Добірка наукової літератури з теми "Synthetic holography"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Synthetic holography".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Synthetic holography":

1

Desbiens, Jacques. "The Dispositif of Holography." Arts 8, no. 1 (February 26, 2019): 28. http://dx.doi.org/10.3390/arts8010028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The French word dispositif, applied to visual art, encompasses several components of an artwork, such as the apparatus itself as well as its display conditions and the viewers themselves. In this article, I examine the concept of dispositif in the context of holography and, in particular, synthetic holography (computer-generated holography). This analysis concentrates on the holographic space and its effects on time and colors. A few comparisons with the history of spatial representation allow us to state that the holographic dispositif breaks with the perspective tradition and opens a new field of artistic research and experimentation.
2

Neutsch, Krisztian, Evgeny L. Gurevich, Martin R. Hofmann, and Nils C. Gerhardt. "Investigation of Laser-Induced Periodic Surface Structures Using Synthetic Optical Holography." Nanomaterials 12, no. 3 (February 1, 2022): 505. http://dx.doi.org/10.3390/nano12030505.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, the investigation of laser-induced periodic surface structures (LIPSSs) on a polycrystalline diamond substrate using synthetic optical holography (SOH) is demonstrated. While many techniques for LIPSS detection operate with sample contact and/or require preparation or processing of the sample, this novel technique operates entirely non-invasively without any processing of or contact with the LIPSS sample at all. The setup provides holographic amplitude and phase images of the investigated sample with confocally enhanced and diffraction-limited lateral resolution, as well as three-dimensional surface topography images of the periodic structures via phase reconstruction with one single-layer scan only.
3

Desbiens, Jacques. "Content metamorphosis in synthetic holography." Journal of Physics: Conference Series 415 (February 22, 2013): 012008. http://dx.doi.org/10.1088/1742-6596/415/1/012008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Thurman, Samuel T., and Andrew Bratcher. "Multiplexed synthetic-aperture digital holography." Applied Optics 54, no. 3 (January 20, 2015): 559. http://dx.doi.org/10.1364/ao.54.000559.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fan, Fan, Xiaoyu Jiang, Xingpeng Yan, Jun Wen, Song Chen, Teng Zhang, and Chao Han. "Holographic Element-Based Effective Perspective Image Segmentation and Mosaicking Holographic Stereogram Printing." Applied Sciences 9, no. 5 (March 4, 2019): 920. http://dx.doi.org/10.3390/app9050920.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Effective perspective image segmentation and mosaicking (EPISM) method is an effective holographic stereogram printing method, but a mosaic misplacement of reconstruction image occurred when focusing away from the reconstruction image plane. In this paper, a method known as holographic element-based effective perspective image segmentation and mosaicking is proposed. Holographic element (hogel) correspondence is used in EPISM method as pixel correspondence is used in direct-writing digital holography (DWDH) method to generate effective perspective images segments. The synthetic perspective image for holographic stereogram printing is obtained by mosaicking all the effective perspective images segments. Optical experiments verified that the holographic stereogram printed by the proposed method can provide high-quality reconstruction imagery and solve the mosaic misplacement inherent in the EPISM method.
6

Lindop, Samantha Jane. "Holograms, (Dis-) Embodied Intimacy, and Posthumanism in an Age of Ubiquitous Computing." Journal of Posthuman Studies 6, no. 1 (June 2022): 73–88. http://dx.doi.org/10.5325/jpoststud.6.1.0073.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract As computational technology becomes unobtrusive and ubiquitous, interconnections between humans and software are increasingly seamless, challenging clear demarcations between organic and synthetic, material and immaterial. Central to these innovations are theories of posthumanism and scrutiny of the self in relation to technology. Posthumanism signifies a continuum of human existence that involves shaping and being shaped by the environment and innovations. This article examines the use of high-fidelity holographic technologies to facilitate human–software interrelationships. Drawing on fictional representation of human–hologram intimacy in Blade Runner 2049 and real-life creations Azuma Hikari and Hatsune Miku (who sometimes appears in holographic form), it argues that hybridized spaces created by ubiquitous computing coupled with holography promote and naturalize intimate posthuman fantasies. Partial disembodiment of humans in technologically mediated spheres, coupled with partial embodiment of software using holographic interfaces, generates liminal counter sites existing between the real and imaginary-other spaces that align with Michel Foucault’s concept of heterotopias; holograms, as visceral interfaces, produce simultaneously mythic and tangible contestations of the space in which we live. High-fidelity holography has the potential to radically transform human–machine interconnections now and in the future.
7

