Статті в журналах з теми "Sverdrup Balance"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Sverdrup Balance.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Sverdrup Balance".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Thomas, Matthew D., Agatha M. De Boer, Helen L. Johnson, and David P. Stevens. "Spatial and Temporal Scales of Sverdrup Balance*." Journal of Physical Oceanography 44, no. 10 (October 1, 2014): 2644–60. http://dx.doi.org/10.1175/jpo-d-13-0192.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Sverdrup balance underlies much of the theory of ocean circulation and provides a potential tool for describing the interior ocean transport from only the wind stress. Using both a model state estimate and an eddy-permitting coupled climate model, this study assesses to what extent and over what spatial and temporal scales Sverdrup balance describes the meridional transport. The authors find that Sverdrup balance holds to first order in the interior subtropical ocean when considered at spatial scales greater than approximately 5°. Outside the subtropics, in western boundary currents and at short spatial scales, significant departures occur due to failures in both the assumptions that there is a level of no motion at some depth and that the vorticity equation is linear. Despite the ocean transport adjustment occurring on time scales consistent with the basin-crossing times for Rossby waves, as predicted by theory, Sverdrup balance gives a useful measure of the subtropical circulation after only a few years. This is because the interannual transport variability is small compared to the mean transports. The vorticity input to the deep ocean by the interaction between deep currents and topography is found to be very large in both models. These deep transports, however, are separated from upper-layer transports that are in Sverdrup balance when considered over large scales.
2

Wunsch, Carl, and Dean Roemmich. "Is the North Atlantic in Sverdrup Balance?" Journal of Physical Oceanography 15, no. 12 (December 1985): 1876–80. http://dx.doi.org/10.1175/1520-0485(1985)015<1876:itnais>2.0.co;2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wunsch, Carl. "The decadal mean ocean circulation and Sverdrup balance." Journal of Marine Research 69, no. 2 (March 1, 2011): 417–34. http://dx.doi.org/10.1357/002224011798765303.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gray, Alison R., and Stephen C. Riser. "A Global Analysis of Sverdrup Balance Using Absolute Geostrophic Velocities from Argo." Journal of Physical Oceanography 44, no. 4 (April 1, 2014): 1213–29. http://dx.doi.org/10.1175/jpo-d-12-0206.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Using observations from the Argo array of profiling floats, the large-scale circulation of the upper 2000 decibars (db) of the global ocean is computed for the period from December 2004 to November 2010. The geostrophic velocity relative to a reference level of 900 db is estimated from temperature and salinity profiles, and the absolute geostrophic velocity at the reference level is estimated from the trajectory data provided by the floats. Combining the two gives the absolute geostrophic velocity on 29 pressure surfaces spanning the upper 2000 db of the global ocean. These velocities, together with satellite observations of wind stress, are then used to evaluate Sverdrup balance, the simple canonical theory relating meridional geostrophic transport to wind forcing. Observed transports agree well with predictions based on the wind field over large areas, primarily in the tropics and subtropics. Elsewhere, especially at higher latitudes and in boundary regions, Sverdrup balance does not accurately describe meridional geostrophic transports, possibly due to the increased importance of the barotropic flow, nonlinear dynamics, and topographic influence. Thus, while it provides an effective framework for understanding the zero-order wind-driven circulation in much of the global ocean, Sverdrup balance should not be regarded as axiomatic.
5

Gray, Alison R., and Stephen C. Riser. "Reply to “Comments on ‘A Global Analysis of Sverdrup Balance Using Absolute Geostrophic Velocities from Argo’”." Journal of Physical Oceanography 45, no. 5 (May 2015): 1449–50. http://dx.doi.org/10.1175/jpo-d-14-0215.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Le Corre, Mathieu, Jonathan Gula, and Anne-Marie Tréguier. "Barotropic vorticity balance of the North Atlantic subpolar gyre in an eddy-resolving model." Ocean Science 16, no. 2 (April 20, 2020): 451–68. http://dx.doi.org/10.5194/os-16-451-2020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. The circulation in the North Atlantic subpolar gyre is complex and strongly influenced by the topography. The gyre dynamics are traditionally understood as the result of a topographic Sverdrup balance, which corresponds to a first-order balance between the planetary vorticity advection, the bottom pressure torque, and the wind stress curl. However, these dynamics have been studied mostly with non-eddy-resolving models and a crude representation of the bottom topography. Here we revisit the barotropic vorticity balance of the North Atlantic subpolar gyre using a new eddy-resolving simulation (with a grid space of ≈2 km) with topography-following vertical coordinates to better represent the mesoscale turbulence and flow–topography interactions. Our findings highlight that, locally, there is a first-order balance between the bottom pressure torque and the nonlinear terms, albeit with a high degree of cancellation between them. However, balances integrated over different regions of the gyre – shelf, slope, and interior – still highlight the important role played by nonlinearities and bottom drag curls. In particular, the Sverdrup balance cannot describe the dynamics in the interior of the gyre. The main sources of cyclonic vorticity are nonlinear terms due to eddies generated along eastern boundary currents and time-mean nonlinear terms in the northwest corner. Our results suggest that a good representation of the mesoscale activity and a good positioning of mean currents are two important conditions for a better representation of the circulation in the North Atlantic subpolar gyre.
7

Lu, Youyu, and Detlef Stammer. "Vorticity Balance in Coarse-Resolution Global Ocean Simulations." Journal of Physical Oceanography 34, no. 3 (March 1, 2004): 605–22. http://dx.doi.org/10.1175/2504.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The vorticity budget of the vertically integrated circulation from two global ocean simulations is analyzed using a horizontal spacing of 2° × 2° in longitude/latitude. The two simulations differ in their initial hydrographic conditions and surface wind and buoyancy forcing. The constrained simulation obtains optimal initial condition and surface forcing through assimilating observational data using the model's adjoint, whereas the unconstrained simulation uses Levitus climatological conditions for initialization and is driven by NCEP–NCAR reanalysis forcing, plus restoring to the monthly surface temperature and salinity climatological conditions. The goal is to examine the dynamics that sets the time-mean circulation and to understand the differences between the constrained and unconstrained simulations. It is found that, similar to eddy-permitting simulations, the bottom pressure torque (BPT) in coarse-resolution models plays an important role in the western boundary currents and in the Southern Ocean, and largely balances the difference between wind stress curl and βV for the depth-integrated flow. BPT is a controlling factor of the interior abyssal flow. The geostrophic vorticity relation holds in the interior basins in intermediate and deep layers and breaks down in the upper ocean toward the surface. In the upper layer of the interior basins, the model simulations show statistically significant deviation from the Sverdrup balance. In the subtropical gyre regions, the deviation from Sverdrup balance is confined to zonal bands that are balanced by the curls of lateral friction and nonlinear advection. The differences between the constrained and unconstrained simulations are significant in vorticity terms. The adjustment to Levitus hydrographic climatological data as the model's initial condition causes the most significant changes in BPT, which is the main reason for changes in abyssal flow. The analysis also points to needs for further improvement of models and controlling the influence of data errors in ocean state estimation.
8

Hautala, Susan L., Dean H. Roemmich, and William J. Schmilz. "Is the North Pacific in Sverdrup balance along 24°N?" Journal of Geophysical Research 99, no. C8 (1994): 16041. http://dx.doi.org/10.1029/94jc01084.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ohshima, Kay I., Daisuke Simizu, Motoyo Itoh, Genta Mizuta, Yasushi Fukamachi, Stephen C. Riser, and Masaaki Wakatsuchi. "Sverdrup Balance and the Cyclonic Gyre in the Sea of Okhotsk." Journal of Physical Oceanography 34, no. 2 (February 2004): 513–25. http://dx.doi.org/10.1175/1520-0485(2004)034<0513:sbatcg>2.0.co;2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

NIILER, P. P., and C. J. KOBLINSKY. "A Local Time-Dependent Sverdrup Balance in the Eastern North Pacific Ocean." Science 229, no. 4715 (August 23, 1985): 754–56. http://dx.doi.org/10.1126/science.229.4715.754.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Polonsky, Alexander. "Comments on “A Global Analysis of Sverdrup Balance Using Absolute Geostrophic Velocities from Argo”." Journal of Physical Oceanography 45, no. 5 (May 2015): 1446–48. http://dx.doi.org/10.1175/jpo-d-14-0127.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Cabanes, Cécile, Thierry Huck, and Alain Colin de Verdière. "Contributions of Wind Forcing and Surface Heating to Interannual Sea Level Variations in the Atlantic Ocean." Journal of Physical Oceanography 36, no. 9 (September 1, 2006): 1739–50. http://dx.doi.org/10.1175/jpo2935.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Interannual sea surface height variations in the Atlantic Ocean are examined from 10 years of high-precision altimeter data in light of simple mechanisms that describe the ocean response to atmospheric forcing: 1) local steric changes due to surface buoyancy forcing and a local response to wind stress via Ekman pumping and 2) baroclinic and barotropic oceanic adjustment via propagating Rossby waves and quasi-steady Sverdrup balance, respectively. The relevance of these simple mechanisms in explaining interannual sea level variability in the whole Atlantic Ocean is investigated. It is shown that, in various regions, a large part of the interannual sea level variability is related to local response to heat flux changes (more than 50% in the eastern North Atlantic). Except in a few places, a local response to wind stress forcing is less successful in explaining sea surface height observations. In this case, it is necessary to consider large-scale oceanic adjustments: the first baroclinic mode forced by wind stress explains about 70% of interannual sea level variations in the latitude band 18°–20°N. A quasi-steady barotropic Sverdrup response is observed between 40° and 50°N.
13

