Добірка наукової літератури з теми "Surrogate dynamics"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Surrogate dynamics".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Surrogate dynamics"
Huang, C.-K., Q. Tang, Y. K. Batygin, O. Beznosov, J. Burby, A. Kim, S. Kurennoy, T. Kwan, and H. N. Rakotoarivelo. "Symplectic neural surrogate models for beam dynamics." Journal of Physics: Conference Series 2687, no. 6 (January 1, 2024): 062026. http://dx.doi.org/10.1088/1742-6596/2687/6/062026.
Повний текст джерелаNAKAMURA, TOMOMICHI, and MICHAEL SMALL. "APPLYING THE METHOD OF SMALL–SHUFFLE SURROGATE DATA: TESTING FOR DYNAMICS IN FLUCTUATING DATA WITH TRENDS." International Journal of Bifurcation and Chaos 16, no. 12 (December 2006): 3581–603. http://dx.doi.org/10.1142/s0218127406016999.
Повний текст джерелаKoutsoupakis, Josef, and Dimitrios Giagopoulos. "Drivetrain Response Prediction Using AI-based Surrogate and Multibody Dynamics Model." Machines 11, no. 5 (April 28, 2023): 514. http://dx.doi.org/10.3390/machines11050514.
Повний текст джерелаCharles, Giovanni, Timothy M. Wolock, Peter Winskill, Azra Ghani, Samir Bhatt, and Seth Flaxman. "Seq2Seq Surrogates of Epidemic Models to Facilitate Bayesian Inference." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 12 (June 26, 2023): 14170–77. http://dx.doi.org/10.1609/aaai.v37i12.26658.
Повний текст джерелаChen, Menghui, Xiaoshu Gao, Cheng Chen, Tong Guo, and Weijie Xu. "A Comparative Study of Meta-Modeling for Response Estimation of Stochastic Nonlinear MDOF Systems Using MIMO-NARX Models." Applied Sciences 12, no. 22 (November 14, 2022): 11553. http://dx.doi.org/10.3390/app122211553.
Повний текст джерелаLiu, Shizhong, Ziyao Wang, Jingwen Chen, Rui Xu, and Dong Ming. "The Estimation of Knee Medial Force with Substitution Parameters during Walking and Turning." Sensors 24, no. 17 (August 29, 2024): 5595. http://dx.doi.org/10.3390/s24175595.
Повний текст джерелаGong, Xu, Zhengqi Gu, and Zhenlei Li. "Surrogate model for aerodynamic shape optimization of a tractor-trailer in crosswinds." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 226, no. 10 (May 9, 2012): 1325–39. http://dx.doi.org/10.1177/0954407012442295.
Повний текст джерелаShe, N., and D. Basketfield. "Streamflow dynamics at the Puget Sound, Washington: application of a surrogate data method." Nonlinear Processes in Geophysics 12, no. 4 (May 3, 2005): 461–69. http://dx.doi.org/10.5194/npg-12-461-2005.
Повний текст джерелаGlaz, Bryan, Li Liu, Peretz P. Friedmann, Jeremy Bain, and Lakshmi N. Sankar. "A Surrogate-Based Approach to Reduced-Order Dynamic Stall Modeling." Journal of the American Helicopter Society 57, no. 2 (April 1, 2012): 1–9. http://dx.doi.org/10.4050/jahs.57.022002.
Повний текст джерелаMAKINO, Kohei, Makoto MIWA, Kohei SHINTANI, Atsuji ABE, and Yutaka SASAKI. "Surrogate modeling of vehicle dynamics using deep learning." Proceedings of Design & Systems Conference 2019.29 (2019): 2209. http://dx.doi.org/10.1299/jsmedsd.2019.29.2209.
Повний текст джерелаДисертації з теми "Surrogate dynamics"
Koch, Christiane. "Quantum dissipative dynamics with a surrogate Hamiltonian." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2002. http://dx.doi.org/10.18452/14816.
