Зміст
Добірка наукової літератури з теми "Système projecteur-caméra"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Système projecteur-caméra".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Дисертації з теми "Système projecteur-caméra"
Mosnier, Jérémie. "Etalonnage d'un système de lumière structurée par asservissement visuel." Thesis, Clermont-Ferrand 2, 2011. http://www.theses.fr/2011CLF22194.
Повний текст джерелаThis thesis is part of a national project named SRDViand whose aim was to develop a robotic system for the deboning and cutting of animals meat. To determine the cut paths, a structured light system has been developed. It refers to vision systems that use light projection models for 3D reconstruction tasks. To achieve best results, the definition of a new calibration method for structured light systems was established . Based on a large state of the art and also with a proposed classification of these methods, it has been proposed to calibrate a camera projector pair using visual servoing . The validity and the results of this method were tested on the basis of numerous experimental tests conducted under the SRDViand project. Following the development of this method, a prototype bovine cutting was performed
Setkov, Aleksandr. "IVORA (Image and Computer Vision for Augmented Reality) : Color invariance and correspondences for the definition of a camera/video-projector system." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS168/document.
Повний текст джерелаSpatial Augmented Reality (SAR) aims at spatially superposing virtual information on real-world objects. Over the last decades, it has gained a lot of success and been used in manifold applications in various domains, such as medicine, prototyping, entertainment etc. However, to obtain projections of a good quality one has to deal with multiple problems, among them the most important are the limited projector output gamut, ambient illumination, color background, and arbitrary geometric surface configurations of the projection scene. These factors result in image distortions which require additional compensation steps.Smart-projections are at the core of PAR applications. Equipped with a projection and acquisitions devices, they control the projection appearance and introduce corrections on the fly to compensate distortions. Although active structured-light techniques have been so far the de-facto method to address such problems, this PhD thesis addresses a relatively new unintrusive content-based approach for geometric compensation of multiple planar surfaces and for object recognition in SAR.Firstly, this thesis investigates the use of color-invariance for feature matching quality enhancement in projection-acquisition scenarios. The performance of most state-of-the art methods are studied along with the proposed local histogram equalization-based descriptor. Secondly, to better address the typical conditions encountered when using a projector-camera system, two datasets of real-world projections were specially prepared for experimental purposes. Through a series of evaluation frameworks, the performance of all considered algorithms is thoroughly analyzed, providing several inferences on that which algorithms are more appropriate in each condition. Thirdly, this PhD work addresses the problem of multiple-surface fitting used to compensate different homography distortions in acquired images. A combination of feature matching and Optical Flow tracking is proposed in order to achieve a more low-weight geometric compensation. Fourthly, an example of new application to object recognition from acquired projections is showed. Finally, a real-time implementation of considered methods on GPU shows prospects for the unintrusive feature matching-based geometric compensation in SAR applications
Chen, Yuan. "Informatique de bureau pervasive par manipulation directe d'une lampe augmentée." Electronic Thesis or Diss., Université de Lille (2022-....), 2024. http://www.theses.fr/2024ULILB017.
Повний текст джерелаDesktop computing, despite its long-standing dominance in personal productivity, remains largely confined to screens. Many efforts to expand beyond a single screen, from multiple monitors to incorporating projector-camera units or head-mounted displays, have shown promise. However, this is often from the desktop display to other devices and it lacks the awareness of physical environments and user activities. This thesis explores a novel form of direct manipulation projector-camera system, which leverages unique characteristics of physical lamp movement to manipulate content to and from the desktop display, but also to and from devices and the physical environment, while maintaining the awareness in the workspace.Three projects examine the design, prototyping, and human factors aspects of an augmented lamp system in which the lamp works as an input and output device connecting desktop computing and physical environment. In the first project, an interaction design space is introduced for physical direct manipulation using an architect lamp with a proof-of-concept system using a projector and motion tracking system. We demonstrate its potential usage through three scenarios, describe study results evaluating its potential, and summarize design implications. In the second project, we study the impacts on user performance and interaction strategies when interacting with an augmented lamp in a desktop space. We conduct a controlled experiment in Virtual Reality to understand the impact of two control mechanisms for target acquisition tasks in a dynamic peephole display:“coupled”, when the display centre is used for selection and “decoupled”, when the selection is handled by separate inputs like direct touch. We find that two control mechanisms have subtle differences in total time and error, but people follow different strategies for coordinating the movement of dynamic peephole display with different target acquisition techniques. In the third project, we explore this observation in a more general context. Using a controlled Virtual Reality environment, we conduct an experiment to investigate whether what users intend to do with a virtual target impacts how they plan and perform the initial target acquisition. Our results lead to an understanding of user motion profiles before acquisition for different intended interactions with the same target. We discuss how these motion profiles can then be used to improve the lamp design, such as integrating force sensors into the lamp to improve activity awareness. Together, these findings establish a promising way to connect current desktop computing with the surrounding physical desktop environment based on a deeper understanding of user activities in that space
Fofi, David. "Contributions à la Vision par Ordinateur pour les Systèmes en Lumière Structurée et les Systèmes Catadioptriques." Habilitation à diriger des recherches, Université de Bourgogne, 2008. http://tel.archives-ouvertes.fr/tel-00950264.
Повний текст джерелаEpstein, Emric. "Utilisation de miroirs dans un système de reconstruction interactif." Thèse, 2004. http://hdl.handle.net/1866/16668.
Повний текст джерелаBélanger, Lucie. "Calibration de systèmes de caméras et projecteurs dans des applications de création multimédia." Thèse, 2009. http://hdl.handle.net/1866/3864.
Повний текст джерелаThis thesis focuses on computer vision applications for technological art projects. Camera and projector calibration is discussed in the context of tracking applications and 3D reconstruction in visual arts and performance art. The thesis is based on two collaborations with québécois artists Daniel Danis and Nicolas Reeves. Projective geometry and classical camera calibration techniques, such as planar calibration and calibration from epipolar geometry, are detailed to introduce the techniques implemented in both artistic projects. The project realized in collaboration with Nicolas Reeves consists of calibrating a pan-tilt camera-projector system in order to adapt videos to be projected in real time on mobile cubic screens. To fulfil the project, we used classical camera calibration techniques combined with our proposed camera pose calibration technique for pan-tilt systems. This technique uses elliptic planes, generated by the observation of a point in the scene while the camera is panning, to compute the camera pose in relation to the rotation centre of the pan-tilt system. The project developed in collaboration with Daniel Danis is based on multi-camera calibration. For this studio theatre project, we developed a multi-camera calibration algorithm to be used with a wiimote network. The technique based on epipolar geometry allows 3D reconstruction of a trajectory in a large environment at a low cost. The results obtained from the camera calibration techniques implemented are presented alongside their application in real public performance contexts.
Draréni, Jamil. "Exploitation de contraintes photométriques et géométriques en vision : application au suivi, au calibrage et à la reconstruction." Thèse, 2010. http://hdl.handle.net/1866/4868.
Повний текст джерелаThe topic of this thesis revolves around three fundamental problems in computer vision; namely, video tracking, camera calibration and shape recovery. The proposed methods are solely based on photometric and geometric constraints found in the images. Video tracking, usually performed on a video sequence, consists in tracking a region of interest, selected manually by an operator. We extend a successful tracking method by adding the ability to estimate the orientation of the tracked object. Furthermore, we consider another fundamental problem in computer vision: cali- bration. Here we tackle the problem of calibrating linear cameras (a.k.a: pushbroom) and video projectors. For the former one we propose a convenient plane-based cali- bration algorithm and for the latter, a calibration algorithm that does not require a physical grid and a planar auto-calibration algorithm. Finally, we pointed our third research direction toward shape reconstruction using coplanar shadows. This technique is known to suffer from a bas-relief ambiguity if no extra information on the scene or light source is provided. We propose a simple method to reduce this ambiguity from four to a single parameter. We achieve this by taking into account the visibility of the light spots in the camera.
Cette thése a été réalisée dans le cadre d'une cotutelle avec l'Institut National Polytechnique de Grenoble (France). La recherche a été effectuée au sein des laboratoires de vision 3D (DIRO, UdM) et PERCEPTION-INRIA (Grenoble).
El, Asmi Chaima. "Scanner 3D à lumière non structurée non synchronisé." Thèse, 2018. http://hdl.handle.net/1866/22126.
Повний текст джерела