Добірка наукової літератури з теми "Surfaces non orientables"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Surfaces non orientables".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Surfaces non orientables"
Oliveira, M. Elisa G. G., and Eric Toubiana. "Surfaces non-orientables de genre deux." Boletim da Sociedade Brasileira de Matem�tica 24, no. 1 (March 1993): 63–88. http://dx.doi.org/10.1007/bf01231696.
Повний текст джерелаToubiana, E. "Surfaces minimales non orientables de genre quelconque." Bulletin de la Société mathématique de France 121, no. 2 (1993): 183–95. http://dx.doi.org/10.24033/bsmf.2206.
Повний текст джерелаBhowmik, Debashis, Dipendu Maity, and Eduardo Brandani Da Silva. "Surface codes and color codes associated with non-orientable surfaces." Quantum Information and Computation 21, no. 13&14 (September 2021): 1135–53. http://dx.doi.org/10.26421/qic21.13-14-4.
Повний текст джерелаNAKAMURA, GOU. "COMPACT NON-ORIENTABLE SURFACES OF GENUS 5 WITH EXTREMAL METRIC DISCS." Glasgow Mathematical Journal 54, no. 2 (December 12, 2011): 273–81. http://dx.doi.org/10.1017/s0017089511000589.
Повний текст джерелаYurttaş, S. Öykü. "Curves on Non-Orientable Surfaces and Crosscap Transpositions." Mathematics 10, no. 9 (April 28, 2022): 1476. http://dx.doi.org/10.3390/math10091476.
Повний текст джерелаSabloff, Joshua. "On a refinement of the non-orientable 4-genus of Torus knots." Proceedings of the American Mathematical Society, Series B 10, no. 22 (June 21, 2023): 242–51. http://dx.doi.org/10.1090/bproc/166.
Повний текст джерелаGastesi, Pablo Arés. "Some results on Teichmüller spaces of Klein surfaces." Glasgow Mathematical Journal 39, no. 1 (January 1997): 65–76. http://dx.doi.org/10.1017/s001708950003192x.
Повний текст джерелаNowik, Tahl. "Immersions of non-orientable surfaces." Topology and its Applications 154, no. 9 (May 2007): 1881–93. http://dx.doi.org/10.1016/j.topol.2007.02.007.
Повний текст джерелаMaloney, Alexander, and Simon F. Ross. "Holography on non-orientable surfaces." Classical and Quantum Gravity 33, no. 18 (August 22, 2016): 185006. http://dx.doi.org/10.1088/0264-9381/33/18/185006.
Повний текст джерелаGoulden, Ian P., Jin Ho Kwak, and Jaeun Lee. "Enumerating branched orientable surface coverings over a non-orientable surface." Discrete Mathematics 303, no. 1-3 (November 2005): 42–55. http://dx.doi.org/10.1016/j.disc.2003.10.030.
Повний текст джерелаДисертації з теми "Surfaces non orientables"
Borianne, Philippe. "Conception d'un modeleur de subdivisions de surfaces orientables ou non orientables, avec ou sans bord." Université Louis Pasteur (Strasbourg) (1971-2008), 1991. http://www.theses.fr/1991STR13104.
Повний текст джерелаPalesi, Frédéric. "Dynamique sur les espaces de représentations de surfaces non-orientables." Phd thesis, Grenoble 1, 2009. http://www.theses.fr/2009GRE10317.
Повний текст джерелаWe consider the space of representations Hom(Pi,G) of a surface group Pi into a Lie group G, and the moduli space X(Pi,G) of G-conjugacy classes of such representations. These spaces admit a natural action of the mapping class group of the underlying surface S, and this actions displays very rich dynamics depending on the choice of the Lie group G, and on the connected component of the space that we consider. In this thesis, we focus on the case when S is a non-orientable surface. In the rst part, we study the dynamical properties of the mapping class group actions on the moduli space X(Pi,SU(2)) and prove that this action is ergodic when the Euler characteristic of the surface is less than -1 with respect to a natural measure on the space. In the second part, we show that the representation space Hom (Pi , PSL(2,R)) has two connected components indexed by a Stiefel-Whitney class
Palesi, Frédéric. "Dynamique sur les espaces de représentations de surfaces non-orientables." Phd thesis, Université Joseph Fourier (Grenoble), 2009. http://tel.archives-ouvertes.fr/tel-00443930.
Повний текст джерелаSaint-Criq, Anthony. "Involutions et courbes flexibles réelles sur des surfaces complexes." Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSES087.