Di Donato, A., and M. Farina. "Synthetic holography based on scanning microcavity." AIP Advances 5, no. 11 (November 2015): 117125. http://dx.doi.org/10.1063/1.4935802.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Makowski, P. L., T. Kozacki, P. Zdankowski, and W. Zaperty. "Synthetic aperture Fourier holography for wide-angle holographic display of real scenes." Applied Optics 54, no. 12 (April 14, 2015): 3658. http://dx.doi.org/10.1364/ao.54.003658.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhang, Liu, Songyang Gao, Minghao Tong, Yicheng Huang, Zibang Zhang, Wenbo Wan, and Qiegen Liu. "HoloDiffusion: Sparse Digital Holographic Reconstruction via Diffusion Modeling." Photonics 11, no. 4 (April 21, 2024): 388. http://dx.doi.org/10.3390/photonics11040388.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In digital holography, reconstructed image quality can be primarily limited due to the inability of a single small aperture sensor to cover the entire field of a hologram. The use of multi-sensor arrays in synthetic aperture digital holographic imaging technology contributes to overcoming the limitations of sensor coverage by expanding the area for detection. However, imaging accuracy is affected by the gap size between sensors and the resolution of sensors, especially when dealing with a limited number of sensors. An image reconstruction method is proposed that combines physical constraint characteristics of the imaging object with a score-based diffusion model, aiming to enhance the imaging accuracy of digital holography technology with extremely sparse sensor arrays. Prior information of the sample is learned by the neural network in the diffusion model to obtain a score function, which alternately constrains the iterative reconstruction process with the underlying physical model. The results demonstrate that the structural similarity and peak signal-to-noise ratio of the reconstructed images using this method are higher than the traditional method, along with a strong generalization ability.
10

Lim, Sehoon, Kerkil Choi, Joonku Hahn, Daniel L. Marks, and David J. Brady. "Image-based registration for synthetic aperture holography." Optics Express 19, no. 12 (June 1, 2011): 11716. http://dx.doi.org/10.1364/oe.19.011716.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Synthetic holography":

1

Stafford, Jason W. "Range Compressed Holographic Aperture Ladar." University of Dayton / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1480681728748929.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hennen, John Andrew. "Registration Algorithms for Flash Inverse Synthetic Aperture LiDAR." University of Dayton / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1576142937639181.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Barbotin, Thomas. "Etude, démonstration et prototypage de dispositifs d’éclairage/signalisation et d’IHM automobiles générant des effets d’images 3D flottantes par holographie synthétique sous illumination LED et multi-LED." Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0396.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Afin d’améliorer l’expérience utilisateur de leurs véhicules, les constructeurs automobiles recherchent des systèmes d’affichage et de contrôles innovants, tels des dispositifs permettant de produire des images 3D. Pour ceci, l’holographie est une solution a priori très performante car elle permet de générer une scène 3D incluant la majorité des indices de perception de la 3D nécessaire au cerveau humain. Si la production en série d’hologrammes « classiques » (i.e. à enregistrement optique) est trop contraignante pour les applications automobiles, les hologrammes synthétiques en relief de surface sont compatibles avec la technique de nano-imprint et peuvent donc aisément être produits en grande série. Mais le milieu automobile impose de plus de fortes contraintes de coût, de compacité du système et de sécurité oculaire. Le recours à une illumination LED des hologrammes est donc largement préférable à l’illumination laser généralement utilisée. Une solution holographique illuminé par LED et générant la perception d’un objet flottant, dans le cadre d’une application d’IHM intérieure au véhicule est démontrée. La réalisation d’une étude statistique confirmant que la grande majorité des observateurs perçoivent la scène 3D flottante correctement est détaillée et discutée. Enfin, la démonstration d’une extension de l’approche encore plus compacte en permettant l’illumination par de multiples sources LED distinctes d’un hologramme synthétique générant une image flottante perçue en 3D est présentée
To improve the user experience in their vehicles, automotive manufacturers are searching for innovative display and control systems, such as devices producing 3D images. Holography is an attractive solution as it can generate 3D scenes incorporating most of the perceptual cues necessary for the human brain. While mass production of "classic" holograms (i.e., optically recorded) for automotive applications has strong constraints, surface relief synthetic holograms are compatible with nano-imprint technology, allowing easy large-scale production. However, the automotive environment imposes additional constraints of cost, system compactness, and eye safety. In this automotive context, the use of LED illumination for holograms is therefore highly preferable to the commonly used laser illumination. We demonstrate an LED illuminated holographic solution that creates the perception of a floating object, targeting an in-vehicle human-machine interface (HMI) application. We also present a statistical study confirming that a large majority of observers perceive the floating 3D scene correctly. Finally, we demonstrate an even more compact extension of the approach enabling simultaneous illumination by multiple distinct LED sources of a single synthetic hologram, generating the perception of floating 3D image
4

