Зміст
Добірка наукової літератури з теми "Synthèse de l'ammoniac"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Synthèse de l'ammoniac".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Synthèse de l'ammoniac"
Aderinboye, R. Y., and A. O. Olanipekun. "An in-vitro evaluation of the potentials of turmeric as phytogenic feed additive for rumen modification." Nigerian Journal of Animal Production 48, no. 3 (March 6, 2021): 193–203. http://dx.doi.org/10.51791/njap.v48i3.2950.
Повний текст джерелаДисертації з теми "Synthèse de l'ammoniac"
Diakité, Dramane. "Fixation de l'énergie solaire : contribution à l'étude de la synthèse photoassistée de l'ammoniac." Dijon, 1985. http://www.theses.fr/1985DIJOS021.
Повний текст джерелаSappei, Jacques. "Réactivité de poudre d'alumine avec l'ammoniac : application à la synthèse de céramiques contenant de l'oxynitrure d'aluminium gamma." Paris, ENMP, 1989. http://www.theses.fr/1989ENMP0184.
Повний текст джерелаCotelle, Philippe. "Réarrangement dans l'amidure de sodium et l'ammoniac liquide d'halogénures de thiéno (3,2-c) et (2,3-c) azocinium et azoninium : synthèse et étude RMN." Lille 1, 1987. http://www.theses.fr/1987LIL10055.
Повний текст джерелаMouilleron, Stéphane. "Etude du canal responsable du transfert de l'ammoniac au sein de la glucosamine-6P synthase d'E. Coli." Paris 11, 2006. http://www.theses.fr/2006PA112355.
Повний текст джерелаWei, Hua. "Développement d'électrodes innovantes pour la conversion électrocatalytique de petites molécules." Thesis, Lyon, 2021. https://tel.archives-ouvertes.fr/tel-03789610.
Повний текст джерелаNitrogen plays an indispensable role for all life on earth and for the development of human beings. Industrially, nitrogen gas is converted to ammonia (NH3) and nitrogen-rich fertilisers to supplement the amount of nitrogen fixed spontaneously by nature. At present, the only industrial-scale ammonia synthesis technology is the process developed by Haber and Bosch in the early 20th century using gas phase N2 and H2 as the feeding gases. However, the Haber-Bosch process requires harsh conditions, complex equipment and high energy consumption, and operates with low conversion rates, which are inconsistent with economic and social growing development requirements. Compared to the Haber-Bosch method, electrocatalysis is one of the promising routes that can integrate electricity produced from renewable energy technologies for the production of ammonia at room temperature and ambient pressure. A specific challenge is related to the development of novel electrocatalysts/electrodes with the aim to achieve a low-cost, large-scale and delocalized production of ammonia. In view of the above key scientific issues, this PhD work focuses on three main aspects of the electrocatalytic nitrogen reduction reaction (NRR): i) engineering and design of the electrocatalyst, ii) electrode and cell design of the electrochemical device and iii) improvement and optimization of the reaction conditions, to enhance the performances of ammonia synthesis. Most of the research activities of this PhD work about synthesis and characterization of the electrocatalytic materials and assembling/testing of the electrodes in unconventional electrochemical devices were carried out at the laboratory CASPE (Laboratory of Catalysis for Sustainable Production and Energy) of the University of Messina. Moreover, during the three years, a period of 12 months was spent in cotutelle with the École supérieure de chimie, physique, électronique de Lyon (CPE Lyon), where advanced synthesis routes were explored for the preparation of organometallic-based electrocatalysts to be used as more active electrodes in NRR. The PhD thesis is organized in five main chapters. Chapter 1 focuses on N2 fixation issues and on describing the industrial Haber-Bosch process, with an overview of the general implications related to its high energy requirements. Chapter 2, instead, refers to the electrocatalytic materials developed in this PhD work for the preparation of the electrodes: 1) the Metal-organic Frameworks (MOFs), a class of porous materials very promising for their peculiar characteristics of high surface area, tunable properties, organic functionality and porosity, as well as for the possibility of creating specific catalytic active sites thanks to both the functional groups and the metal ion centres; 2) the MXenes, a class of metal carbide or nitride materials with a two-dimensional (2D) structure, which have recently attracted a large interest for a broad range of applications, including catalysis and N2 fixation, for their unique properties of metallic conductivity and hydrophilic nature of the hydroxyl or oxygen terminated surfaces. In Chapters 3-5, the experimental results are presented and discussed. Chapter 3 concerns the preparation of a series of Fe-MOF-based (Fe@Zn/SIM-1) electrodes and their testing in NRR by using an advanced engineered three-phase reactor, working in gas-phase. In Chapter 4, a series of improved Fe-MOF-based materials (Fe-based and Fe-alkali metal-based MOF UiO-66-(COOH)2), synthesized by cation exchange reaction technique to replace the proton of carboxylic acid with an iron cation, are presented. Finally, Chapter 5 refers to the exploration of advanced MXene materials (Ti3C2 MXene) and to the attempt of synthesizing a 3D nanoarchitecture starting from 2D-dimensional MXene-based catalysts
Cotelle, Philippe. "Réarrangement dans l'amidure de sodium et l'ammoniac liquide d'halogénures de Thiéno (3,2-c) et (3,2-c) azocinium et azoninium synthèse et étude RMN /." Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb37604221v.
Повний текст джерелаWEI, Hua. "Development of Innovative Electrodes for the Electrocatalytic Conversion of Small Molecules." Doctoral thesis, 2021. http://hdl.handle.net/11570/3191397.
Повний текст джерелаNitrogen plays an indispensable role for all life on earth and for the development of human beings. Industrially, nitrogen gas is converted to ammonia (NH3) and nitrogen-rich fertilisers to supplement the amount of nitrogen fixed spontaneously by nature. At present, the only industrial-scale ammonia synthesis technology is the process developed by Haber and Bosch in the early 20th century using gas phase N2 and H2 as the feeding gases. However, the Haber-Bosch process requires harsh conditions, complex equipment and high energy consumption, and operates with low conversion rates, which are inconsistent with economic and social growing development requirements. Compared to the Haber-Bosch method, electrocatalysis is one of the promising routes that can integrate electricity produced from renewable energy technologies for the production of ammonia at room temperature and ambient pressure. A specific challenge is related to the development of novel electrocatalysts/electrodes with the aim to achieve a low-cost, large-scale and delocalized production of ammonia. In view of the above key scientific issues, this PhD work focuses on three main aspects of the electrocatalytic nitrogen reduction reaction (NRR): i) engineering and design of the electrocatalyst, ii) electrode and cell design of the electrochemical device and iii) improvement and optimization of the reaction conditions, to enhance the performances of ammonia synthesis. Most of the research activities of this PhD work about synthesis and characterization of the electrocatalytic materials and assembling/testing of the electrodes in unconventional electrochemical devices were carried out at the laboratory CASPE (Laboratory of Catalysis for Sustainable Production and Energy) of the University of Messina. Moreover, during the three years, a period of 12 months was spent in cotutelle with the École supérieure de chimie, physique, électronique de Lyon (CPE Lyon), where advanced synthesis routes were explored for the preparation of organometallic-based electrocatalysts to be used as more active electrodes in NRR. The PhD thesis is organized in five main chapters. Chapter 1 focuses on N2 fixation issues and on describing the industrial Haber-Bosch process, with an overview of the general implications related to its high energy requirements. The alternative methods based on the electrochemical nitrogen fixation are then presented, with a wide description of pros and cons related to the milder conditions (i.e., room temperature and atmospheric pressure) and by discussing the elements to be developed for a future implementation of this technology, including a description of the possible reaction mechanism, which is still unclear in literature. Chapter 2, instead, refers to the electrocatalytic materials developed in this PhD work for the preparation of the electrodes: 1) the Metal-organic Frameworks (MOFs), a class of porous materials very promising for their peculiar characteristics of high surface area, tunable properties, organic functionality and porosity, as well as for the possibility of creating specific catalytic active sites thanks to both the functional groups and the metal ion centres; 2) the MXenes, a class of metal carbide or nitride materials with a two-dimensional (2D) structure, which have recently attracted a large interest for a broad range of applications, including catalysis and N2 fixation, for their unique properties of metallic conductivity and hydrophilic nature of the hydroxyl or oxygen terminated surfaces. In Chapters 3-5, the experimental results are presented and discussed. Chapter 3 concerns the preparation of a series of Fe-MOF-based (Fe@Zn/SIM-1) electrodes and their testing in NRR by using an advanced engineered three-phase reactor, working in gas-phase. This novel device operates at room temperature and atmospheric pressure, with counter and reference electrodes immersed into an anode half-cell (where the oxidation of H2O to O2 occurs) containing a liquid electrolyte (the anolyte), while the cathode half-cell for NRR operates in gas phase without a liquid electrolyte (electrolyte-less conditions). This type of electrocatalytic reactor is thus quite different from the conventional electrocatalytic reactors operating in liquid phase, with the main advantages of avoiding issues related to the low N2 solubility and transport in the electrolyte, and allowing an easier recovery of ammonia. The results obtained from these electrocatalytic tests in gas-phase were very useful to improve the design of the MOFs-based electrodes, evidencing the limits of these kinds of materials in terms of N content, stability and possibility to prepare more advanced electrocatalysts by carbonization. A wide part of this chapter was dedicated to the development of new experimental strategies for avoiding false positive in the detection of ammonia, which is one of the topics most studied from scientists working in NRR in the last two years. As accurate protocols were recently suggested in literature, also using advanced analytical techniques (i.e. using 15N labelled nitrogen), an easier methodology based on UV-visible spectrophotometric analysis (coupled with blank tests with inert gases) was suggested in this work to avoid ammonia contaminations and false positives, although more sophisticated analytical techniques may definitely confirm the real source of ammonia. In Chapter 4, a series of improved Fe-MOF-based materials (Fe-based and Fe-alkali metal-based MOF UiO-66-(COOH)2), synthesized by cation exchange reaction technique to replace the proton of carboxylic acid with an iron cation, are presented. With respect to Fe@Zn/SIM-1, this new class of MOFs are more stable in water and do not contain nitrogen atoms in their structure. Results evidenced that 80% cation exchange Fe@UiO-66-(COOH)2 (with an effective Fe content of around 8 wt.%) was the best electrocatalyst among the tested Fe-based MOF synthesized materials. The performances in NRR highly depended on cell and electrode design. More in detail, an ammonia yield of 1.19 μg•h-1•mgcat-2 was obtained with an assembling configuration of layers ordered as i) Nafion (the membrane), ii) Fe-based MOF (the electrocatalyst), iii) GDL (the carbon gas diffusion layer) and iv) a further layer of Fe-MOF. The effect of applied voltage was also explored, indicating an optimal voltage of -0.5 V vs. RHE to maximize activity in NRR and limiting the side hydrogen evolution reaction. Moreover, as currently used in the industrial catalysts for Haber-Bosh process, the introduction of potassium in the electrocatalysts was also investigated, in order to facilitate charge transfer from K- ions to the iron-based catalyst surface, balancing the dissociative chemisorption between H2 and N2, and suppressing side reactions, thus improving both activity and stability. These results were very promising, although a further experimentation is needed to improve their performances in NRR, to overcome limitations related to MOF materials themselves, majorly due to their low conductivity and stability. Finally, Chapter 5 refers to the exploration of advanced MXene materials (Ti3C2 MXene) and to the attempt of synthesizing a 3D nanoarchitecture starting from 2D-dimensional MXene-based catalysts. To understand the role of the nanostructure of MXene materials in NRR, Ti3C2 nanosheets were treated with KOH to obtain a final shape of three-dimensional (3D) porous frameworks nanoribbons. Specifically, the objective of this research was to investigate how the conversion of Ti3C2 nanosheets to 3D-like nanoribbons influence the NRR reactivity in the gas-phase electrochemical device. A full characterization of MXenes nanoribbons (SEM, TEM, HRTEM, XRD, XPS and EDX) was also presented. Results showed that the 3D-type nanostructure (nanoribbons) leads to a significant enhancement of the N2 fixation activity due to the formation of exposed Ti-OH sites. A linear relationship was observed between ammonia formation rate and amount of oxygen on the surface of Ti3C2 MXene.
L'azote joue un rôle indispensable pour toute vie sur terre et pour le développement des êtres humains. Industriellement, l'azote gazeux est converti en ammoniac (NH3) et en engrais riches en azote pour compléter la quantité d'azote fixée spontanément par la nature. À l'heure actuelle, la seule technologie de synthèse de l'ammoniac à l'échelle industrielle est le procédé mis au point par Haber et Bosch au début du XXe siècle, qui utilise les phases gazeuses N2 et H2. Cependant, le procédé Haber-Bosch nécessite des conditions difficiles, des équipements complexes et une consommation d'énergie élevée, et fonctionne avec de faibles taux de conversion, ce qui est incompatible avec les exigences d’un développement durable. Par rapport à la méthode Haber-Bosch, l'électrocatalyse est l'une des voies prometteuses qui permet d'intégrer l'électricité produite à partir de technologies d'énergies renouvelables pour la production d'ammoniac à température ambiante et à pression ambiante. Un défi spécifique est lié au développement de nouveaux électrocatalyseurs/électrodes dans le but de parvenir à une production d'ammoniac à faible coût, à grande échelle et délocalisée. Compte tenu ces défis scientifiques, ce travail de doctorat se concentre sur trois aspects principaux de la réaction électrocatalytique de réduction de l'azote (NRR) : i) ingénierie et conception de l'électrocatalyseur, ii) conception de l'électrode et de la cellule du dispositif électrochimique et iii) amélioration et optimisation des conditions de réaction, afin d'améliorer les performances de la synthèse de l'ammoniac. La plupart des activités de recherche de ce travail de doctorat sur la synthèse et la caractérisation des matériaux électrocatalytiques et l'assemblage/le test des électrodes dans des dispositifs électrochimiques non conventionnels ont été menées au laboratoire CASPE (Laboratory of Catalysis for Sustainable Production and Energy) de l'université de Messine. En outre, une période de 12 mois a été passée en cotutelle avec l'École supérieure de chimie, physique, électronique de Lyon (CPE Lyon), où des voies de synthèse avancées ont été explorées pour la préparation d'électrocatalyseurs à base de composés organométalliques qui ont été utilisés comme électrodes plus actives dans la RRN. Cette thèse de doctorat est organisée en cinq grands chapitres. Le chapitre 1 se concentre sur les questions de fixation de l'azote et sur la description du processus industriel de Haber-Bosch, avec un aperçu des implications générales liées à ses besoins élevés en énergie. Les méthodes alternatives basées sur la fixation électrochimique de l'azote sont ensuite présentées, avec une large description des avantages et des inconvénients liés aux conditions plus douces (c'est-à-dire la température ambiante et la pression atmosphérique) et en discutant des éléments à développer pour une future mise en œuvre de cette technologie, y compris une description du mécanisme de réaction possible, encore débattu dans la littérature. Le chapitre 2 fait référence aux matériaux électrocatalytiques développés pour la préparation des électrodes : 1) les matériaux hybrides organiques-inorganiques de type MOF, une classe de matériaux poreux très prometteurs pour leurs caractéristiques particulières de surface spécifique élevée et leurs propriétés ajustables ainsi que pour la possibilité de créer des sites catalytiques actifs spécifiques grâce aux groupes fonctionnels et aux centres d'ions métalliques ; 2) les MXènes, une classe de matériaux en carbure ou nitrure de métal à structure bidimensionnelle (2D), qui ont récemment suscité un grand intérêt pour un large éventail d'applications, notamment la catalyse et la fixation de N2, pour leurs propriétés uniques de conductivité métallique et de nature hydrophile des surfaces terminées par un hydroxyle ou un oxygène. Les chapitres 3 à 5 présentent et analysent les résultats expérimentaux. Le chapitre 3 concerne la préparation d'une série d'électrodes à base de Fe-MOF (Fe@Zn/SIM-1) et leur test dans la réaction NRR en utilisant un réacteur triphasé de pointe, fonctionnant en phase gazeuse. Ce nouveau dispositif fonctionne à température ambiante et à la pression atmosphérique, avec des électrodes de comptage et de référence immergées dans une demi-cellule anodique (où se produit l'oxydation de H2O en O2) contenant un électrolyte liquide (l'anolyte), tandis que la demi-cellule cathodique pour le NRR fonctionne en phase gazeuse sans électrolyte liquide. Ce type de réacteur électrocatalytique est donc très différent des réacteurs électrocatalytiques classiques fonctionnant en phase liquide, avec les principaux avantages d'éviter les problèmes liés à la faible solubilité et au transport de N2 dans l'électrolyte, et de permettre une récupération plus facile de l'ammoniac. Les résultats obtenus lors de ces essais électrocatalytiques en phase gazeuse ont été très utiles pour améliorer la conception des électrodes à base de MOFs, mettant en évidence les limites de ce type de matériaux en termes de teneur en N, de stabilité et de possibilité de préparer des électrocatalyseurs plus avancés par carbonisation. Une grande partie du chapitre 3 a été consacrée au développement de nouvelles stratégies expérimentales pour éviter les faux positifs dans la détection de l'ammoniac, qui est l'un des sujets les plus étudiés par les scientifiques travaillant dans la NRR ces deux dernières années. Comme des protocoles précis ont été récemment suggérés dans la littérature, utilisant également des techniques analytiques avancées (c'est-à-dire utilisant de l'azote marqué à 15N), une méthodologie plus facile basée sur l'analyse spectrophotométrique UV-visible (couplée à des essais à blanc avec des gaz inertes) a été suggérée dans ce travail pour éviter les contaminations par l'ammoniac et les faux positifs, bien que des techniques analytiques plus sophistiquées puissent définitivement confirmer la source réelle d'ammoniac. Dans le chapitre 4, une série de matériaux améliorés à base de Fe-MOF (incluant un dopage additionel par un métal alcalin du MOF UiO-66-(COOH)2), synthétisés par une technique de réaction d'échange de cations pour remplacer le proton de l'acide carboxylique par un cation de fer, sont présentés. En ce qui concerne le Fe@Zn/SIM-1, cette nouvelle classe de MOF est plus stable dans l'eau et ne contient pas d'atomes d'azote dans sa structure. Les résultats ont montré que l'échange cationique à 80 % Fe@UiO-66-(COOH)2 (avec une teneur effective en Fe d'environ 8 % en poids) était le meilleur électrocatalyseur parmi les matériaux synthétisés de MOF à base de Fe testés. Les performances du NRR dépendaient fortement de la conception de la cellule et de l'électrode. Plus en détail, un rendement en ammoniac de 1.19 μg•h-1•mgcat-2 a été obtenu avec une configuration d'assemblage de couches ordonnées comme i) Nafion (la membrane), ii) MOF à base de Fe (l'électrocatalyseur), iii) GDL (la couche de diffusion de gaz carbonique) et iv) une autre couche de Fe-MOF. L'effet de la tension appliquée a également été exploré, indiquant une tension optimale de -0,5 V par rapport à la RHE pour maximiser l'activité dans le NRR et limiter la réaction latérale d'évolution de l'hydrogène. En outre, comme c'est le cas actuellement dans les catalyseurs industriels pour le procédé Haber-Bosh, l'introduction de potassium dans les électrocatalyseurs a également été étudiée, afin de faciliter le transfert de charge des ions K- à la surface du catalyseur à base de fer, en équilibrant la chimisorption dissociative entre H2 et N2, et en supprimant les réactions secondaires, ce qui améliore à la fois l'activité et la stabilité. Ces résultats étaient très prometteurs, bien qu'une nouvelle expérimentation soit nécessaire pour améliorer leurs performances dans les NRR, afin de surmonter les limitations liées aux matériaux MOF eux-mêmes, principalement en raison de leur faible conductivité et de leur stabilité. Enfin, le chapitre 5 fait référence à l'exploration des matériaux avancés à base de MXène (Ti3C2 MXène) et à la tentative de synthèse d'une nanoarchitecture 3D à partir de catalyseurs à base de MXène en 2D. Pour comprendre le rôle de la nanostructure des matériaux à base de MXène dans la NRR, des nanofeuilles de Ti3C2 ont été traitées au KOH pour obtenir une forme finale de nanorubans à armature poreuse tridimensionnelle (3D). Plus précisément, l'objectif de cette recherche était d'étudier comment la conversion des nanofeuilles de Ti3C2 en nanorubans tridimensionnels influençait la réactivité du NRR dans le dispositif électrochimique en phase gazeuse. Une caractérisation complète des nanorubans MXenes (SEM, TEM, HRTEM, XRD, XPS et EDX) a également été présentée. Les résultats ont montré que la nanostructure de type 3D (nanorubans) conduit à une amélioration significative de l'activité de fixation du N2 en raison de la formation de sites Ti-OH exposés. Une relation linéaire a été observée entre le taux de formation d'ammoniac et la quantité d'oxygène à la surface du Ti3C2 MXene.