Повний текст джерелаThis thesis investigates condensed phase quantum systems which interact with their environment and which are subject to ultrashort laser pulses. For such systems the timescales of the involved processes cannot be separated, and standard approaches to treat open quantum systems fail. The Surrogate Hamiltonian method represents one example of a number of new approaches to address quantum dissipative dynamics. Its further development and application to phenomena under current experimental investigation are presented. The single dissipative processes are classified and discussed in the first part of this thesis. In particular, a model of dephasing is introduced into the Surrogate Hamiltonian method. This is of importance for future work in fields such as coherent control and quantum computing. In regard to these subjects, it is a great advantage of the Surrogate Hamiltonian over other available methods that it relies on a spin, i.e. a fully quantum mechanical description of the bath. The Surrogate Hamiltonian method is applied to a standard model of charge transfer in condensed phase, two nonadiabatically coupled harmonic oscillators immersed in a bath. This model is still an oversimplification of, for example, a molecule in solution, but it serves as testing ground for the theoretical description of a prototypical ultrafast pump-probe experiment. All qualitative features of such an experiment are reproduced and shortcomings of previous treatments are identified. Ultrafast experiments attempt to monitor reaction dynamics on a femtosecond timescale. This can be captured particularly well by the Surrogate Hamiltonian as a method based on a time-dependent picture. The combination of the numerical solution of the time-dependent Schrödinger equation with the phase space visualization given by the Wigner function allows for a step by step following of the sequence of events in a charge transfer cycle in a very intuitive way. The utility of the Surrogate Hamiltonian is furthermore significantly enhanced by the incorporation of the Filter Diagonalization method. This allows to obtain frequency domain results from the dynamics which can be converged within the Surrogate Hamiltonian approach only for comparatively short times. The second part of this thesis is concerned with the theoretical treatment of laser induced desorption of small molecules from oxide surfaces. This is an example which allows for a description of all aspects of the problem with the same level of rigor, i.e. ab initio potential energy surfaces are combined with a microscopic model for the excitation and relaxation processes. This model of the interaction between the excited adsorbate-substrate complex and substrate electron-hole pairs relies on a simplified description of the electron-hole pairs as a bath of dipoles, and a dipole-dipole interaction between system and bath. All parameters are connected to results from electronic structure calculations. The obtained desorption probabilities and desorption velocities are simultaneously found to be in the right range as compared to the experimental results. The Surrogate Hamiltonian approach therefore allows for a complete description of the photodesorption dynamics on an ab initio basis for the first time.
Hibbs, Ryan E. "Conformational dynamics of the acetylcholine binding protein, a Nicotinic receptor surrogate." Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2006. http://wwwlib.umi.com/cr/ucsd/fullcit?p3237010.
Повний текст джерелаTitle from first page of PDF file (viewed December 8, 2006). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references.
Conradie, Tanja. "Modelling of nonlinear dynamic systems : using surrogate data methods." Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/51834.
Повний текст джерелаENGLISH ABSTRACT: This study examined nonlinear modelling techniques as applied to dynamic systems, paying specific attention to the Method of Surrogate Data and its possibilities. Within the field of nonlinear modelling, we examined the following areas of study: attractor reconstruction, general model building techniques, cost functions, description length, and a specific modelling methodology. The Method of Surrogate Data was initially applied in a more conventional application, i.e. testing a time series for nonlinear, dynamic structure. Thereafter, it was used in a less conventional application; i.e. testing the residual vectors of a nonlinear model for membership of identically and independently distributed (i.i.d) noise. The importance of the initial surrogate analysis of a time series (determining whether the apparent structure of the time series is due to nonlinear, possibly chaotic behaviour) was illustrated. This study confrrmed that omitting this crucial step could lead to a flawed conclusion. If evidence of nonlinear structure in the time series was identified, a radial basis model was constructed, using sophisticated software based on a specific modelling methodology. The model is an iterative algorithm using minimum description length as the stop criterion. The residual vectors of the models generated by the algorithm, were tested for membership of the dynamic class described as i.i.d noise. The results of this surrogate analysis illustrated that, as the model captures more of the underlying dynamics of the system (description length decreases), the residual vector resembles Li.d noise. It also verified that the minimum description length criterion leads to models that capture the underlying dynamics of the time series, with the residual vector resembling Li.d noise. In the case of the "worst" model (largest description length), the residual vector could be distinguished from Li.d noise, confirming that it is not the "best" model. The residual vector of the "best" model (smallest description length), resembled Li.d noise, confirming that the minimum description length criterion selects a model that captures the underlying dynamics of the time series. These applications were illustrated through analysis and modelling of three time series: a time series generated by the Lorenz equations, a time series generated by electroencephalograhpic signal (EEG), and a series representing the percentage change in the daily closing price of the S&P500 index.
AFRIKAANSE OPSOMMING: In hierdie studie ondersoek ons nie-lineere modelleringstegnieke soos toegepas op dinamiese sisteme. Spesifieke aandag word geskenk aan die Metode van Surrogaat Data en die moontlikhede van hierdie metode. Binne die veld van nie-lineere modellering het ons die volgende terreine ondersoek: attraktor rekonstruksie, algemene modelleringstegnieke, kostefunksies, beskrywingslengte, en 'n spesifieke modelleringsalgoritme. Die Metode and Surrogaat Data is eerstens vir 'n meer algemene toepassing gebruik wat die gekose tydsreeks vir aanduidings van nie-lineere, dimanise struktuur toets. Tweedens, is dit vir 'n minder algemene toepassing gebruik wat die residuvektore van 'n nie-lineere model toets vir lidmaatskap van identiese en onafhanlike verspreide geraas. Die studie illustreer die noodsaaklikheid van die aanvanklike surrogaat analise van 'n tydsreeks, wat bepaal of die struktuur van die tydsreeks toegeskryf kan word aan nie-lineere, dalk chaotiese gedrag. Ons bevesting dat die weglating van hierdie analise tot foutiewelike resultate kan lei. Indien bewyse van nie-lineere gedrag in die tydsreeks gevind is, is 'n model van radiale basisfunksies gebou, deur gebruik te maak van gesofistikeerde programmatuur gebaseer op 'n spesifieke modelleringsmetodologie. Dit is 'n iteratiewe algoritme wat minimum beskrywingslengte as die termineringsmaatstaf gebruik. Die model se residuvektore is getoets vir lidmaatskap van die dinamiese klas wat as identiese en onafhanlike verspreide geraas bekend staan. Die studie verifieer dat die minimum beskrywingslengte as termineringsmaatstaf weI aanleiding tot modelle wat die onderliggende dinamika van die tydsreeks vasvang, met die ooreenstemmende residuvektor wat nie onderskei kan word van indentiese en onafhanklike verspreide geraas nie. In die geval van die "swakste" model (grootse beskrywingslengte), het die surrogaat analise gefaal omrede die residuvektor van indentiese en onafhanklike verspreide geraas onderskei kon word. Die residuvektor van die "beste" model (kleinste beskrywingslengte), kon nie van indentiese en onafhanklike verspreide geraas onderskei word nie en bevestig ons aanname. Hierdie toepassings is aan die hand van drie tydsreekse geillustreer: 'n tydsreeks wat deur die Lorenz vergelykings gegenereer is, 'n tydsreeks wat 'n elektroenkefalogram voorstel en derdens, 'n tydsreeks wat die persentasie verandering van die S&P500 indeks se daaglikse sluitingsprys voorstel.
Millard, Daniel C. "Identification and control of neural circuit dynamics for natural and surrogate inputs in-vivo." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53405.
Повний текст джерелаSegee, Molly Catherine. "Surrogate Models for Transonic Aerodynamics for Multidisciplinary Design Optimization." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/71321.
Повний текст джерелаMaster of Science
Minsavage, Kaitlyn Emily. "Neural Networks as Surrogates for Computational Fluid Dynamics Predictions of Hypersonic Flows." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1610017352981371.
Повний текст джерелаLagerstrom, Tiffany. "All in the Family: The Role of Sibling Relationships as Surrogate Attachment Figures." Scholarship @ Claremont, 2018. http://scholarship.claremont.edu/scripps_theses/1138.
Повний текст джерелаBrouwer, Kirk Rowse. "Enhancement of CFD Surrogate Approaches for Thermo-Structural Response Prediction in High-Speed Flows." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1543340520905498.
Повний текст джерелаSadet, Jérémy. "Surrogate models for the analysis of friction induced vibrations under uncertainty." Electronic Thesis or Diss., Valenciennes, Université Polytechnique Hauts-de-France, 2022. http://www.theses.fr/2022UPHF0014.
Повний текст джерелаThe automotive squeal is a noise disturbance, which has won the interest of the research and industrialists over the year. This elusive phenomenon, perceived by the vehicle purchasers as a poor-quality indicator, causes a cost which becomes more and more important for the car manufacturers, due to client’s claims. Thus, it is all the more important to propose and develop methods allowing predicting the occurring of this noise disturbance with efficiency, thanks to numerical simulations. Hence, this thesis proposes to pursue the recent works that showed the certain contributions of an integration of uncertainties into the squeal numerical simulations. The objective is to suggest a strategy of uncertainty propagation, for squeal simulations, maintaining numerical cost acceptable (especially, for pre-design phases). Several numerical methods are evaluated and improved to allow precise computations and with computational time compatible with the constraints of the industry. After positioning this thesis work with respect to the progress of the researchers working on the squeal subject, a new numerical method is proposed to improve the computation of the eigensolutions of a large quadratic eigenvalue problem. To reduce the numerical cost of such studies, three surrogate models (gaussian process, deep gaussian process and deep neural network) are studied and compared to suggest the optimal strategy in terms of methodology or model setting. The construction of the training set is a key aspect to insure the predictions of these surrogate models. A new optimisation strategy, hinging on bayesian optimisation, is proposed to efficiently target the samples of the training set, samples which are probably expensive to compute from a numerical point of view. These optimisation methods are then used to present a new uncertainty propagation method, relying on a fuzzy set modelisation
Taheri, Mehdi. "Machine Learning from Computer Simulations with Applications in Rail Vehicle Dynamics and System Identification." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/81417.
Повний текст джерелаPh. D.
Книги з теми "Surrogate dynamics"
T, Patera Anthony, and Langley Research Center, eds. Surrogates for numerical simulations, optimization of eddy-promoter heat exchanges. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Знайти повний текст джерелаRiches, D. Analysis and evaluation of different types of test surrogate employed in the dynamic performance testing of fall-arrest equipment. Sudbury: HSE Books, 2002.
Знайти повний текст джерелаHuffaker, Ray, Marco Bittelli, and Rodolfo Rosa. Entropy and Surrogate Testing. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198782933.003.0005.
Повний текст джерелаMajumdar, Anindita. Transnational Commercial Surrogacy and the (Un)Making of Kin in India. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199474363.001.0001.
Повний текст джерелаHuffaker, Ray, Marco Bittelli, and Rodolfo Rosa. Data Preprocessing. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198782933.003.0006.
Повний текст джерелаMcAuley, Danny F., and Thelma Rose Craig. Measurement of extravascular lung water in the ICU. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0140.
Повний текст джерелаЧастини книг з теми "Surrogate dynamics"
Husain, Afzal, and Kwang-Yong Kim. "Optimization of Ribbed Microchannel Heat Sink Using Surrogate Analysis." In Computational Fluid Dynamics 2008, 529–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01273-0_69.
Повний текст джерелаParipovic, Jelena, and Patricia Davies. "Characterizing the Dynamics of Systems Incorporating Surrogate Energetic Materials." In Special Topics in Structural Dynamics, Volume 6, 101–9. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29910-5_10.
Повний текст джерелаChiambaretto, Pierre-Louis, Miguel Charlotte, Joseph Morlier, Philippe Villedieu, and Yves Gourinat. "Surrogate Granular Materials for Modal Test of Fluid Filled Tanks." In Special Topics in Structural Dynamics, Volume 6, 139–46. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29910-5_14.
Повний текст джерелаTaflanidis, Alexandros A., Jize Zhang, and Dimitris Patsialis. "Applications of Reduced Order and Surrogate Modeling in Structural Dynamics." In Model Validation and Uncertainty Quantification, Volume 3, 297–99. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12075-7_35.
Повний текст джерелаKůdela, Jakub, and Ladislav Dobrovský. "Performance Comparison of Surrogate-Assisted Evolutionary Algorithms on Computational Fluid Dynamics Problems." In Lecture Notes in Computer Science, 303–21. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-70068-2_19.
Повний текст джерелаSipponen, P., O. Suovaniemi, and M. Härkönen. "The role of pepsinogen assays as surrogate markers of gastritis dynamics in population studies." In Helicobactor pylori, 127–32. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-1763-2_12.
Повний текст джерелаDenimal, E., L. Nechak, J. J. Sinou, and S. Nacivet. "A New Surrogate Modeling Method Associating Generalized Polynomial Chaos Expansion and Kriging for Mechanical Systems Subjected to Friction-Induced Vibration." In Special Topics in Structural Dynamics, Volume 6, 17–23. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53841-9_2.
Повний текст джерелаMorales, Xabier, Jordi Mill, Kristine A. Juhl, Andy Olivares, Guillermo Jimenez-Perez, Rasmus R. Paulsen, and Oscar Camara. "Deep Learning Surrogate of Computational Fluid Dynamics for Thrombus Formation Risk in the Left Atrial Appendage." In Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges, 157–66. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39074-7_17.
Повний текст джерелаAumann, Quirin, Peter Benner, Jens Saak, and Julia Vettermann. "Model Order Reduction Strategies for the Computation of Compact Machine Tool Models." In Lecture Notes in Production Engineering, 132–45. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-34486-2_10.
Повний текст джерелаSmith, Jonathan R. "Surrogate Aerodynamics Modeling Applied to Surrogate Structural Dynamical Systems." In Model Validation and Uncertainty Quantification, Volume 3, 189–92. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-37003-8_30.
Повний текст джерелаТези доповідей конференцій з теми "Surrogate dynamics"
LENGEL, RUSSELL, and JEFFREY LINDER. "The use of rubidium as a surrogate for potassium in combustion system imaging." In 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-1547.
Повний текст джерелаBoopathy, Komahan, and Markus P. Rumpfkeil. "A Multivariate Interpolation and Regression Enhanced Kriging Surrogate Model." In 21st AIAA Computational Fluid Dynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-2964.
Повний текст джерелаChoze, Sergio, and Felipe A. Viana. "Simple and inexpensive algorithm for surrogate filtering." In 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-0139.
Повний текст джерелаLeifsson, Leifur, and Slawomir Koziel. "Surrogate-Based Shape Optimization of Low-Speed Wind Tunnel Contractions." In 42nd AIAA Fluid Dynamics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-3344.
Повний текст джерелаBeyhaghi, Pooriya, Daniele Cavaglieri, and Thomas Bewley. "Delaunay-based Derivative-free Optimization via Global Surrogate, Part 1: Theory." In 21st AIAA Computational Fluid Dynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-2707.
Повний текст джерелаPark, Chanyoung, Raphael T. Haftka, and Nam Ho Kim. "Simple Alternative to Bayesian Multi-Fidelity Surrogate Framework." In 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-0135.
Повний текст джерелаChowdhury, Souma, Ali Mehmani, Weiyang Tong, and Achille Messac. "Adaptive Model Refinement in Surrogate-based Multiobjective Optimization." In 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-0417.
Повний текст джерелаTrizila, Patrick, Chang-Kwon Kang, Miguel Visbal, and Wei Shyy. "Unsteady Fluid Physics and Surrogate Modeling of Low Reynolds Number, Flapping Airfoils." In 38th Fluid Dynamics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-3821.
Повний текст джерелаPyle, James, Mozhgan Kabiri Chimeh, and Paul Richmond. "Surrogate Modelling for Efficient Discovery of Emergent Population Dynamics." In 2019 International Conference on High Performance Computing & Simulation (HPCS). IEEE, 2019. http://dx.doi.org/10.1109/hpcs48598.2019.9188208.
Повний текст джерелаViana, Felipe, and Raphael Haftka. "Importing Uncertainty Estimates from One Surrogate to Another." In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-2237.
Повний текст джерелаЗвіти організацій з теми "Surrogate dynamics"
Meidani, Hadi, and Amir Kazemi. Data-Driven Computational Fluid Dynamics Model for Predicting Drag Forces on Truck Platoons. Illinois Center for Transportation, November 2021. http://dx.doi.org/10.36501/0197-9191/21-036.
Повний текст джерелаElliott, J. Hydra modeling of experiments to study ICF capsule fill hole dynamics using surrogate targets. Office of Scientific and Technical Information (OSTI), August 2007. http://dx.doi.org/10.2172/925990.
Повний текст джерелаTorres, Marissa, Michael-Angelo Lam, and Matt Malej. Practical guidance for numerical modeling in FUNWAVE-TVD. Engineer Research and Development Center (U.S.), October 2022. http://dx.doi.org/10.21079/11681/45641.
Повний текст джерелаHarris and Edlund. L51766 Instantaneous Rotational Velocity Development. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), May 1997. http://dx.doi.org/10.55274/r0010119.
Повний текст джерелаBailey Bond, Robert, Pu Ren, James Fong, Hao Sun, and Jerome F. Hajjar. Physics-informed Machine Learning Framework for Seismic Fragility Analysis of Steel Structures. Northeastern University, August 2024. http://dx.doi.org/10.17760/d20680141.
Повний текст джерела