Dapore, Benjamin R. "Phase Noise Analysis of 3D Images From a Two Wavelength Coherent Imaging System." University of Dayton / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1375447146.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hillman, Timothy R. "Microstructural information beyond the resolution limit : studies in two coherent, wide-field biomedical imaging systems." University of Western Australia. School of Electrical, Electronic and Computer Engineering, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0085.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gilles, Antonin. "Fast hologram synthesis methods for realistic 3D visualization." Thesis, Rennes, INSA, 2016. http://www.theses.fr/2016ISAR0005/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L’holographie est souvent considérée comme la technologie de visualisation 3D la plus prometteuse, puisqu'elle fournit l'illusion du relief la plus naturelle et la plus réaliste possible. Toutefois, pour trouver application dans le domaine de la visioconférence ou de la téléprésence, les méthodes de génération numérique d'hologrammes doivent produire des scènes réalistes avec une forte illusion de profondeur, et ce en temps réel. Cette thèse se situe dans ce contexte et est organisé en deux parties. Dans la première partie de ce travail, nous avons proposé deux algorithmes de synthèse d'hologrammes permettant de se rapprocher du temps réel. Tout d'abord, nous avons développé une méthode combinant deux approches complémentaires: les approches point-source et wave-field. Alors que les méthodes de l'état de l'art réduisent la complexité de calcul de ces deux approches indépendamment, notre méthode tire parti de chacune d'entre elles. De cette manière, le temps de calcul de l'hologramme a été réduit de plus de 65% par rapport aux méthodes point-source et wave-field conventionnelles. Deuxièmement, nous avons cherché à accélérer cette méthode hybride en supprimant les redondances temporelles entre les trames consécutives d'une vidéo 3D. Pour chaque image, l'algorithme détecte les changements dans la scène et met à jour l'hologramme des points affectés. Étant donné que seules de petites régions de l'hologramme sont mises à jour, la charge de calcul est considérablement réduite, permettant le calcul d’hologrammes couleur à 60 images par seconde. Dans la deuxième partie de ce travail, nous avons proposé deux algorithmes afin d'améliorer la qualité visuelle des scènes. Tout d'abord, nous avons perfectionné la méthode hybride pour tenir compte des occultations dans la scène. Pour cela, nous avons conçu une méthode efficace pour le calcul de l'occultation d'une onde lumineuse par un point. Cette méthode reproduit les occultations sans augmenter de manière significative le temps de calcul de la méthode hybride originale. Enfin, nous avons proposé une méthode pour le calcul d'un hologramme à partir de données multivue-plus-profondeur (MVD) avec prise en compte des réflexions spéculaires. Selon cette méthode, la géométrie de la scène est reconstruite à partir des données MVD sous la forme d'un nuage de points, ce qui permet de n'utiliser que quelques projections de la scène. En outre, afin de tenir compte de réflexions spéculaires, chaque point de la scène est considéré avoir une émission différente selon les directions. Enfin, la lumière émise par la scène est propagée dans le plan de l'hologramme. Les résultats expérimentaux montrent que cette méthode reproduit tous les indices de la profondeur et l'illumination précise de la scène avec une complexité de calcul réduite
Holography is often considered as the most promising 3D visualization technology, since it can produce the most realistic and natural depth illusion to the naked eye. However, in order to have application in the field of videoconferencing or telepresence systems, hologram synthesis methods should be able to produce realistic 3D scenes with strong depth illusion in real-time. This thesis falls within this context and is organized into two parts. In the first part of this work, we investigated two novel algorithms in order to get closer to real-time computation. First, we designed a fast hologram calculation method by combining two approaches which complement one another: the point-source and wave-field approaches. Whereas previously proposed methods reduced the computational complexity of these approaches independently, our method takes advantages from both of them. By this way, the hologram calculation time has been reduced by more than 65% compare to the conventional point-source and wave-field methods. Second, we further accelerated this hybrid method by removing temporal redundancies between consecutive frames of a 3D video. For each video frame, the algorithm detects changes in the scene and updates the hologram of only affected scene points. Since only small regions of the hologram are updated at each video frame, this method allows the computational burden to be dramatically reduced, enabling the computation of colorful video holograms at 60 frames per second. In the second part of this work, we proposed two algorithms in order to enhance the visual quality of displayed scenes. First, we improved the hybrid method to take into account occlusions between objects in the scene. To this end, we designed an efficient algorithm for light shielding between points and light waves. Experimental results revealed that this method provides occlusion effect without significantly increasing the hologram calculation time of the original hybrid method. Finally, we proposed a hologram computation method from Multiview-plus-depth (MVD) data with rendering of specular reflections. In this method, the 3D scene geometry is first reconstructed from the MVD data as a layered point-cloud, enabling the use of only a few perspective projections of the scene. Furthermore, in order to take into account specular reflections, each scene point is considered to emit light differently in all the directions. Finally, light scattered by the scene is numerically propagated towards the hologram plane in order to get the final hologram. Experimental results show that the proposed method is able to provide all the human depth cues and accurate shading of the scene with reduced computational complexity
7

Teitel, Michael A. (Michael Albert). "Anamorphic raytracing for synthetic alcove holographic stereograms." Thesis, Massachusetts Institute of Technology, 1986. http://hdl.handle.net/1721.1/14760.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Holzbach, Mark. "Three-dimensional image processing for synthetic holographic stereograms." Thesis, Massachusetts Institute of Technology, 1986. http://hdl.handle.net/1721.1/14767.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Architecture, 1987.
Bibliography: leaves 54-55.
A digital image processing technique is presented that allows conventionally produced images to be prepared for undistorted printing in one-step holographic stereograms. This technique effectively predistorts the source 2D image set for a holographic stereogram to compensate for the distorting effects of its display geometry. The resulting stereograms can have undistort ed images that occupy space in front, back, and through the hologram surface. This technique is much more convenient that the current alternatives which either require unusual large optics, or much more intensive use of computer resources. It should therefore facilitate the fast and convenient production of one-step stereograms which are excellent 3D hardcopy displays with potential for applications that require fast visual communication of complex 3D information.
by Mark Holzbach.
M.S.
9

Venable, Samuel Martin III. "Demonstrated Resolution Enhancement Capability of a Stripmap Holographic Aperture Ladar System." University of Dayton / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1333558737.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Crotty, Maureen. "Signal to Noise Ratio Effects on Aperture Synthesis for Digital Holographic Ladar." University of Dayton / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1355245759.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Synthetic holography":

1

Sato, Tomamasa. Synthetic aperture image holography. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Izarra, Laura P. Zuntini de. Mirrors and holographic labyrinths: The process of a "new" aesthetic synthesis in John Banville's work. Bethesda, Md: International Scholars Publications, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Friis-Hansen, Dana, Cambridge, and Betsy Connors. Synthetic Spaces: Holography at Mit. Massachusetts Institute of Technology, List V, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Synthetic holography":

1

Strothotte, Thomas. "Synthetic Holography." In Computational Visualization, 359–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-59847-0_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rosen, Joseph, and Barak Katz. "Synthetic Aperture Digital Holography." In Fringe 2009, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03051-2_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Schempp, Walter. "Quantum Holography, Synthetic Aperture Radar Imaging and Computed Tomographic Imaging." In Quantum Measurements in Optics, 323–43. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3386-3_26.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chiao, Richard Y., Robert S. Gilmore, and Thomas G. Kincaid. "Ultrasonic Synthetic-Aperture Holographic Imaging†." In Review of Progress in Quantitative Nondestructive Evaluation, 813–20. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3344-3_104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rahmat-Samii, Y. "Antenna Diagnosis by Microwave Holographic Metrology." In Electromagnetic Modelling and Measurements for Analysis and Synthesis Problems, 17–50. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3232-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hosson, Jeff, Nicolai G. Chechenin, and Tomas Vystavel. "Nano-Structured Magnetic Films Investigated with Lorentz Transmission Electron Microscopy and Electron Holography." In Nanostructures: Synthesis, Functional Properties and Applications, 463–80. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-007-1019-1_27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Takeda, Mitsuo, Wei Wang, and Dinesh N. Naik. "Coherence Holography: A Thought on Synthesis and Analysis of Optical Coherence Fields." In Fringe 2009, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03051-2_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Svoboda, Jakub, Marek Skeren, and Pavel Fial. "Synthetic Image Holograms." In Advanced Holography - Metrology and Imaging. InTech, 2011. http://dx.doi.org/10.5772/19062.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Overman, Larry E. "Appendix." In Designing Synthetic Methods and Natural Products Synthesis, 207–52. GNT Publishing, 2024. http://dx.doi.org/10.47261/1556-a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kent, Stephen B. H. "Appendix." In Inventing Synthetic Methods to Discover How Enzymes Work, 311–36. GNT-Verlag GmbH, 2022. http://dx.doi.org/10.47261/1549-a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Synthetic holography":

1

Teitel, Michael A., and Stephen A. Benton. "Anamorphic Imaging for Synthetic Holograms." In Holography. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/holography.1986.md3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wyrowski, Frank, Richard Hauck, and Olof Bryngdahl. "Phase Manipulations in Synthetic Holography." In Holography. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/holography.1986.tua3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the construction process of computer-generated holograms (CGHs) it is possible to introduce and influence the phase in several ways: superpostion of a suitable phase variation onto (1) the object data and/or (2) the hologram itself. In contrast to optical holography it is easy to realize any desired phase distribution in computer holography.
3

Rosen, Joseph, and Amnon Yariv. "Synthetic Aperture Holography for Three Dimensional Incoherent Imaging." In Holography. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/holography.1996.hma.3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Michelson stellar interferometer (MSI)[1] is used for measuring the shape of planar objects which emit quasi-monochromatic, spatially incoherent light. Its principle of operation is based on measuring interference patterns obtained by two pinholes of the Young experiment. The fringes’ visibility, and phase, versus the gap between the pinholes is equal to the complex degree of coherence. According to Van Cittert-Zernike theorem, the complex degree of coherence is proportional to the Fourier transform of the source’s intensity distribution[1]. Thus, measuring the complex degree of coherence versus pinholes separation and performing inverse Fourier transform yield the image distribution of the source.
4

Deutsch, Bradley, Martin Schnell, Rainer Hillenbrand, and P. Scott Carney. "Synthetic Optical Holography." In Computational Optical Sensing and Imaging. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/cosi.2014.cm3d.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lee, Chieh-Cheng, Ting-Chung Poon, and Jung-Ping Liu. "Synthetic Scanning Holography." In Digital Holography and Three-Dimensional Imaging. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/dh.2013.dw2a.22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Turk, Harris, and Fred F. Froehlich. "Design and Simulation of Synthetic Hologram Lenses in Uniaxial Media." In Holography. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/holography.1986.tua5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tricoles, G., and R. A. Hayward. "Passive, Airborne, Synthetic Holographic Imaging of Terrestrial Features With Radio Waves." In Holography. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/holography.1986.wb5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Su, Xian-yu, Guan-shen Zhang, and Lu-rong Guo. "A Synthetic Phase-Only Holographic Filter For Multiobject Recognition." In Holography Applications, edited by Jingtang Ke and Ryszard J. Pryputniewicz. SPIE, 1988. http://dx.doi.org/10.1117/12.939124.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fienup, James R., and Abbie E. Tippie. "Gigapixel synthetic-aperture digital holography." In SPIE Optical Engineering + Applications, edited by H. John Caulfield and Henri H. Arsenault. SPIE, 2011. http://dx.doi.org/10.1117/12.894903.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Haselbeck, Stefan, M. Heissmeier, Walter P. Hofmann, Ulrich W. Krackhardt, Bernd Manzke, Pekka Savander, M. Schrader, Johannes Schwider, Martin Sperl, and Norbert Streibl. "Synthetic phase holograms written by laser lithography." In Workshop on Digital Holography, edited by Frank Wyrowski. SPIE, 1993. http://dx.doi.org/10.1117/12.138557.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії