Добірка наукової літератури з теми "Synthetic aperture microscopy"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Synthetic aperture microscopy".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Synthetic aperture microscopy":

1

Ralston, Tyler S., Daniel L. Marks, P. Scott Carney, and Stephen A. Boppart. "Interferometric synthetic aperture microscopy." Nature Physics 3, no. 2 (January 21, 2007): 129–34. http://dx.doi.org/10.1038/nphys514.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

De Cai, De Cai, Zhongfei Li Zhongfei Li, and Sung-Liang Chen Sung-Liang Chen. "Photoacoustic microscopy by scanning mirror-based synthetic aperture focusing technique." Chinese Optics Letters 13, no. 10 (2015): 101101–4. http://dx.doi.org/10.3788/col201513.101101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ralston, T. S., G. L. Charvat, S. G. Adie, B. J. Davis, P. S. Carney, and S. A. Boppart. "Interferometric Synthetic Aperture Microscopy: Microscopic Laser Radar." Optics and Photonics News 21, no. 6 (June 1, 2010): 32. http://dx.doi.org/10.1364/opn.21.6.000032.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Xu, Yang, Xiong Kai Benjamin Chng, Steven G. Adie, Stephen A. Boppart, and P. Scott Carney. "Multifocal interferometric synthetic aperture microscopy." Optics Express 22, no. 13 (June 27, 2014): 16606. http://dx.doi.org/10.1364/oe.22.016606.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tu, Han Yen, Yueh Long Lee, and Chau Jern Cheng. "Super-Resolution Imaging in a Close-Packed Synthetic Aperture Digital Holographic Microscopy." Applied Mechanics and Materials 404 (September 2013): 490–94. http://dx.doi.org/10.4028/www.scientific.net/amm.404.490.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This work presents a close-packed synthetic aperture method for superresolution imaging in digital holographic microscopy. The superresolution imaging technique is based on beam-rotation approach to collect the different bandpass spectrum of the sample. The close-packed information from synthetic aperture process can be used to enhance the reconstructed imaging resolution under low-numerical-aperture microscope objective. Simulated and experimental results show the characteristics of the close-packed synthetic aperture and the influence on superresolution imaging.
6

South, Fredrick A., Yuan-Zhi Liu, Yang Xu, Nathan D. Shemonski, P. Scott Carney, and Stephen A. Boppart. "Polarization-sensitive interferometric synthetic aperture microscopy." Applied Physics Letters 107, no. 21 (November 23, 2015): 211106. http://dx.doi.org/10.1063/1.4936236.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Luo, Wei, Alon Greenbaum, Yibo Zhang, and Aydogan Ozcan. "Synthetic aperture-based on-chip microscopy." Light: Science & Applications 4, no. 3 (March 2015): e261-e261. http://dx.doi.org/10.1038/lsa.2015.34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ralston, Tyler S., Daniel L. Marks, P. Scott Carney, and Stephen A. Boppart. "Real-time interferometric synthetic aperture microscopy." Optics Express 16, no. 4 (February 11, 2008): 2555. http://dx.doi.org/10.1364/oe.16.002555.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Davis, Brynmor, Daniel Marks, Tyler Ralston, P. Carney, and Stephen Boppart. "Interferometric Synthetic Aperture Microscopy: Computed Imaging for Scanned Coherent Microscopy." Sensors 8, no. 6 (June 11, 2008): 3903–31. http://dx.doi.org/10.3390/s8063903.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Coquoz, Séverine, Arno Bouwens, Paul J. Marchand, Jérôme Extermann, and Theo Lasser. "Interferometric synthetic aperture microscopy for extended focus optical coherence microscopy." Optics Express 25, no. 24 (November 22, 2017): 30807. http://dx.doi.org/10.1364/oe.25.030807.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Synthetic aperture microscopy":

1

Mermelstein, Michael Stephen. "Synthetic aperture microscopy." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/8178.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.
Includes bibliographical references (p. 134-136).
In the late 1800's, Ernst Abbe, research director of the Carl Zeiss Optical Works, wrote down the rules for a lens to form a sharp image. Advances in communications theory, signal processing, and computers have allowed us.finally to break those rules. Our "Synthetic Aperture Microscope" floods a large region with a richly complex, finely structured pattern of light-the interference pattern of a ring of n coherent sources. A target within the volume of the interference fluoresces (or scatters or transmits) an amount of lights that reveals correspondences with this "probing illumination." Modulating'fthe phases and amplitudes of the n beams with carefully chosen modulation signals causes the probe illumination to step through a predetermined or measured family of patterns. A sensor records the target's response in a time-sequence. This time-sequence contains each of order n2 complex Fourier coefficients of the target. Each of these coefficients is encrypted by a unique spread-spectrum key embedded in the amplitude and phase modulation signals. Signal processing picks out these coefficients to reconstruct an image of the target. Low resolution conventional imaging maps an array of "targets" (actually portions of a larger target) to a CCD array, thus allowing this sensing process to be done in parallel over a large region. The end result is to boost the resolution of a conventional imager by hundreds to thousands of sub-pixels per physical pixel. Both theoretical and experimental work on the engineering to make the concept practical are reported.
by Michael Stephen Mermelstein.
Ph.D.
2

Jackson, Jarom Silver. "Mechanically Scanned Interference Pattern Structured Illumination Imaging." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/7483.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A method of lensless, single pixel imaging is presented. This method, referred to as MAS-IPSII, is theoretically capable of resolutions as small as one quarter of the wavelength of the imaging light. The resolution is not limited by the aperture of any optic, making high resolutions (including subwavelength) feasible even at very large (greater than a meter) distances. Imaging requires only flat optics and a coherent source, making it a good candidate for imaging with extreme wavelengths in the UV and x-ray regimes. The method is demonstrated by the imaging of various test targets. Both real and complex imaging (i.e. holography) is demonstrated.
3

Wasik, Valentine. "Analyse de la précision d’estimation de deux systèmes d’imagerie polarimétrique." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4348.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L’imagerie polarimétrique permet d’estimer certaines caractéristiques d’un milieu qui peuvent ne pas être révélées par imagerie d’intensité standard. Cependant, les mesures effectuées peuvent être fortement perturbées par des fluctuations inhérentes aux processus physiques d’acquisition. Ces fluctuations sont difficiles à atténuer, notamment à cause de la fragilité des milieux observés ou de l’inhomogénéité des images acquises. Il est alors utile de caractériser la précision des estimations qu’il est possible d’obtenir. Dans cette thèse, cette question est abordée au travers de deux applications d’imagerie polarimétrique : la microscopie non-linéaire de second harmonique résolue en polarisation (PSHG) pour l’analyse de l’organisation structurale d’objets biomoléculaires, et l’imagerie radar polarimétrique interférométrique à synthèse d’ouverture (PolInSAR) pour l’estimation des paramètres du couvert forestier. Pour la première application, la précision d’estimation en présence de bruit de Poisson est caractérisée pour l’ensemble des assemblages moléculaires présentant une symétrie cylindrique, ce qui permet notamment d'aboutir à une procédure de détection des mesures qui ne permettent pas d’atteindre une précision d’estimation requise. Pour l’imagerie PolInSAR, on analyse une modalité d'acquisition intéressante pour les futures missions satellitaires. En particulier, on étudie dans ce contexte la précision d'estimation de la hauteur de végétation en présence de bruit de speckle en s'appuyant sur l'analyse du contraste polarimétrique. Une interprétation simple des comportements de cette modalité d'acquisition est obtenue dans la sphère de Poincaré
Polarimetric imaging allows one to estimate some characteristics of a medium which might not be revealed by standard intensity imaging. However, the measurements can be strongly perturbed by fluctuations that are inherent in the physical acquisition processes. These fluctuations are difficult to attenuate, for instance because of the fragility of the observed media or because of the inhomogeneity of the obtained images. It is then useful to characterize the estimation precision that can be reached. In this thesis, this question is addressed through two polarimetric imaging applications: polarized-resolved second-harmonic generation non-linear microscopy (PSHG) for the analysis of the structural organization of biomolecular objects, and polarimetric interferometric synthetic aperture radar imaging (PolInSAR) for the estimation of vegetation parameters. For the first application, the estimation precision in the presence of Poisson noise is characterized for any molecular assembly that presents a cylindrical symmetry. This study results in particular in a procedure to detect the measurements that do not lead to a required precision. For PolInSAR imaging, we analyze an acquisition system that is interesting for future spatial missions. In particular, the estimation precision of the vegetation height is studied in this context in the presence of speckle noise by relying on the analysis of the polarimetric contrast. A simple interpretation of the behavior of this acquisition system is obtained in the Poincaré sphere
4

Hillman, Timothy R. "Microstructural information beyond the resolution limit : studies in two coherent, wide-field biomedical imaging systems." University of Western Australia. School of Electrical, Electronic and Computer Engineering, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0085.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pendlebury, Jonathon Remy. "Light Field Imaging Applied to Reacting and Microscopic Flows." BYU ScholarsArchive, 2014. https://scholarsarchive.byu.edu/etd/5754.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Light field imaging, specifically synthetic aperture (SA) refocusing is a method used to combine images from an array of cameras to generate a single image with a narrow depth of field that can be positioned arbitrarily throughout the volume under investigation. Creating a stack of narrow depth of field images at varying locations generates a focal stack that can be used to find the location of objects in three dimensions. SA refocusing is particularly useful when reconstructing particle fields that are then used to determine the movement of the fluid they are entrained in, and it can also be used for shape reconstruction. This study applies SA refocusing to reacting flows and microscopic flows by performing shape reconstruction and 3D PIV on a flame, and 3D PIV on flow through a micro channel. The reacting flows in particular posed problems with the method. Reconstruction of the flame envelope was successful except for significant elongation in the optical axis caused by cameras viewing the flame from primarily one direction. 3D PIV on reacting flows suffered heavily from the index of refraction generated by the flame. The refocusing algorithm used assumed the particles were viewed through a constant refractive index (RI) and does not compensate for variations in the RI. This variation caused apparent motion in the particles that obscured their true locations making the 3D PIV prone to error. Microscopic PIV (µPIV) was performed on a channel containing a backward facing step. A microlens array was placed in the imaging section of the setup to capture a light field from the scene, which was then refocusing using SA refocusing. PIV on these volumes was compared to a CFD simulation on the same channel. Comparisons showed that error was most significant near the boundaries and the step of the channel. The axial velocity in particular had significant error near the step were the axial velocity was highest. Flow-wise velocity, though, appeared accurate with average flow-wise error approximately 20% throughout the channel volume.
6

McEwen, Bryce Adam. "Microscopic Light Field Particle Image Velocimetry." BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3238.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This work presents the development and analysis of a system that combines the concepts of light field microscopy and particle image velocimetry (PIV) to measure three-dimensional velocities within a microvolume. Rectanglar microchannels were fabricated with dimensions on the order of 350-950 micrometers using a photolithographic process and polydimethylsiloxane (PDMS). The flow was seeded with fluorescent particles and pumped through microchannels at Reynolds numbers ranging from 0.016 to 0.028. Flow at Reynolds numbers in the range of 0.02 to 0.03 was seeded with fluorescent particles and pumped through microchannels. A light field microscope with a lateral resolution of 6.25 micrometers and an axial resolution of 15.5 micrometers was designed and built based on the concepts described by Levoy et al. Light field images were captured continuously at a frame rate of 3.9 frames per second using a Canon 5D Mark II DSLR camera. Each image was post processed to render a stack of two-dimensional images. The focal stacks were further post processed using various methods including bandpass filtering, 3D deconvolution, and intensity-based thresholding, to remove effects of diffraction and blurring. Subsequently, a multi-pass, three-dimensional PIV algorithm was used to measure channel velocities. Results from PIV analysis were compared with an analytical solution for fully-developed cases, and with CFD simulations for developing flows. Relative errors for fully-developed flow measurements, within the light field microscope refocusing range, were approximately 5% or less. Overall, the main limitations are the reduction in lateral resolution, and the somewhat low axial resolution. Advantages include the relatively low cost, ease of incorporation into existing micro-PIV systems, simple self-calibration process, and potential for resolving instantaneous three-dimensional velocities in a microvolume.
7

Ralston, Tyler S. "Interferometric Synthetic Aperture Microscopy /." 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3250312.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 2006.
Source: Dissertation Abstracts International, Volume: 68-02, Section: B, page: 1047. Adviser: Stephen A. Boppart. Includes bibliographical references (leaves 148-160) Available on microfilm from Pro Quest Information and Learning.
8

Wu, Hsuan-Ju, and 吳弦儒. "Studies on Non-coplanar Angular-polarization Multiplexing and Coherence Gating in Synthetic Aperture Digital Holographic Microscopy." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/xx5k8r.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
國立臺灣師範大學
光電科技研究所
105
This works mainly discusses how to optimize the system resolution in the digital holographic microscopy (DHM). We also try to enhance the system stability and simplify the experimental architecture by applying common-path setup. Finally, we set of non-coplanar angular-polarization multiplexing and coherence gating in synthetic aperture digital holographic microscopy system. This research bases on transmission type DHM. This work presents a common-path synthetic aperture digital holographic microscopy using spiral phase plate to improve phase stability and spatial resolution. The influence of lateral shift and defocus in spiral phase plane were analyzed at different illumination angles. In the experiments, the SA technique gives better image resolution up to about 200 nm with phase accuracy about 3.8 nm by using visible light source. In addition, we produce a non-coplanar angular-polarization multiplexing and coherence gating in synthetic aperture digital holographic microscopy system. We designed polarized and coherence gating, and with the use of spatial light modulator (SLM). We were able to record synthetic aperture digital images in single exposure conditions. In the experiments, the non-coplanar angular-polarization multiplexing and coherence gating in SA-DHM technique gives better image resolution up to about 1.5 times. If we record six hologram to do the space average. The system image resolution increased to 1.72 times.
9

Hsiao, Wei-Jen, and 蕭瑋仁. "Studies on Optimized Super-resolution Synthetic Aperture Digital Holographic Microscopy and Common-path Spiral Phase Filtering." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/08926330395285985008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
國立臺灣師範大學
光電科技研究所
104
This works mainly discusses how to optimize the system resolution in the digital holographic microscopy (DHM). We also try to enhance the system stability and simplify the experimental architecture by applying common-path setup. This research bases on reflection type DHM. The pixel resolution is improved by recording Fresnel hologram and up-sampling method. Then, the synthetic aperture (SA) technique is employed to enhance the spatial resolution in DHM system. In the experiments, the SA up-sampling technique gives better image resolution up to about 160 nm with phase accuracy about 6 nm by using visible light source. In addition, we produce a spiral phase filter by spatial light modulator (SLM) and place in the Fourier plane of common-path imaging system. The digital hologram can be recorded by separated the probe beam into object beam and reference beam. The quantitative complex amplitude information of object can thus be obtained by numerical reconstruction. In this common-path system, the stable architecture of interference system can avoid the influence from the external environment. So, it effectively increases system stability and simplifies the optical experimental setup. Finally, combing common-path spiral DHM and SA technique with 650 nm laser light source, the lateral resolution achieves about 280 nm with phase accuracy about 4 nm.

Частини книг з теми "Synthetic aperture microscopy":

1

Adie, Steven G., Nathan D. Shemonski, Tyler S. Ralston, P. Scott Carney, and Stephen A. Boppart. "Interferometric Synthetic Aperture Microscopy (ISAM)." In Optical Coherence Tomography, 965–1004. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-06419-2_32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

"- Interferometric Synthetic Aperture Microscopy." In Emerging Imaging Technologies in Medicine, 312–21. CRC Press, 2012. http://dx.doi.org/10.1201/b13680-24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

De Santis, P., F. Gori, G. Guattari, and C. Palma. "SUPERRESOLUTION IN MICROSCOPY THROUGH HOLOGRAPHIC SYNTHETIC APERTURE." In High Power Lasers, 271–78. Elsevier, 1989. http://dx.doi.org/10.1016/b978-0-08-035918-2.50026-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Micó, Vicente, Zeev Zalevsky, Luis Granero, and Javier García. "Synthetic Aperture Lensless Digital Holographic Microscopy (SALDHM) for Superresolved Biological Imaging." In Biomedical Optical Phase Microscopy and Nanoscopy, 173–91. Elsevier, 2013. http://dx.doi.org/10.1016/b978-0-12-415871-9.00009-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Synthetic aperture microscopy":

1

Carney, P. Scott, Brynmor J. Davis, Tyler S. Ralston, Daniel L. Marks, and Stephen A. Boppart. "Interferometric synthetic aperture microscopy." In Computational Optical Sensing and Imaging. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/cosi.2007.ctuc2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Boppart, Stephen A., Tyler S. Ralston, Daniel L. Marks, and P. Scott Carney. "Interferometric Synthetic Aperture Microscopy." In 2008 Conference on Optical Fiber Communication - OFC 2008 Collocated National Fiber Optic Engineers. IEEE, 2008. http://dx.doi.org/10.1109/ofc.2008.4528548.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Xu, Yang, Xiong Kai Benjamin Chng, Steven G. Adie, Stephen A. Boppart, and P. Scott Carney. "Multifocal Interferometric Synthetic Aperture Microscopy." In Frontiers in Optics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/fio.2013.fw1d.5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Xu, Yang, Yuan-Zhi Liu, Stephen A. Boppart, and P. Scott Carney. "Automation of Interferometric Synthetic Aperture Microscopy." In Frontiers in Optics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/fio.2015.ftu3d.3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Jung, Sejin, and Jung-Hoon Park. "Synthetic Aperture Microscopy for Gigapixel Dynamic Imaging." In 2019 IEEE Photonics Conference (IPC). IEEE, 2019. http://dx.doi.org/10.1109/ipcon.2019.8908455.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hofreiter, Eric, Stephen A. Boppart, and P. Scott Carney. "Interferometric synthetic aperture microscopy: asymptotics and corrections." In Frontiers in Optics. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/fio.2011.ftux2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cheng, Chau-Jern, Xin-Ji Lai, Yu-Chih Lin, and Han-Yen Tu. "Superresolution imaging in synthetic aperture digital holographic microscopy." In 2013 IEEE 4th International Conference on Photonics (ICP). IEEE, 2013. http://dx.doi.org/10.1109/icp.2013.6687118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lai, Xin-Ji, Chau-Jern Cheng, Han-Yen Tu, and Lin Li-Chien. "Resolution enhancement in synthetic aperture digital holographic microscopy." In Digital Holography and Three-Dimensional Imaging. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/dh.2014.dth3b.6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tumbar, Remy. "Speckle-free inherently-phased synthetic aperture microscopy with coherent illumination." In Quantitative Phase Imaging IV, edited by Gabriel Popescu and YongKeun Park. SPIE, 2018. http://dx.doi.org/10.1117/12.2290940.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

De Cai, Zhongfei Li, and Sung-Liang Chen. "Scanning mirror-based photoacoustic microscopy with synthetic aperture focusing technique." In 2015 Opto-Electronics and Communications Conference (OECC). IEEE, 2015. http://dx.doi.org/10.1109/oecc.2015.7340194.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії