Зміст
Добірка наукової літератури з теми "Synergistic regularization"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Synergistic regularization".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Synergistic regularization"
Cueva, Evelyn, Alexander Meaney, Samuli Siltanen, and Matthias J. Ehrhardt. "Synergistic multi-spectral CT reconstruction with directional total variation." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, no. 2204 (July 5, 2021): 20200198. http://dx.doi.org/10.1098/rsta.2020.0198.
Повний текст джерелаMehranian, Abolfazl, Martin A. Belzunce, Claudia Prieto, Alexander Hammers, and Andrew J. Reader. "Synergistic PET and SENSE MR Image Reconstruction Using Joint Sparsity Regularization." IEEE Transactions on Medical Imaging 37, no. 1 (January 2018): 20–34. http://dx.doi.org/10.1109/tmi.2017.2691044.
Повний текст джерелаPerelli, Alessandro, and Martin S. Andersen. "Regularization by denoising sub-sampled Newton method for spectral CT multi-material decomposition." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, no. 2200 (May 10, 2021): 20200191. http://dx.doi.org/10.1098/rsta.2020.0191.
Повний текст джерелаJørgensen, J. S., E. Ametova, G. Burca, G. Fardell, E. Papoutsellis, E. Pasca, K. Thielemans, et al. "Core Imaging Library - Part I: a versatile Python framework for tomographic imaging." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, no. 2204 (July 5, 2021): 20200192. http://dx.doi.org/10.1098/rsta.2020.0192.
Повний текст джерелаBahadur, Rabya, Saeed ur Rehman, Ghulam Rasool, and Muhammad AU Khan. "Synergy Estimation Method for Simultaneous Activation of Multiple DOFs Using Surface EMG Signals." NUST Journal of Engineering Sciences 14, no. 2 (January 31, 2022): 66–73. http://dx.doi.org/10.24949/njes.v14i2.661.
Повний текст джерелаZhong, Lihua, Tong Ye, Yuyao Yang, Feng Pan, Lei Feng, Shuzhe Qi, and Yuping Huang. "Deep Reinforcement Learning-Based Joint Low-Carbon Optimization for User-Side Shared Energy Storage–Distribution Networks." Processes 12, no. 9 (August 23, 2024): 1791. http://dx.doi.org/10.3390/pr12091791.
Повний текст джерелаDu, Lehui, Baolin Qu, Fang Liu, Na Ma, Shouping Xu, Wei Yu, Xiangkun Dai, and Xiang Huang. "Precise prediction of the radiation pneumonitis with RPI: An explorative preliminary mathematical model using genotype information." Journal of Clinical Oncology 37, no. 15_suppl (May 20, 2019): e14569-e14569. http://dx.doi.org/10.1200/jco.2019.37.15_suppl.e14569.
Повний текст джерелаDi Sciacca, G., L. Di Sieno, A. Farina, P. Lanka, E. Venturini, P. Panizza, A. Dalla Mora, A. Pifferi, P. Taroni, and S. R. Arridge. "Enhanced diffuse optical tomographic reconstruction using concurrent ultrasound information." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, no. 2204 (July 5, 2021): 20200195. http://dx.doi.org/10.1098/rsta.2020.0195.
Повний текст джерелаLu, Yifan, Ziqi Zhang, Chunfeng Yuan, Peng Li, Yan Wang, Bing Li, and Weiming Hu. "Set Prediction Guided by Semantic Concepts for Diverse Video Captioning." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 4 (March 24, 2024): 3909–17. http://dx.doi.org/10.1609/aaai.v38i4.28183.
Повний текст джерелаAnacleto, Adilson, Karina Beatriz dos Santos Ferreira da Rocha, Raíssa Leal Calliari, Maike dos Santos, and Sandro Deretti. "Production Arrangement of Cachaça: Comparative Study Between Morretes in the Paraná Coast and Luiz Alves in Itajaí Valley - Santa Catarina." Revista de Gestão Social e Ambiental 18, no. 2 (June 26, 2024): e07510. http://dx.doi.org/10.24857/rgsa.v18n2-158.
Повний текст джерелаДисертації з теми "Synergistic regularization"
Wang, Zhihan. "Reconstruction des images médicales de tomodensitométrie spectrale par apprentissage profond." Electronic Thesis or Diss., Brest, 2024. http://www.theses.fr/2024BRES0124.
Повний текст джерелаComputed tomography (CT), a cornerstone of diagnostic imaging, focuses on two contemporary topics: radiation dose reduction and multi-energy imaging, which are inherently interconnected. As an emerging advancement, spectral CT can capture data across a range of X-ray energies for bettermaterial differentiation, reducing the need for repeat scans and thereby lowering overall radiationexposure. However, the reduced photon count in each energy bin makes traditional reconstruction methods susceptible to noise. Therefore, deep learning (DL) techniques, which have shown great promise in medical imaging, are being considered. This thesis introduces a novel regularizationterm that incorporates convolutional neural networks (CNNs) to connect energy bins to a latent variable, leveraging all binned data for synergistic reconstruction. As a proof-of concept, we propose Uconnect and its variant MHUconnect, employing U-Nets and the multi-head U-Net, respectively, as the CNNs, with images at a specific energy bin serving as the latent variable for supervised learning.The two methods are validated to outperform several existing approaches in reconstruction and denoising tasks