Повний текст джерелаThe first part of Hilbert's sixteenth problem deals with the topology of non-singular real plane algebraic curves in the projective plane. As well-known, many topological properties of such curves are shared with the wider class of flexible curves, introduced by O. Viro in 1984. The goal of this thesis is to further investigate the topological origins of the restrictions on real curves in connection with Hilbert's sixteenth problem. We add a natural condition to the definition of flexible curves, namely that they shall intersect an empty real conic Q like algebraic curves do, i.e. all intersections are positive. We see CP(2) as a cylinder over a lens space L(4,1)×R which is compactified by adding RP(2) and Q respectively to the ends, and we use the induced decomposition of S(4)=CP(2)/conj. It is a standard fact that Arnold's surface plays an essential role in the study of curves of even degree. We introduce an analogue of this surface for curves of odd degree. We generalize the notion of flexible curves further to include non-orientable surfaces as well. We say that a flexible curve is of degree m if its self-intersection is m² and it intersects the conic Q transversely in exactly 2m points. Our main result states that for a not necessarily orientable curve of odd degree 2k+1, its number of non-empty ovals is no larger than χ(F)/2-k²+k+1, where χ(F) is the Euler characteristic of F. This upper bound simplifies to k² in the case of a usual flexible curve. We also generalize our result for flexible curves on quadrics, which provides a new restriction, even for algebraic curves. In the introductory chapters, a thorough survey of the classical theory of real plane curves is outlined, both from the real and the complex points of view. Some results regarding the theory of knotted surfaces in 4-manifolds are laid down. More specifically, we review statements involving the Euler class of normal bundles of embedded surfaces. This eventually leads us to consider the non-orientable genus function of a 4-manifold. This forms a non-orientable counterpart of the Thom conjecture, proved by Kronheimer and Mrowka in 1994 in the orientable case. We almost entirely compute this function in the case of CP(2), and we investigate that function on other 4-manifolds. Finally, we digress around the new notion of non-orientable flexible curves, where we survey which known results still hold in that setting. We also focus on algebraic and flexible curves invariant under a holomorphic involution of CP(2), a smaller class of curves introduced by T. Fiedler and called symmetric curves. We give a state of the art, and we formulate a collection of small results results regarding the position of a symmetric plane curve with respect to the elements of symmetry. We also propose a possible approach to generalize Fiedler's congruence p-n≡k² [16], holding for symmetric M-curves of even degree 2k, into one for symmetric (M-1)-curves of even degree
Wilson, Jonathan Michael. "Cluster structures on triangulated non-orientable surfaces." Thesis, Durham University, 2017. http://etheses.dur.ac.uk/12167/.
Повний текст джерелаJuer, Rosalinda. "1 + 1 dimensional cobordism categories and invertible TQFT for Klein surfaces." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:b9a8fc3b-4abd-49a1-b47c-c33f919a95ef.
Повний текст джерелаКниги з теми "Surfaces non orientables"
Forstneric, Franc, Antonio Alarcon, and Francisco J. Lopez. New Complex Analytic Methods in the Study of Non-Orientable Minimal Surfaces in $ Mathbb {R}^n$. American Mathematical Society, 2020.
Знайти повний текст джерелаЧастини книг з теми "Surfaces non orientables"
Marar, Ton. "Non-orientable Surfaces." In A Ludic Journey into Geometric Topology, 83–95. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07442-4_6.
Повний текст джерелаBrézin, Edouard, and Shinobu Hikami. "Non-orientable Surfaces from Lie Algebras." In Random Matrix Theory with an External Source, 113–21. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-3316-2_9.
Повний текст джерелаBarza, Ilie, and Dorin Ghisa. "Lie Groups Actions on Non Orientable Klein Surfaces." In Springer Proceedings in Mathematics & Statistics, 421–28. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7775-8_33.
Повний текст джерелаWu, Siye. "Quantization of Hitchin’s Moduli Space of a Non-orientable Surface." In Trends in Mathematics, 343–63. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31756-4_27.
Повний текст джерелаBujalance, Emilio, J. A. Bujalance, G. Gromadzki, and E. Martinez. "The groups of automorphisms of non-orientable hyperelliptic klein surfaces without boundary." In Groups — Korea 1988, 43–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0086238.
Повний текст джерелаKochol, Martin. "3-Regular Non 3-Edge-Colorable Graphs with Polyhedral Embeddings in Orientable Surfaces." In Graph Drawing, 319–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00219-9_31.
Повний текст джерела"Non-orientable Surfaces." In How Surfaces Intersect in Space, 45–78. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789812796219_0002.
Повний текст джерела"Non-orientable Surfaces." In How Surfaces Intersect in Space, 47–81. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789812796400_0002.
Повний текст джерелаBeineke, Lowell W. "Topology." In Graph Connections, 155–75. Oxford University PressOxford, 1997. http://dx.doi.org/10.1093/oso/9780198514978.003.0011.
Повний текст джерелаEarl, Richard. "2. Making surfaces." In Topology: A Very Short Introduction, 24–47. Oxford University Press, 2019. http://dx.doi.org/10.1093/actrade/9780198832683.003.0002.
Повний текст джерелаТези доповідей конференцій з теми "Surfaces non orientables"
Wu, Siye. "Testing $S$-duality with non-orientable surfaces." In The 39th International Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.340.0505.
Повний текст джерелаIzquierdo, M., and D. Singerman. "On the fixed-point set of automorphisms of non-orientable surfaces without boundary." In Conference in honour of David Epstein's 60th birthday. Mathematical Sciences Publishers, 1998. http://dx.doi.org/10.2140/gtm.1998.1.295.
Повний текст джерелаKutz, Martin. "Computing shortest non-trivial cycles on orientable surfaces of bounded genus in almost linear time." In the twenty-second annual symposium. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1137856.1137919.
Повний текст джерела