specific quantum states helps understand nuclear structure and interactions, provides theoretical validation and allows prediction of experimental results. This thesis has its focus on the geometries of two and four identical particle systems, in particular those resulting from the short-range attractive nature of nuclear interactions. For two-particle systems coupled to an arbitrary angular momentum, distinct spatial and angular configurations are found regularly related to the quantum numbers, which is explained analytically. Application to the Borromean halo nucleus 6He with first the delta interaction and then the pairing interaction shows the coexistence of the di-neutron and the cigar-like configurations, with a predominance of the former over the latter. As for four-particle systems, 8He is studied as a prototype. The expression of the angular probability density is derived analytically for a general 0+ state. Configurations in terms of relative angles where the angular probability density peaks fall into two categories of geometries with specific symmetries, which can be considered as the generalization of the geometries of a two-particle system to those of a four-particle system