OLBERS, DIRK, DANIEL BOROWSKI, CHRISTOPH VÖLKER, and JORG-OLAF WÖLFF. "The dynamical balance, transport and circulation of the Antarctic Circumpolar Current." Antarctic Science 16, no. 4 (November 30, 2004): 439–70. http://dx.doi.org/10.1017/s0954102004002251.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The physical elements of the circulation of the Antarctic Circumpolar Current (ACC) are reviewed. A picture of the circulation is sketched by means of recent observations from the WOCE decade. We present and discuss the role of forcing functions (wind stress, surface buoyancy flux) in the dynamical balance of the flow and in the meridional circulation and study their relation to the ACC transport. The physics of form stress at tilted isopycnals and at the ocean bottom are elucidated as central mechanisms in the momentum balance. We explain the failure of the Sverdrup balance in the ACC circulation and highlight the role of geostrophic contours in the balance of vorticity. Emphasis is on the interrelation of the zonal momentum balance and the meridional circulation, the importance of diapycnal mixing and eddy processes. Finally, new model concepts are described: a model of the ACC transport dependence on wind stress and buoyancy flux, based on linear wave theory; and a model of the meridional overturning and the mean density structure of the Southern Ocean, based on zonally averaged dynamics and thermodynamics with eddy parametrization.
14

Zurita-Gotor, Pablo. "The Impact of Divergence Tilt and Meridional Flow for Cross-Equatorial Eddy Momentum Transport in Gill-Like Settings." Journal of the Atmospheric Sciences 77, no. 6 (May 15, 2020): 1933–53. http://dx.doi.org/10.1175/jas-d-19-0158.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract This work investigates the sensitivity of the cross-equatorial eddy momentum flux and its rotational and divergent components to Hadley cell strength in simple variants of the Gill problem. An expression is derived linking the divergent momentum flux to the mean meridional wavenumber weighted by the spectrum of divergent eddy kinetic energy, supporting the relation between divergence phase tilt and momentum flux suggested by a previous study. Newtonian cooling makes the divergence tilt eastward moving away from the equator as observed, but this tilt is also sensitive to the Hadley cell. As the divergence tilt is enhanced in the downstream direction of the flow, wave propagation increases along that direction when the Hadley cell strengthens. The meridional flow also plays a second, important role for cross-equatorial propagation. With no Hadley cell, inviscid Sverdrup balance requires perfect compensation between the divergent and rotational momentum fluxes at the equator. The model can only produce cross-equatorial propagation when Sverdrup balance is violated, which in the linear, nearly inviscid limit requires vorticity advection by the mean flow. As the Hadley cell attenuates the geopotential tilt imparted by the divergent forcing, the compensation by the rotational momentum flux is reduced. The linear model can reproduce reasonably well previous nonlinear results by Kraucunas and Hartmann when linearized about their zonal-mean climatologies. The sensitivity of the cross-equatorial momentum fluxes to Hadley cell strength in these solutions is dominated by changes in the divergent flux and consistent with diagnosed changes in the divergence tilt.
15

Verdy, Ariane, and Markus Jochum. "A note on the validity of the Sverdrup balance in the Atlantic North Equatorial Countercurrent." Deep Sea Research Part I: Oceanographic Research Papers 52, no. 1 (January 2005): 179–88. http://dx.doi.org/10.1016/j.dsr.2004.05.014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Pu, Bing, Edward K. Vizy, and Kerry H. Cook. "Warm Season Response over North America to a Shutdown of the Atlantic Meridional Overturning Circulation and CO2 Increases." Journal of Climate 25, no. 19 (April 6, 2012): 6701–20. http://dx.doi.org/10.1175/jcli-d-11-00611.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Paleo-proxy and modeling evidence suggest that a shutdown of the Atlantic meridional overturning circulation (AMOC) would decrease North Atlantic Ocean sea surface temperatures and have far-reaching climate impacts. The authors use a regional climate model to examine the warm season response over North America to a hypothetical late-twenty-first-century shutdown of the AMOC with increased atmospheric CO2. In the future simulation, precipitation decreases over the western and central United States by up to 40% and over eastern Mexico by up to 50%. Over the eastern United States rainfall generally increases except during July. Variations in the moisture convergence associated with large-scale circulation changes dominate the rainfall variations, while evaporation plays a critical role over the northeastern United States in spring and the north-central United States in summer. During April–June the westward extension of the North Atlantic subtropical high enhances southwesterly moisture fluxes from the Gulf of Mexico into the eastern and south-central United States. Increases in low-level moisture content reduce the stability of the atmosphere. Enhanced southerly winds promote convergence over the eastern United States through the Sverdrup vorticity balance and precipitation increases. In July–August anomalous anticyclonic moisture fluxes associated with an anomalous high over the Gulf of Mexico and eastern Pacific decrease the moisture supply into the United States and Mexico. Over the central United States decreases in evaporation support decreases in low-level moisture content and increases in atmospheric stability. Over the eastern United States the Sverdrup balance weakens in summer and anomalous moisture convergence is mainly located over the East Coast.
17

Sime, Louise C., David P. Stevens, Karen J. Heywood, and Kevin I. C. Oliver. "A Decomposition of the Atlantic Meridional Overturning." Journal of Physical Oceanography 36, no. 12 (December 1, 2006): 2253–70. http://dx.doi.org/10.1175/jpo2974.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract A decomposition of meridional overturning circulation (MOC) cells into geostrophic vertical shears, Ekman, and bottom pressure–dependent (or external mode) circulation components is presented. The decomposition requires the following information: 1) a density profile wherever bathymetry changes to construct the vertical shears component, 2) the zonal-mean zonal wind stress for the Ekman component, and 3) the mean depth-independent velocity information over each isobath to construct the external mode. The decomposition is applied to the third-generation Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3) to determine the meridional variability of these individual components within the Atlantic Ocean. The external mode component is shown to be extremely important where western boundary currents impinge on topography, and also in the area of the overflows. The Sverdrup balance explains the shape of the external mode MOC component to first order, but the time variability of the external mode exhibits only a very weak dependence on the wind stress curl. Thus, the Sverdrup balance cannot be used to determine the external mode changes when examining temporal change in the MOC. The vertical shears component allows the time-mean and the time-variable upper North Atlantic MOC cell to be deduced at 25°S and 50°N. A stronger dependency on the external mode and Ekman components between 8° and 35°N and in the regions of the overflows means that hydrographic sections need to be supplemented by bottom pressure and wind stress information at these latitudes. At the decadal time scale, variability in Ekman transport is less important than that in geostrophic shears. In the Southern Hemisphere the vertical shears component is dominant at all time scales, suggesting that hydrographic sections alone may be suitable for deducing change in the MOC at these latitudes.
18

Harrison, D. E., R. D. Romea, and S. H. Hankin. "Central equatorial Pacific zonal currents. I: The Sverdrup balance, nonlinearity and tropical instability waves. Annual mean dynamics." Journal of Marine Research 59, no. 6 (November 1, 2001): 895–919. http://dx.doi.org/10.1357/00222400160497706.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Alexander-Astiz Le Bras, Isabela, Maike Sonnewald, and John M. Toole. "A Barotropic Vorticity Budget for the Subtropical North Atlantic Based on Observations." Journal of Physical Oceanography 49, no. 11 (November 2019): 2781–97. http://dx.doi.org/10.1175/jpo-d-19-0111.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractTo ground truth the large-scale dynamical balance of the North Atlantic subtropical gyre with observations, a barotropic vorticity budget is constructed in the ECCO state estimate and compared with hydrographic observations and wind stress data products. The hydrographic dataset at the center of this work is the A22 WOCE section, which lies along 66°W and creates a closed volume with the North and South American coasts to its west. The planetary vorticity flux across A22 is quantified, providing a metric for the net meridional flow in the western subtropical gyre. The wind stress forcing over the subtropical gyre to the west and east of the A22 section is calculated from several wind stress data products. These observational budget terms are found to be consistent with an approximate barotropic Sverdrup balance in the eastern subtropical gyre and are on the same order as budget terms in the ECCO state estimate. The ECCO vorticity budget is closed by bottom pressure torques in the western subtropical gyre, which is consistent with previous studies. In sum, the analysis provides observational ground truth for the North Atlantic subtropical vorticity balance and explores the seasonal variability of this balance for the first time using the ECCO state estimate. This balance is found to hold on monthly time scales in ECCO, suggesting that the integrated subtropical gyre responds to forcing through fast barotropic adjustment.
20

Bell, Michael J. "Water Mass Transformations Driven by Ekman Upwelling and Surface Warming in Subpolar Gyres." Journal of Physical Oceanography 45, no. 9 (September 2015): 2356–80. http://dx.doi.org/10.1175/jpo-d-14-0251.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractThe Sverdrup relationship when applied to the Southern Ocean suggests that some isopycnals that are deep in the eastern Pacific will shoal in the Atlantic. Cold waters surfacing in the South Atlantic at midlatitudes would be warmed by the atmosphere. The potential for water mass transformations in this region is studied by applying a three-layer planetary geostrophic model to a wide ocean basin driven by the Ekman upwelling typical of the Southern Ocean surface winds. The model uses a simple physically based parameterization of the entrainment of mass into the surface layer with zonally symmetric atmospheric surface fields to find steady-state subpolar gyre solutions. The solutions are found numerically by specifying suitable boundary conditions and integrating along characteristics. With reasonable parameter settings, transformations of more than 10 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) of water between layers are obtained. The water mass transformations are sensitive to the strength of the wind stress curl and the width of the basin and relatively insensitive to the parameterization of the surface heat fluxes. On the western side of the basin where the cold waters are near the surface, there is a large region where there is a local balance between the Ekman pumping and the exchange of mass between layers. Simple formulas are derived for the water mass transformation rates in terms of the difference between the maximum and minimum northward Ekman transports integrated across the basin and the depths of the isopycnal layers on the eastern boundary. The relevance of the model to the Southern Ocean and the Atlantic meridional overturning circulation is briefly discussed.
21

Palóczy, André, Julie L. McClean, Sarah T. Gille, and He Wang. "The Large-Scale Vorticity Balance of the Antarctic Continental Margin in a Fine-Resolution Global Simulation." Journal of Physical Oceanography 50, no. 8 (August 1, 2020): 2173–88. http://dx.doi.org/10.1175/jpo-d-19-0307.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ABSTRACTThe depth-integrated vorticity budget of a global, eddy-permitting ocean/sea ice simulation over the Antarctic continental margin (ACM) is diagnosed to understand the physical mechanisms implicated in meridional transport. The leading-order balance is between the torques due to lateral friction, nonlinear effects, and bottom vortex stretching, although details vary regionally. Maps of the time-averaged depth-integrated vorticity budget terms and time series of the spatially averaged, depth-integrated vorticity budget terms reveal that the flow in the Amundsen, Bellingshausen, and Weddell Seas and, to a lesser extent, in the western portion of East Antarctica, is closer to an approximate topographic Sverdrup balance (TSB) compared to other segments of the ACM. Correlation and coherence analyses further support these findings, and also show that inclusion of the vorticity tendency term in the response (the planetary vorticity advection and the bottom vortex stretching term) increases the correlation with the forcing (the vertical net stress curl), and also increases the coherence between forcing and response at high frequencies across the ACM, except for the West Antarctic Peninsula. These findings suggest that the surface stress curl, imparted by the wind and the sea ice, has the potential to contribute to the meridional, approximately cross-slope, transport to a greater extent in the Amundsen, Bellingshausen, Weddell, and part of the East Antarctic continental margin than elsewhere in the ACM.
22

Koerner, Roy M. "Mass balance of glaciers in the Queen Elizabeth Islands, Nunavut, Canada." Annals of Glaciology 42 (2005): 417–23. http://dx.doi.org/10.3189/172756405781813122.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractMass-balance measurements began in the Canadian High Arctic in 1959. This paper considers the >40 years of measurements made since then, principally on two stagnant ice caps (on Meighen and Melville Islands), parts of two ice caps (the northeast section of Agassiz Ice Cap on northern Ellesmere Island and the northwest part of Devon Ice Cap on Devon Island) and two glaciers (White and Baby Glaciers, Axel Heiberg Island). The results show continuing negative balances. All the glaciers and ice caps except Meighen Ice Cap show weak but significant trends with time towards increasingly negative balances. Meighen Ice Cap may owe its lack of a trend to a cooling feedback from the increasingly open Arctic Ocean nearby (Johannessen and others, 1995). Feedback from this ocean has been shown to be the main cause of this ice cap’s growth and persistence at such a low elevation of <300 ma.s.l. (Alt, 1979). There may be a similar feedback in the lower elevations on Sverdrup Glacier which drains the northwest sector of Devon Ice Cap. The ablation rates there have not increased to the same extent as they have at higher elevations on the same glacier. Although evidence from the meteorological stations in the area shows that the eastern Arctic has either been cooling or has shown no change on an annual basis between 1950 and 1998, the same records show that the summers are showing a slight warming (Zhang and others, 2000). The summer warming, although slight (<1.0˚C over 48 years), is the cause of the weak trend to increasingly negative balances. This is because the mass-balance variability is dominated by the year-to-year variations in the summer balance; there is a very low variability, and no trend over time even within sections of the time series, of the winter balance of the various ice caps and glaciers. Repeat laser altimetry of ice caps by NASA for the period 1995–2000 over most of the ice caps in the Canadian Arctic Archipelago (Abdalati and others, 2004) has shown that the ablation zones are thinning while the accumulation zones show either a slight thickening or very little elevation change. Laser altimetry is revealing similar patterns of change in Greenland (Krabill and others, 2000) and Svalbard (Bamber and others, 2004). The thickening of the accumulation zones in the Canadian case may be due to higher accumulation rates, not just between the two years of laser measurements, but over a period substantially longer than the >40 years of ground-based measurements.
23

Qiu, Bo, Shuiming Chen, Peter Hacker, Nelson G. Hogg, Steven R. Jayne, and Hideharu Sasaki. "The Kuroshio Extension Northern Recirculation Gyre: Profiling Float Measurements and Forcing Mechanism." Journal of Physical Oceanography 38, no. 8 (August 1, 2008): 1764–79. http://dx.doi.org/10.1175/2008jpo3921.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Middepth, time-mean circulation in the western North Pacific Ocean (28°–45°N, 140°–165°E) is investigated using drift information from the profiling floats deployed in the Kuroshio Extension System Study (KESS) and the International Argo programs. A well-defined, cyclonic recirculation gyre (RG) is found to exist north of the Kuroshio Extension jet, confined zonally between the Japan Trench (∼145°E) and the Shatsky Rise (∼156°E), and bordered to the north by the subarctic boundary along ∼40°N. This northern RG, which is simulated favorably in the eddy-resolving OGCM for the Earth Simulator (OFES) hindcast run model, has a maximum volume transport at 26.4 Sv across 159°E and its presence persists on the interannual and longer time scales. An examination of the time-mean x-momentum balance from the OFES hindcast run output reveals that horizontal convergence of Reynolds stresses works to accelerate both the eastward-flowing Kuroshio Extension jet and a westward mean flow north of the meandering jet. The fact that the northern RG is eddy driven is further confirmed by examining the turbulent Sverdrup balance, in which convergent eddy potential vorticity fluxes are found to induce the cyclonic RG across the background potential vorticity gradient field. For the strength of the simulated northern RG, the authors find the eddy dissipation effect to be important as well.
24

Borowski, Daniel, Rüdiger Gerdes, and Dirk Olbers. "Thermohaline and Wind Forcing of a Circumpolar Channel withBlocked Geostrophic Contours." Journal of Physical Oceanography 32, no. 9 (September 1, 2002): 2520–40. http://dx.doi.org/10.1175/1520-0485-32.9.2520.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The Antarctic Circumpolar Current is governed by unique dynamics. Because the latitude belt of Drake Passage is not zonally bounded by continents, the Sverdrup theory does not apply to the Antarctic Circumpolar Current. However, most of the geostrophic contours are blocked at Drake Passage, which provides an important dynamic constraint for the vorticity equation of the depth averaged flow. This study addresses the effects of thermohaline and wind forcing on the large-scale transport of a circumpolar current with blocked geostrophic contours. Various numerical experiments with three different idealized model geometries were conducted. Based on the results and theoretical arguments, the authors promote an indirect wind effect on the circumpolar current: while the direct effects of the wind in driving the circumpolar current through a vertical transfer of the applied wind stress are of minor importance, the wind does substantially influence the circumpolar current transport through its effects on the density field. This indirect wind effect is discussed in two steps. First, at the latitudes of the circumpolar current and longitudes where the geostrophic contours are blocked, the meridional gradient of the mass transport streamfunction is to leading order balanced by the meridional gradient of the baroclinic potential energy. This balance implies that the total transport is to leading order baroclinic and that the deep transport is small. For this statement, some theoretical arguments are offered. Second, a simplified analytical model is used to obtain the distribution of the baroclinic potential energy. Assuming an advective–diffusive balance for the densities in the deep downwelling northern branch of the Deacon cell, this model reproduces the qualitative dependence of the circumpolar current transport on the imposed wind and thermohaline forcing as well as on the turbulent diffusivities.
25

Yadav, R. K., J. H. Yoo, F. Kucharski, and M. A. Abid. "Why Is ENSO Influencing Northwest India Winter Precipitation in Recent Decades?" Journal of Climate 23, no. 8 (April 15, 2010): 1979–93. http://dx.doi.org/10.1175/2009jcli3202.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract This study examines decadal changes of the El Niño–Southern Oscillation (ENSO) influence on the interannual variability of northwest India winter precipitation (NWIWP). The analysis is based on correlations and regressions performed using India Meteorological Department (IMD) records based on station data and reanalysis fields from 1950 to 2008. The authors find that the interannual variability of NWIWP is influenced by the ENSO phenomenon in the recent decades. This conclusion is supported by a consistency across the different observational datasets employed in this study and confirmed by numerical modeling. A physical mechanism for such an influence is proposed, by which western disturbances (WDs) are intensified over northwest India because of a baroclinic response due to Sverdrup balance related to large-scale sinking motion over the western Pacific during the warm phase of ENSO. This response causes an upper-level cyclonic circulation anomaly north of India and a low-level anticyclonic anomaly over southern and central India. The cyclonic circulation anomaly intensifies the WDs passing over northwest India.
26

Wunsch, Carl, and Patrick Heimbach. "Two Decades of the Atlantic Meridional Overturning Circulation: Anatomy, Variations, Extremes, Prediction, and Overcoming Its Limitations." Journal of Climate 26, no. 18 (September 9, 2013): 7167–86. http://dx.doi.org/10.1175/jcli-d-12-00478.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The zonally integrated meridional volume transport in the North Atlantic [Atlantic meridional overturning circulation (AMOC)] is described in a 19-yr-long ocean-state estimate, one consistent with a diverse global dataset. Apart from a weak increasing trend at high northern latitudes, the AMOC appears statistically stable over the last 19 yr with fluctuations indistinguishable from those of a stationary Gaussian stochastic process. This characterization makes it possible to study (using highly developed tools) extreme values, predictability, and the statistical significance of apparent trends. Gaussian behavior is consistent with the central limit theorem for a process arising from numerous independent disturbances. In this case, generators include internal instabilities, changes in wind and buoyancy forcing fields, boundary waves, the Gulf Stream and deep western boundary current transports, the interior fraction in Sverdrup balance, and all similar phenomena arriving as summation effects from long distances and times. As a zonal integral through the sum of the large variety of physical processes in the three-dimensional ocean circulation, understanding of the AMOC, if it is of central climate importance, requires breaking it down into its unintegrated components over the entire basin.
27

van Leeuwen, Peter Jan, and Will P. M. de Ruijter. "On the Steadiness of Separating Meandering Currents." Journal of Physical Oceanography 39, no. 2 (February 1, 2009): 437–48. http://dx.doi.org/10.1175/2008jpo3869.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The existence of inertial steady currents that separate from a coast and meander afterward is investigated. By integrating the zonal momentum equation over a suitable area, it is shown that retroflecting currents cannot be steady in a reduced gravity or in a barotropic model of the ocean. Even friction cannot negate this conclusion. Previous literature on this subject, notably the discrepancy between several articles by Nof and Pichevin on the unsteadiness of retroflecting currents and steady solutions presented in other papers, is critically discussed. For more general separating current systems, a local analysis of the zonal momentum balance shows that given a coastal current with a specific zonal momentum structure, an inertial, steady, separating current is unlikely, and the only analytical solution provided in the literature is shown to be inconsistent. In a basin-wide view of these separating current systems, a scaling analysis reveals that steady separation is impossible when the interior flow is nondissipative (e.g., linear Sverdrup-like). These findings point to the possibility that a large part of the variability in the world’s oceans is due to the separation process rather than to instability of a free jet.
28

Thakur, Abu Bakar Siddiqui, and Jai Sukhatme. "Changes in the tropical upper-tropospheric zonal momentum balance due to global warming." Weather and Climate Dynamics 5, no. 2 (June 18, 2024): 839–62. http://dx.doi.org/10.5194/wcd-5-839-2024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. We study the zonal momentum budget of the deep upper tropics in the context of present and future climates. In the zonal mean, as is known, a robust balance exists between the acceleration by the horizontal eddy momentum flux convergence and the deceleration by the mean meridional momentum advection. During summer, climatological stationary Rossby waves over the Asian monsoon longitudes converge westerly momentum into the tropics and are the primary contributors to the eddy term. During winter, anomalous westerly winds over the tropical east Pacific allow extratropical waves to propagate into the deep tropics, where they tend to break and decelerate the flow. When integrated over all longitudes, we find that eddies from these two regions sum constructively in summer and destructively in winter, always yielding a net positive momentum forcing that balances the mean flow term. The state-of-the-art CMIP6 suite qualitatively captures these features in the historical run and shows that the momentum fluxes change due to global warming. In summer, stationary eddy circulations in the Asian monsoon zone weaken in the upper troposphere (UT) but strengthen in the lower stratosphere (LS). Greater upward mass flux from the troposphere forces a stronger divergence and a more intense circulation in the LS following a Sverdrup vorticity balance. We observe this strengthening of summertime tropical and subtropical stationary waves in the LS over all longitudes and verify it in an idealized aquaplanet general circulation model experiment. In winter, we find that eddy westerlies over the east Pacific longitudes decrease in strength due to the expected weakening of the subtropical stationary waves with warming. This causes a significant decrease in the propagation of extratropical waves into this region, along with a drop in eddy potential vorticity fluxes associated with these waves. Thus, apart from the mean meridional flux, which weakens due to the projected weakening of the Hadley cells, our analysis of warming simulations clearly suggests significant and robust changes in the eddy momentum fluxes in the deep tropics. Potential implications of these changes in the context of the zonal mean flow and regional circulations are discussed.
29

Wills, Robert C., and Tapio Schneider. "Stationary Eddies and the Zonal Asymmetry of Net Precipitation and Ocean Freshwater Forcing." Journal of Climate 28, no. 13 (July 1, 2015): 5115–33. http://dx.doi.org/10.1175/jcli-d-14-00573.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Transport of water vapor in the atmosphere generates substantial spatial variability of net precipitation (precipitation minus evaporation). Over half of the total spatial variability in annual-mean net precipitation is accounted for by deviations from the zonal mean. Over land, these regional differences determine differences in surface water availability. Over oceans, they account, for example, for the Pacific–Atlantic difference in sea surface salinity, with implications for the deep overturning circulation. This study analyzes the atmospheric water budget in reanalyses from ERA-Interim and MERRA, to investigate which physical balances lead to zonal variation in net precipitation. It is found that the leading-order contribution is zonal variation in stationary-eddy vertical motion. Transient eddies modify the pattern of zonally anomalous net precipitation by moving moisture from the subtropical and tropical oceans onto land and poleward across the Northern Hemisphere storm tracks. Zonal variation in specific humidity and stationary-eddy horizontal advection play a secondary role. The dynamics leading to net precipitation via vertical motion in stationary eddies can be understood from a lower-tropospheric vorticity budget. The large-scale variations of vertical motion are primarily described by Sverdrup balance and Ekman pumping, with some modification by transient eddies. These results suggest that it is important to understand changes in stationary eddies and their influence on the zonal variation of transient eddy fluxes, in order to understand regional changes in net precipitation. They highlight the relative importance of different atmospheric mechanisms for the freshwater forcing of the North Pacific and North Atlantic.
30

Reid, C. M., N. P. James, T. K. Kyser, and B. Beauchamp. "Diagenetic Cycling of Nutrients in Seafloor Sediments and the Carbonate-Silica Balance in a Paleozoic Cool-Water Carbonate System, Sverdrup Basin, Canadian Arctic Archipelago." Journal of Sedimentary Research 78, no. 8 (August 1, 2008): 562–78. http://dx.doi.org/10.2110/jsr.2008.057.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Yang, Yaoxian, Zeyong Hu, Maoshan Li, Haipeng Yu, Weiqiang Ma, and Weiwei Fan. "Topographical and Thermal Forcing in Favorable Circulation Pattern to Early Spring Precipitation over the Southeastern Tibetan Plateau." Atmosphere 13, no. 6 (June 15, 2022): 973. http://dx.doi.org/10.3390/atmos13060973.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
During the boreal spring (March–May), the precipitation that occurs from March over the southeastern Tibetan Plateau (TP) can account for 20–40% of the total annual amount. The origin of this phenomenon has not been clearly understood from a climatological perspective. In this study, the role of topographical and thermal forcing on the precipitation over the southeastern TP in early spring (March) was investigated through sensitivity numerical simulations based on general circulation model. The simulated results show the favorable circulation and static stability to early spring precipitation over the southeastern TP when the model is simultaneously forced by realistic topography, zonal symmetric radiative equilibrium temperature, and diabatic heating over the TP and its surrounding areas. The quasi-stationary wave pattern over the Eurasian continent forced by realistic and TP topographical forcing leads to prolonged low pressure and intensified zonal winds over the southeastern TP due to quasi-steady wave activities. Thermal forcing experiments reveals that sensible heating over the southeastern TP not only strengthens the cyclonic circulation, ascending motion and statically unstable over the southeastern TP through thermal adaptation and the Sverdrup balance, but also triggers an anticyclone at upper tropospheric level extending from north of the Bay of Bengal to the eastern TP, which further favors precipitation over the southeastern TP. This work will provide useful background information for spring climate prediction over the TP.
32

Wang, Chunzai, Sang-Ki Lee, and Carlos R. Mechoso. "Interhemispheric Influence of the Atlantic Warm Pool on the Southeastern Pacific." Journal of Climate 23, no. 2 (January 15, 2010): 404–18. http://dx.doi.org/10.1175/2009jcli3127.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The Atlantic warm pool (AWP) is a large body of warm water comprising the Gulf of Mexico, Caribbean Sea, and western tropical North Atlantic. The AWP can vary on seasonal, interannual, and multidecadal time scales. The maximum AWP size is in the boreal late summer and early fall, with the largest extent in the year being about 3 times the smallest one. The AWP alternates with the Amazon basin in South America as the seasonal heating source for circulations of the Hadley and Walker type in the Western Hemisphere. During the boreal summer/fall, a strong Hadley-type circulation is established, with ascending motion over the AWP and subsidence over the southeastern tropical Pacific. This is accompanied by equatorward flow in the lower troposphere over the southeastern tropical Pacific, as dynamically required by the Sverdrup vorticity balance. It is shown by analyses of observational data and NCAR community atmospheric model simulations that an anomalously large (small) AWP during the boreal summer/fall results in a strengthening (weakening) of the Hadley-type circulation with enhanced descent (ascent) over the southeastern tropical Pacific. It is further demonstrated—by using a simple two-level model linearized about a specified background mean state—that the interhemispheric connection between the AWP and the southeastern tropical Pacific depends on the configuration of the background mean zonal winds in the Southern Hemisphere.
33

Brown, Jaclyn N., and Alexey V. Fedorov. "Estimating the Diapycnal Transport Contribution to Warm Water Volume Variations in the Tropical Pacific Ocean." Journal of Climate 23, no. 2 (January 15, 2010): 221–37. http://dx.doi.org/10.1175/2009jcli2347.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Variations in the warm water volume (WWV) of the equatorial Pacific Ocean are considered a key element of the dynamics of the El Niño–Southern Oscillation (ENSO) phenomenon. WWV, a proxy for the upper-ocean heat content, is usually defined as the volume of water with temperatures greater than 20°C. It has been suggested that the observed variations in WWV are controlled by interplay among meridional, zonal, and vertical transports (with vertical transports typically calculated as the residual of temporal changes in WWV and the horizontal transport divergence). Here, the output from a high-resolution ocean model is used to calculate the zonal and meridional transports and conduct a comprehensive analysis of the mass balance above the 25 kg m−3 σθ surface (approximating the 20°C isotherm). In contrast to some earlier studies, the authors found that on ENSO time scales variations in the diapycnal transport across the 25 kg m−3 isopycnal are small in the eastern Pacific and negligible in the western and central Pacific. In previous observational studies, the horizontal transports were estimated using Ekman and geostrophic dynamics; errors in these approximations were unavoidably folded into the estimates of the diapycnal transport. Here, the accuracy of such estimates is assessed by recalculating mass budgets using the model output at a spatial resolution similar to that of the observations. The authors show that errors in lateral transports can be of the same order of magnitude as the diapycnal transport itself. Further, the rate of change of WWV correlates well with wind stress curl (a driver of meridional transport). This relationship is explored using an extended version of the Sverdrup balance, and it is shown that the two are correlated because they both have the ENSO signal and not because changes in WWV are solely attributable to the wind stress curl.
34

Kessler, William S. "Mean Three-Dimensional Circulation in the Northeast Tropical Pacific*." Journal of Physical Oceanography 32, no. 9 (September 1, 2002): 2457–71. http://dx.doi.org/10.1175/1520-0485-32.9.2457.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Historical XBT data are used to construct a mean climatology of the three-dimensional geostrophic circulation in the northeast tropical Pacific (southwest of Mexico and Central America) and are diagnosed based on linear dynamics forced with satellite scatterometer winds. Unlike the familiar central tropical Pacific, where the zonal scales are very large and the wind forcing nearly a function of latitude alone, the North Pacific east of about 120°W is strongly influenced by wind jets blowing through gaps in the Central American cordillera. The curl imposed by these wind jets imprints on the ocean, producing a distinctive pattern of thermocline topography and geostrophic currents that are consistent with the Sverdrup balance. Notably, the weakening of the North Equatorial Countercurrent near 110°W is due to the wind forcing. Given the observed stratification and wind stress curl, planetary vorticity conservation also determines the distribution of vertical velocity in the region, with about 3.5 Sv (Sv ≡ 106 m3 s−1) of upwelling through the base of the thermocline under the Costa Rica Dome. This upwelling is associated with stretching of the water column under the dome, which thereby causes the northern “Subsurface Counter Current” (SSCC or Tsuchiya Jet) to turn away from the equator; about half the transport of the SSCC upwells through the thermocline via this mechanism. This may be part of the process by which intermediate-depth water, flowing into the Pacific from the south, is brought to the surface and into the Northern Hemisphere.
35

Small, R. Justin, Enrique Curchitser, Katherine Hedstrom, Brian Kauffman, and William G. Large. "The Benguela Upwelling System: Quantifying the Sensitivity to Resolution and Coastal Wind Representation in a Global Climate Model*." Journal of Climate 28, no. 23 (December 1, 2015): 9409–32. http://dx.doi.org/10.1175/jcli-d-15-0192.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Of all the major coastal upwelling systems in the world’s oceans, the Benguela, located off southwest Africa, is the one that climate models find hardest to simulate well. This paper investigates the sensitivity of upwelling processes, and of sea surface temperature (SST), in this region to resolution of the climate model and to the offshore wind structure. The Community Climate System Model (version 4) is used here, together with the Regional Ocean Modeling System. The main result is that a realistic wind stress curl at the eastern boundary, and a high-resolution ocean model, are required to well simulate the Benguela upwelling system. When the wind stress curl is too broad (as with a 1° atmosphere model or coarser), a Sverdrup balance prevails at the eastern boundary, implying southward ocean transport extending as far as 30°S and warm advection. Higher atmosphere resolution, up to 0.5°, does bring the atmospheric jet closer to the coast, but there can be too strong a wind stress curl. The most realistic representation of the upwelling system is found by adjusting the 0.5° atmosphere model wind structure near the coast toward observations, while using an eddy-resolving ocean model. A similar adjustment applied to a 1° ocean model did not show such improvement. Finally, the remote equatorial Atlantic response to restoring SST in a broad region offshore of Benguela is substantial; however, there is not a large response to correcting SST in the narrow coastal upwelling zone alone.
36

Sheremet, Vitalii A., and Joseph Kuehl. "Gap-Leaping Western Boundary Current in a Circular Tank Model." Journal of Physical Oceanography 37, no. 6 (June 1, 2007): 1488–95. http://dx.doi.org/10.1175/jpo3069.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract An oceanographically generic problem of the interaction of a boundary current with bathymetric features such as a gap in the ridge or a strait between two islands is considered. Multiple flow patterns (penetrating or leaping the gap) and hysteresis (dependence on prior evolution) may exist in such systems. Examples include the Gulf Stream leaping from the Yucatan to Florida and the Kuroshio leaping from Luzon to Taiwan. Using numerical analysis, Sheremet earlier found that multiple steady states can be explained by variation in the balance between the inertia (which promotes leaping state) and the β effect (which promotes penetrating state). In the present work a verification of the multiple states and hysteresis in a laboratory model are offered. To set up a gap-leaping current, a circular tank with a sloping bottom (simulating the β effect) is used, and the flow is driven using a new method of pumping fluid through sponges (thus generating a Sverdrup flow in the interior). A semicircular ridge with a gap is inserted into the western part of the tank. Using a dye release flow visualization method, the existence of multiple flow patterns over varying boundary current transport values differing by a factor of more than 2 are dramatically shown. An associated numerical model in bipolar curvilinear coordinates, which allows for the matching of all the boundaries, reproduces the laboratory results very well. This idealized problem offers a very useful geophysical test case for numerical models involving flow separation and reattachment.
37

Zhou, Tianjun, Rucong Yu, Jie Zhang, Helge Drange, Christophe Cassou, Clara Deser, Daniel L. R. Hodson, et al. "Why the Western Pacific Subtropical High Has Extended Westward since the Late 1970s." Journal of Climate 22, no. 8 (April 15, 2009): 2199–215. http://dx.doi.org/10.1175/2008jcli2527.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The western Pacific subtropical high (WPSH) is closely related to Asian climate. Previous examination of changes in the WPSH found a westward extension since the late 1970s, which has contributed to the interdecadal transition of East Asian climate. The reason for the westward extension is unknown, however. The present study suggests that this significant change of WPSH is partly due to the atmosphere’s response to the observed Indian Ocean–western Pacific (IWP) warming. Coordinated by a European Union’s Sixth Framework Programme, Understanding the Dynamics of the Coupled Climate System (DYNAMITE), five AGCMs were forced by identical idealized sea surface temperature patterns representative of the IWP warming and cooling. The results of these numerical experiments suggest that the negative heating in the central and eastern tropical Pacific and increased convective heating in the equatorial Indian Ocean/Maritime Continent associated with IWP warming are in favor of the westward extension of WPSH. The SST changes in IWP influences the Walker circulation, with a subsequent reduction of convections in the tropical central and eastern Pacific, which then forces an ENSO/Gill-type response that modulates the WPSH. The monsoon diabatic heating mechanism proposed by Rodwell and Hoskins plays a secondary reinforcing role in the westward extension of WPSH. The low-level equatorial flank of WPSH is interpreted as a Kelvin response to monsoon condensational heating, while the intensified poleward flow along the western flank of WPSH is in accord with Sverdrup vorticity balance. The IWP warming has led to an expansion of the South Asian high in the upper troposphere, as seen in the reanalysis.
38

Machín, F., and J. L. Pelegrí. "Northward Penetration of Antarctic Intermediate Water off Northwest Africa." Journal of Physical Oceanography 39, no. 3 (March 1, 2009): 512–35. http://dx.doi.org/10.1175/2008jpo3825.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract In this article, historical and climatological datasets are used to investigate the seasonal northward propagation of Antarctic Intermediate Waters (AAIW) along the eastern margin of the North Atlantic subtropical gyre. A cluster analysis for data north of 26°N shows the presence of a substantial number of hydrographic stations with AAIW characteristics that stretch northeast along the African slope. This water mass extends north during fall, as shown both through the comparison of actual and climatological data, and by applying a mixing analysis to normal-to-shore seasonal sections at both 28.5° and 32°N. The mixing analysis is further used with several fall cruises between 32° and 36°N, and shows that at these latitudes the core of AAIW propagates along the 27.5 isoneutral with contributions that reach as much as 50% at 32.5°N. An idealized Sverdrup-type model is used in combination with climatological hydrographic and wind data to examine what forces this eastern boundary propagation. It is found that column stretching, initiated in the tropical North Atlantic, is the dominant term in the vorticity balance of the AAIW stratum, capable of sustaining a winter–spring–summer northward transport of about 3–4 Sv (1 Sv ≡ 106 m3 s−1) that reaches as far north as the Canary Archipelago (28°N). In fall, this transport may continue beyond 28°N, sustained by a near-slope meridional stretching of this water stratum. AAIW probably fades away in the northeastern region as the result of several processes, specially enhanced double diffusion with surrounding waters and interaction with Mediterranean water lenses.
39

Waugh, Darryn W., Andrew McC. Hogg, Paul Spence, Matthew H. England, and Thomas W. N. Haine. "Response of Southern Ocean Ventilation to Changes in Midlatitude Westerly Winds." Journal of Climate 32, no. 17 (July 26, 2019): 5345–61. http://dx.doi.org/10.1175/jcli-d-19-0039.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ABSTRACT Changes in ventilation of the Southern Hemisphere oceans in response to changes in midlatitude westerly winds are examined by analyzing the ideal age tracer from global eddy-permitting ocean–ice model simulations in which there is an abrupt increase and/or a meridional shift in the winds. The age response in mode and intermediate waters is found to be close to linear; the response of a combined increase and shift of peak winds is similar to the sum of the individual responses to an increase and a shift. Further, a barotropic response, following Sverdrup balance, can explain much of the age response to the changes in wind stress. There are similar peak decreases (of around 50 years) in the ideal age for a 40% increase or 2.5° poleward shift in the wind stress. However, while the age decreases throughout the thermocline for an increase in the winds, for a poleward shift in the winds the age increases in the north part of the thermocline and there are decreases in age only south of 35°S. As a consequence, the change in the volume of young water differs, with a 15% increase in the volume of water with ages younger than 50 years for a 40% increase in the winds but essentially no change in this volume for a 2.5° shift. As ventilation plays a critical role in the uptake of carbon and heat, these results suggest that the storage of anthropogenic carbon and heat in mode and intermediate waters will likely increase with a strengthening of the winds, but will be much less sensitive to a meridional shift in the peak wind stress.
40

Beadling, R. L., J. L. Russell, R. J. Stouffer, and P. J. Goodman. "Evaluation of Subtropical North Atlantic Ocean Circulation in CMIP5 Models against the Observational Array at 26.5°N and Its Changes under Continued Warming." Journal of Climate 31, no. 23 (December 2018): 9697–718. http://dx.doi.org/10.1175/jcli-d-17-0845.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Observationally based metrics derived from the Rapid Climate Change (RAPID) array are used to assess the large-scale ocean circulation in the subtropical North Atlantic simulated in a suite of fully coupled climate models that contributed to phase 5 of the Coupled Model Intercomparison Project (CMIP5). The modeled circulation at 26.5°N is decomposed into four components similar to those RAPID observes to estimate the Atlantic meridional overturning circulation (AMOC): the northward-flowing western boundary current (WBC), the southward transport in the upper midocean, the near-surface Ekman transport, and the southward deep ocean transport. The decadal-mean AMOC and the transports associated with its flow are captured well by CMIP5 models at the start of the twenty-first century. By the end of the century, under representative concentration pathway 8.5 (RCP8.5), averaged across models, the northward transport of waters in the upper WBC is projected to weaken by 7.6 Sv (1 Sv ≡ 106 m3 s−1; −21%). This reduced northward flow is a combined result of a reduction in the subtropical gyre return flow in the upper ocean (−2.9 Sv; −12%) and a weakened net southward transport in the deep ocean (−4.4 Sv; −28%) corresponding to the weakened AMOC. No consistent long-term changes of the Ekman transport are found across models. The reduced southward transport in the upper ocean is associated with a reduction in wind stress curl (WSC) across the North Atlantic subtropical gyre, largely through Sverdrup balance. This reduced WSC and the resulting decrease in the horizontal gyre transport is a robust feature found across the CMIP5 models under increased CO2 forcing.
41

Marchal, Olivier. "On the Observability of Oceanic Gyres." Journal of Physical Oceanography 44, no. 9 (September 1, 2014): 2498–523. http://dx.doi.org/10.1175/jpo-d-13-0183.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract This study examines the observability of a stratified ocean in a square flat basin on a midlatitude beta plane. Here, “observability” means the ability to establish, in a finite interval of time, the time-dependent ocean state given density observations over the same interval and with no regard for errors. The dynamics is linearized and hydrostatic, so that the motion can be decomposed into normal modes and the observability analysis is simplified. An observability Gramian (a symmetric matrix) is determined for the flows in an inviscid interior, in frictional boundary layers, and in a closed basin. Its properties are used to establish the condition for complete observability and to identify optimal data locations for each of these flows. It is found that complete observability of an oceanic interior in time-dependent Sverdrup balance requires that the observations originate from the westernmost location at each considered latitude. The degree of observability increases westward due to westward propagation of long baroclinic Rossby waves: data collected in the west are more informative than data collected in the east. Likewise, the best locations for observing variability in the western (eastern) boundary layer are near (far from) the boundary. The observability of a closed basin is influenced by the westward propagation and the boundaries. Optimal data locations that are identified for different resolutions (0.01 to 1 yr) and lengths of data records (0.2 to 20 yr) show a variable influence of the planetary vorticity gradient. Data collected near the meridional boundaries appear always less informative, from the viewpoint of basin observability, than data collected away from these boundaries.
42

Siedler, Gerold, Jürgen Holfort, Walter Zenk, Thomas J. Müller, and Tiberiu Csernok. "Deep-Water Flow in the Mariana and Caroline Basins*." Journal of Physical Oceanography 34, no. 3 (March 1, 2004): 566–81. http://dx.doi.org/10.1175/2511.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Two major water masses dominate the deep layers in the Mariana and Caroline Basins: the Lower Circumpolar Water (LCPW), arriving from the Southern Ocean along the slopes north of the Marshall Islands, and the North Pacific Deep Water (NPDW) reaching the region from the northeastern Pacific Ocean. Hydrographic and moored observations and multibeam echosounding were performed in the East Mariana and the East Caroline Basins to detail watermass distributions and flow paths in the area. The LCPW enters the East Mariana Basin from the east. At about 13°N, however, in the southern part of the basin, a part of this water mass arrives in a southward western boundary flow along the Izu–Ogasawara–Mariana Ridge. Both hydrographic observations and moored current measurements lead to the conclusion that this water not only continues westward to the West Mariana Basin as suggested before, but also provides bottom water to the East Caroline Basin. The critical throughflow regions were identified by multibeam echosounding at the Yap Mariana Junction between the East and West Mariana Basins and at the Caroline Ridge between the East Mariana and East Caroline Basins. The throughflow is steady between the East and West Mariana Basins, whereas more variability is found at the Caroline Ridge. At both locations, throughflow fluctuations are correlated with watermass property variations suggesting layer-thickness changes. The total transport to the two neighboring basins is only about 1 Sverdrup (1Sv ≡ 106 m3 s−1) but has considerable impact on the watermass structure in these basins. Estimates are given for the diapycnal mixing that is required to balance the inflow into the East Caroline Basin. Farther above in the water column, the high-silica tongue of NPDW extends from the east to the far southwestern corner of the East Mariana Basin, with transports being mostly southward across the basin.
43

Wu, Yutian, and Tiffany A. Shaw. "The Impact of the Asian Summer Monsoon Circulation on the Tropopause." Journal of Climate 29, no. 24 (November 21, 2016): 8689–701. http://dx.doi.org/10.1175/jcli-d-16-0204.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Previous studies have identified two important features of summertime thermodynamics: 1) a significant correlation between the low-level distribution of equivalent potential temperature and the potential temperature θ of the extratropical tropopause and 2) a northwestward shift of the maximum tropopause θ relative to the maximum low-level . Here, the authors hypothesize these two features occur because of the Asian monsoon circulation. The hypothesis is examined using a set of idealized prescribed sea surface temperature (SST) aquaplanet simulations. Simulations with a zonally symmetric background climate exhibit a weak moisture–tropopause correlation. A significant correlation and northwestward shift occurs when a zonal wave-1 SST perturbation is introduced in the Northern Hemisphere subtropics. The equivalent zonal-mean subtropical warming does not produce a significant correlation. A mechanism is proposed to explain the moisture–tropopause connection that involves the circulation response to zonally asymmetric surface heating and its impact on the tropopause defined by the 2-potential-vorticity-unit (PVU; 1 PVU = 10−6 K kg−1 m2 s−1) surface. While the circulation response to diabatic heating is well known, here the focus is on the implications for the tropopause. Consistent with previous research, surface heating increases the low-level and produces low-level convergence and a cyclonic circulation. The low-level convergence is coupled with upper-level divergence via convection and produces an upper-level anticyclonic circulation consistent with Sverdrup balance. The anticyclonic vorticity lowers the PV northwest of the surface heating via Rossby wave dynamics. The decreased PV leads to a northwestward shift of the 2-PVU surface on fixed pressure levels. The θ value to the northwest of the surface heating is higher, and consequently the maximum tropopause θ increases.
44

JPT staff, _. "E&P Notes (January 2021)." Journal of Petroleum Technology 73, no. 01 (January 1, 2021): 18–19. http://dx.doi.org/10.2118/0121-0018-jpt.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
GOM Lease Sale Generates $121 Million in High Bids; Shell Offshore Takes Top Spot Regionwide US Gulf of Mexico (GOM) Lease Sale 256 generated $120,868,274 in high bids for 93 tracts in federal waters. The sale on 18 November featured 14,862 unleased blocks covering 121,875 square miles. With $27,877,809 spanning 21 high bids, Shell Offshore Inc. took the top spot among 23 competing companies. A total of $135,558,336 was offered in 105 bids. Among the majors, Shell, Equinor, BP, and Chevron submitted some of the highest bids. Each company claimed high bids of over $17 million, signaling the GOM remains a priority in their portfolios. Last year was a record year for American offshore oil production at 596.9 million bbl, or 15% of domestic oil production, and $5.7 billion in direct revenues to the government. Offshore oil and gas supported 275,000 total domestic jobs and $60 billion total economic contributions in the US. “The sustained presence of large deposits of hydrocarbons in these waters will continue to draw the interest of industry for decades to come,” Deputy Secretary of the Interior Kate MacGregor said. Still, as Mfon Usoro, senior research analyst at Wood Mackenzie, noted, “Although bidding activity increased by 30% from the March 2020 sale, the high bid amount of $121 million still trends below the average high bid amount seen in previous regionwide lease sales, proving that companies are still being conservative with exploration spend.” Although the Bureau of Ocean Energy Management has proposed another regionwide GOM lease sale in March 2021, Usoro predicted that Lease Sale 256 “could potentially be one of the last lease sales.” “With the Biden administration set to inaugurate next year and possibly ban future lease sales, a massive land grab might have ensued,” he continued. “But companies are constrained by tight budgets due to the prevailing low oil price. Additionally, companies in the region have existing drilling inventory to sustain them in the near term. The best blocks with the highest potential reserves are likely already leased. As a result, we do not expect a potential ban on leasing to materially impact production in the region until the end of the decade.” This was the seventh offshore sale held under the 2017–2022 National Outer Continental Shelf Oil and Gas Leasing Program; two sales a year for 10 total regionwide lease sales are scheduled for the gulf. Nine Areas on Norwegian Continental Shelf Open for Bids The 25th licensing round on the Norwegian Continental Shelf, comprising eight areas in the Barents Sea and one in the Norwegian Sea, has been announced by the Norwegian Ministry of Petroleum and Energy. Known for being a country with some of the greenest credentials and policies in the world, Norway surprised observers in June by announcing plans for a licensing round that signaled further oil exploration in the Norwegian sector of the Arctic Sea. In this round, 136 blocks/parts of blocks will be available: 11 in the Norwegian Sea and 125 in the Barents Sea. The application deadline for companies is 23 February 2021. New production licenses will be awarded in Q2 2021. Johan Sverdrup Capacity Increased to Half Million B/D Following positive results in a November capacity test, the Johan Sverdrup field is set to increase daily production capacity. Capacity will rise from today’s 470,000 to around 500,000 B/D in the second increase since the field came on stream just over a year ago. The move will increase the field’s total production capacity by around 60,000 bbl more than the original basis when the field came on line. Overall, the field is estimated to have resources of 2.7 billion BOE. “The field has low operating costs, providing revenue for the companies and Norwegian society, even in periods with low prices,” said Jez Averty, Equinor’s senior vice president for operations south in development and production, Norway. The Johan Sverdrup field uses water injection to secure high recovery of reserves and maintain production at a high level. An increase in the water-injection capacity should further increase production capacity by mid-2021, according to Rune Nedregaard, vice president for Johan Sverdrup operations. Phase 2 production starting in Q4 2022 will raise the Johan Sverdrup full-field plateau production capacity from 690,000 to around 720,000 B/D. Equinor operates the field with 42.6% stake; other partners include Lundin Norway (20%), Petoro (17.36%), Aker BP (11.57%), and Total (8.44%). ConocoPhillips Makes Significant Gas Discovery Offshore Norway ConocoPhillips announced a new natural-gas condensate discovery in production license 1009, located 22 miles northwest of the Heidrun oil and gas field and 150 miles offshore Norway in the Norwegian Sea. The wildcat well 6507/4-1 (Warka) was drilled in 1,312 ft of water to a total depth of 16,355 ft. Preliminary estimates place the size of the discovery between 50 and 190 million BOE. Further appraisals will determine potential flow rates, the reservoir’s ultimate resource recovery, and plans for development. “The Warka discovery and potential future opportunities represent very low cost-of-supply resource additions that can extend our multi-decade success on the Norwegian Continental Shelf,” said Matt Fox, executive vice president and chief operating officer. The drilling operation, which was permitted to ConocoPhillips in August 2020, was performed by the Transocean-managed Leiv Eiriksson semisubmersible rig. ConocoPhillips Skandinavia AS is the main operator of the license with a 65% working interest; PGNiG Upstream Norway AS holds the remaining stake. Lundin Energy Completes Barents Sea Exploration Well, Comes Up Dry Lundin Energy has completed exploration well 7221/4-1, targeting the Polmak prospect in licenses PL609 and PL1027, in the southern Barents Sea. The well was meant to prove hydrocarbons in Triassic-aged sandstones within the Kobbe formation of the Polmak prospect. After finding indications of hydrocarbons in a 9-m interval in poor-quality reservoir in the targeted formation, the well was classified as dry. The well was drilled 30 km east of the Johan Castberg discovery, by the Seadrill-operated West Bollsta semisubmersible rig. Lundin Energy, operator of Polmak, holds a 47.51% working interest. Partners are Wintershall DEA Norge AS (25%), Inpex Norge AS (10%), DNO Norge AS (10%), and Idemitsu Petroleum Norge AS (7.5%). Polmak is the first of Lundin’s three high-impact exploration prospects drilled this quarter in the Barents Sea; the wells target gross unrisked prospective resources of over 800 million bbl of oil. The West Bollsta rig will now proceed to drill the Lundin Energy-operated Bask prospect in PL533B. Well 7219/11-1 will target Paleocene-aged sandstones, estimated to hold gross unrisked prospective resources of 250 million bbl of oil. Tullow Sells Remaining Stake in Ugandan Oil Field Tullow Oil has completed the 10 November sale of its assets in Uganda to French giant Total for $500 million. Tullow will also receive $75 million when a final investment decision is taken on the development project, calculated to hold 1.7 billion bbl of crude oil. Contingent payments are payable after production begins if Brent crude prices rise above $62/bbl. The completion of this transaction marks Tullow’s exit from its licenses in Uganda after 16 years of operations in the Lake Albert basin. The deal is designed to strengthen Tullow’s balance sheet, as tumbling crude prices combined with exploration setbacks have created problems for the company. In September, the company reported that it had lost $1.3 billion in the first 6 months of 2020 as falling oil prices forced it to write down the value of its assets. The deal cut Tullow’s net debt to $2.4 billion; it has $1 billion in cash.
45

Li, Jianke, and Allan J. Clarke. "Interannual Sea Level Variations in the South Pacific from 5° to 28°S." Journal of Physical Oceanography 37, no. 12 (December 1, 2007): 2882–94. http://dx.doi.org/10.1175/2007jpo3656.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Ocean Topography Experiment (TOPEX)/Poseidon/Jason-1 satellite altimeter observations for the 11-yr period from January 1993 to December 2003 show that in the South Pacific Ocean most of the interannual sea level variability in the region 5°–28°S is west of 160°W. This interannual variability is largest from about 5° to 15°S and from 155°E to 160°W, reaching a root-mean-square value of over 11 cm. Calculations show that this interannual sea level signal can be described by first and second baroclinic vertical mode Rossby waves forced by the curl of the interannual Ekman transport. This curl, which tends to be positive during El Niño and negative during La Niña, generates positive (negative) sea level anomalies during El Niño (La Niña) that increase westward in amplitude in accordance with Rossby wave dynamics. The sea level anomalies are not exactly in phase with the curl forcing because Sverdrup balance does not hold—vortex stretching also contributes to the response. East of 160°W is a large “quiet” region of low interannual sea level variability, especially south of about 15°S. This is surprising because there is no flow into the coast, so the interannual sea level amplitude of equatorial origin should be constant along the coast, resulting in a source of westward-propagating Rossby waves of considerable amplitude. The large low-variability region results because coastal sea level amplitude falls between 5° and 15°S, so the Rossby wave source south of 15°S is weak. During El Niño the sea level is higher than normal at the coast, so the southward fall in anomalous sea level implies, by geostrophy, that there is an anomalous onshore flow. This flow feeds an anomalous southward El Niño current of up to 20 cm s−1 above the 30–50-km-wide shelf edge. During La Niña the sea level is lower than normal at the coast and the flows reverse: a narrow anomalously northward shelf-edge flow feeding a broad offshore flow between 5° and 15°S. South of 16°S the coastal flow is much weaker.
46

Majumder, Sudip, and Claudia Schmid. "A study of the variability in the Benguela Current volume transport." Ocean Science 14, no. 2 (April 5, 2018): 273–83. http://dx.doi.org/10.5194/os-14-273-2018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. The Benguela Current forms the eastern limb of the subtropical gyre in the South Atlantic and transports a blend of relatively fresh and cool Atlantic water and relatively warm and salty Indian Ocean water northwestward. Therefore, it plays an important role not only for the local freshwater and heat budgets but for the overall meridional heat and freshwater transport in the South Atlantic. Historically, the Benguela Current region is relatively data sparse, especially with respect to long-term velocity observations. A new three-dimensional data set of the horizontal velocity in the upper 2000 m that covers the years 1993 to 2015 is used to analyze the variability in the Benguela Current. This data set was derived using observations from Argo floats, satellite sea surface height, and wind fields. Since Argo floats do not cover regions shallower than 1000 m, the data set has gaps inshore. The main features of the horizontal circulation observed in this data set are in good agreement with those from earlier studies based on limited observations. Therefore, it can be used for a more detailed study of the flow pattern as well as the variability in the circulation in this region. It is found that the mean meridional transport in the upper 800 m between the continental shelf of Africa and 3∘ E, decreases from 23 ± 3 Sv (1 Sv = 106 m3 s−1) at 31∘ S to 11 ± 3 Sv at 28∘ S. In terms of variability, the 23-year long time series at 30 and 35∘ S reveals phases with large energy densities at periods of 3 to 7 months, which can be attributed to the occurrence of Agulhas rings in this region. The prevalence of Agulhas rings is also behind the fact that the energy density at 35∘ S at the annual period is smaller than at 30∘ S because the former latitude is closer to Agulhas Retroflection and therefore more likely to be impacted by the Agulhas rings. In agreement with this, the energy density associated with mesoscale variability at 30∘ S is weaker than at 35∘ S. With respect to the forcing, the Sverdrup balance and the observed transport at 30∘ S exhibit a strong correlation of 0.7. No significant correlation between these parameters is found at 35∘ S.
47

Duke, J. H. "Do periodic consolidations of Pacific countercurrents trigger global cooling by equatorially symmetric La Niña?" Climate of the Past Discussions 6, no. 3 (May 20, 2010): 905–61. http://dx.doi.org/10.5194/cpd-6-905-2010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. A sporadic phenomenon of internal tide resonance (ITR) in the western equatorial Pacific thermocline is shown to precede 11 of 12 major upturns in the Niño 3.4 index between 1992 and 2008. Observed ITR has up to 9 °C semidiurnal temperature excursions indicating thermocline heave, but is invisible in time resolution longer than one day. It is independent of westerly wind bursts (WWB). A hypothesis is advanced that (1) ITR dissipates vorticity, leading to Pacific countercurrent consolidation (PCC) by reducing the vortex stretching term in Sverdrup balance. The consequence of lost vorticity survives ephemeral ITR events; (2) The specific surface area of countercurrents is reduced by PCC, which reduces frictional opposition to zonal gradient pressure, which triggers eastward advection at El Niño onset; (3) PCC also accelerates transfer of potential energy to the "pycnostad" below the Equatorial Undercurrent. This shoals the equatorial thermocline, leading to a distinct mode of equatorially symmetric La Niña (ESLN) characterized by a winter monsoon cell above a "cold eye" that is separated from the South American continent, as in 1998; (4) Precessional southward intertropical convergence zone migration (ITCZ) is an alternate PCC trigger, but its effect is modulated by obliquity; and (5) ESLN causes global cooling in all timescales by (a) reduced Hadley cell water vapor production when its rising branch is above the cold eye, (b) equatorward shift in southern circumpolar westerlies due to Hadley cell constriction, (c) possible CO2 sequestration by increased EUC iron fertilized export production on the equator, and (d) possible adjacent cloud seeding by biogenic dimethyl sulphide. Surprising coincidences of WWB with perigean eclipses suggest a parallel atmospheric tide influence. Proposed PCC-ESLN forcing operates in multiple timescales, beginning where the annual cycle of strong equinoctial tides coincides with the minimum perigee cycle. This forcing corresponds with El Niño Southern Oscillation (ENSO) events in 1997, 2002, and 2006. Next, extreme central eclipses that perturb perigee-sysygy intervals also correspond with extreme ENSO events, notably in 1877, 1888, and 1982, and a 586 year cycle in the frequency of these eclipses corresponds with known stadial events in the past 4 thousand years. Contrast in the 586 year cycle increases with Earth eccentricity because it is the result of shorter synodic months at aphelion. Longer timescale forcing is by orbital control of the east-central Pacific ITCZ position, yielding a 10 thousand year fast ice sheet melt interval between March and September perihelion. But default ESLN is only interrupted when perihelion in March coincides with rising obliquity. A change in the phase relation between obliquity and precession from 1:2 to 3:5 or 2:5 may therefore explain skipped obliquity cycles after the mid-Pleistocene transition. A secular improvement in eclipse commensurability that parallels Cenozoic cooling is noted.
48

Clarke, Allan J., Stephen Van Gorder, and Giuseppe Colantuono. "Wind Stress Curl and ENSO Discharge/Recharge in the Equatorial Pacific." Journal of Physical Oceanography 37, no. 4 (April 1, 2007): 1077–91. http://dx.doi.org/10.1175/jpo3035.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Discharge and recharge of the warm water volume (WWV) above the 20°C isotherm in an equatorial Pacific Ocean box extending across the Pacific from 156°E to the eastern ocean boundary between latitudes 5°S and 5°N are key variables in ENSO dynamics. A formula linking WWV anomalies, zonally integrated wind stress curl anomalies along the northern and southern edges of the box, and flow into the western end of the box is derived and tested using monthly data since 1993. Consistent with previous work, a WWV balance can only be achieved if the 20°C isotherm surface is not a material surface; that is, warm water can pass through it. For example, during El Niño, part of the WWV anomaly entering the box is cooled so that it is less than 20°C and therefore passes out of the bottom of the box, the 20°C isotherm surface. The observations suggest that the anomalous volume passing through the 20°C isotherm is approximately the same as T ′W, the anomalous WWV entering the western end of the box. Therefore the observed WWV anomaly can be regarded as being driven by the anomalous wind stress curl along the northern and southern edges of the box. The curl anomaly changes the WWV both by divergent meridional flow at the edges of the box and vortex stretching; that is, the Sverdrup balance does not hold in the upper ocean. A typical amplitude for the rate of change of WWV for the 5°S–5°N box is 9.6 Sv (Sv ≡ 106 m3 s−1). The wind stress curl anomaly and the transport anomaly into the western end of the box are highly correlated with the El Niño index Niño-3.4 [the average sea surface temperature anomaly (SSTA) over the region 5°S–5°N, 170°–120°W] and Niño-3.4 leads minus the WWV anomaly by one-quarter of a cycle. Based on the preceding results, a simple discharge/recharge coupled ENSO model is derived. Only water warmer than about 27.5°–28°C can give rise to deep atmospheric convection, so, unlike past discharge/recharge oscillator models, the west-central rather than eastern equatorial SSTAs are emphasized. The model consists of two variables: T ′, the SSTA averaged over the region of strong ENSO air–sea interaction in the west-central Pacific equatorial strip 5°S–5°N, 156°E–140°W and D′, the 20°C isotherm depth anomaly averaged over the same region. As in the observations, T ′ lags D′ by one-quarter of a cycle; that is, ∂T ′/∂t = νD′ for some positive constant ν. Physically, when D′ &gt; 0, the thermocline is deeper and warmer water is entrained through the base of the mixed layer, the anomalous heat flux causing ∂T ′/∂t &gt; 0. Also, when D′ &gt; 0, the eastward current anomaly is greater than zero and warm water is advected into the region, again causing ∂T ′/∂t &gt; 0. Opposite effects occur for D′ &lt; 0. A second relationship between T ′ and D′ results because the water is warm enough that T ′ causes deep atmospheric convection anomalies that drive the wind stress curl anomalies that change the heat storage ∂D′/∂t. The atmosphere responds essentially instantly to the T ′ forcing and the curl causes a discharge of WWV during El Niño (T ′ &gt; 0) and recharge during La Niña (T ′ &lt; 0), so ∂D′/∂t = −μT ′ for some positive constant μ. The two relationships between T ′ and D′ result in a harmonic oscillator with period 2π/νμ ≈ 51 months.
49

Thomas, Leif N., and Callum J. Shakespeare. "A New Mechanism for Mode Water Formation involving Cabbeling and Frontogenetic Strain at Thermohaline Fronts." Journal of Physical Oceanography 45, no. 9 (September 2015): 2444–56. http://dx.doi.org/10.1175/jpo-d-15-0007.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractA simple analytical model is used to elucidate a potential mechanism for steady-state mode water formation at a thermohaline front that involves frontogenesis, submesoscale lateral mixing, and cabbeling. This mechanism is motivated in part by recent observations of an extremely sharp, density-compensated front at the North Wall of the Gulf Stream. Here, the intergyre, along-isopycnal, salinity–temperature difference is compressed into a span of a few kilometers, making the flow susceptible to cabbeling. The sharpness of the front is caused by frontogenetic strain, which is presumably balanced by submesoscale lateral mixing processes. The balance is studied with the simple model, and a scaling is derived for the amount of water mass transformation resulting from the ensuing cabbeling. The transformation scales with the strain rate, equilibrated width of the front, and the square of the isopycnal temperature contrast across the front. At the major ocean fronts where mode waters are found, this isopycnal temperature contrast decreases with increasing density near the isopycnal layers where mode waters reside. This implies that cabbeling should result in a convergent diapycnal mass flux into mode water density classes. The scaling for the transformation suggests that at these fronts the process could generate 0.01–1 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) of mode water. These formation rates, while smaller than mode water formation by air–sea fluxes, should be independent of season and thus could fill select isopycnal layers continuously and play an important role in the dynamics of mode waters on interannual time scales.
50

Pickart, Robert S., Daniel J. Torres, and Paula S. Fratantoni. "The East Greenland Spill Jet*." Journal of Physical Oceanography 35, no. 6 (June 1, 2005): 1037–53. http://dx.doi.org/10.1175/jpo2734.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract High-resolution hydrographic and velocity measurements across the East Greenland shelf break south of Denmark Strait have revealed an intense, narrow current banked against the upper continental slope. This is believed to be the result of dense water cascading over the shelf edge and entraining ambient water. The current has been named the East Greenland Spill Jet. It resides beneath the East Greenland/Irminger Current and transports roughly 2 Sverdrups of water equatorward. Strong vertical mixing occurs during the spilling, although the entrainment farther downstream is minimal. A vorticity analysis reveals that the increase in cyclonic relative vorticity within the jet is partly balanced by tilting vorticity, resulting in a sharp front in potential vorticity reminiscent of the Gulf Stream. The other components of the Irminger Sea boundary current system are described, including a presentation of absolute transports.

До бібліографії