Дисертації з теми "Surface mode oscillations"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Surface mode oscillations.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-21 дисертацій для дослідження на тему "Surface mode oscillations".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Cleve, Sarah. "Microstreaming induced in the vicinity of an acoustically excited, nonspherically oscillating microbubble." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEC028/document.

Повний текст джерела
Анотація:
Des bulles micrométriques sont utilisées dans divers domaines, notamment dans des applications médicales basées sur les ultrasons. Il est possible d’exploiter différents effets des bulles, comme par exemple leur résonance acoustique ou leur effet destructeur en cavitation inertielle. Un autre mécanisme exploitable est la génération de micro-écoulements, appelé microstreaming, induits autour d’une bulle. Ces écoulements sont relativement lents par rapport aux oscillations rapides de la bulle. Le microstreaming et les contraintes de cisaillement associées jouent un rôle important dans la perméabilisation d’une membrane cellulaire, mais il manque encore une compréhension détaillée de l’écoulement induit. Afin d’améliorer la compréhension des phénomènes physiques, ce travail se concentre sur les écoulements induits autour d’une bulle d’air dans piégée et excitée acoustiquement dans de l’eau et oscillante en modes de surface. La partie expérimentale se décompose de deux étapes. Dans un premier temps, il est nécessaire de contrôler la dynamique de la bulle, en particulier ses modes de surface et son orientation. Ceci est réalisé par coalescence entre deux bulles. Dans un second temps, le microstreaming est généré et enregistré simultanément à la dynamique de bulle. De cette manière il est possible de corréler les motifs d'écoulement aux oscillations de la bulle. Le grand nombre de motifs obtenus peut être classé selon le mode dominant et la taille de la bulle. Une étude plus détaillée de la dynamique de bulle permet de déduire les paramètres importants qui mènent à une telle variété de motifs de microstreaming. Afin de confirmer les résultats expérimentaux, un modèle analytique a été développé. Il est basé sur les équations de la mécanique des fluides de deuxième ordre et moyennées en temps, la dynamique d'interface de la bulle obtenue expérimentalement sert de donnée d’entrée au modèle. Ce manuscrit contient en supplément une section sur la génération de microjets par l'implosion d'agents de contraste. Ces jets peuvent apparaître en cas d’excitation acoustique suffisamment élevée. L’impact de ces jets sur parois présente un autre mécanisme responsable de la perméabilisation de membranes cellulaires
Microbubbles find use in several domains, one of them being medical ultrasound applications. Different characteristics of those bubbles such as their acoustic resonance or their destructive effect during inertial cavitation can be exploited. Another phenomenon induced around acoustically excited bubbles is microstreaming, that means a relatively slow mean flow with respect to the fast bubble oscillations. Microstreaming and its associated shear stresses are commonly agreed to play a role in the permeabilization of cell membranes, a detailed understanding of the induced flows is however missing. To acquire basic physical knowledge, this work focuses on the characterization of streaming induced around an air bubble in water, more precisely around a single acoustically trapped and excited, nonspherically oscillating bubble. The experimental part consists of two steps. First, the bubble dynamics, in particular the triggered shape mode and the orientation of the bubble have to be controlled. For this, the use of bubble coalescence proves to be an adequate method. In a second step, the microstreaming is recorded in parallel to bubble dynamics. This allows to correlate the obtained streaming patterns to the respective shape oscillations. The large number of obtained pattern types can be classified, in particular with respect to the mode number and bubble size. A close investigation of the bubble dynamics allows furthermore deducing the important physical mechanisms which lead to such a variety of streaming patterns. In order to confirm the experimental findings, an analytical model has been developed. It is based upon time-averaged second-order fluid mechanics equations and the experimentally obtained bubble dynamics serves as input parameters. Supplementary to the microstreaming work, this manuscript contains a short section on directed jetting of contrast agent microbubbles, which might appear at high acoustic driving. The impact of those microjets on cell membranes presents another mechanism made responsible for the permeabilization of cell membranes
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chen, Chia-Jeng. "Hydro-climatic forecasting using sea surface temperatures." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/48974.

Повний текст джерела
Анотація:
A key determinant of atmospheric circulation patterns and regional climatic conditions is sea surface temperature (SST). This has been the motivation for the development of various teleconnection methods aiming to forecast hydro-climatic variables. Among such methods are linear projections based on teleconnection gross indices (such as the ENSO, IOD, and NAO) or leading empirical orthogonal functions (EOFs). However, these methods deteriorate drastically if the predefined indices or EOFs cannot account for climatic variability in the region of interest. This study introduces a new hydro-climatic forecasting method that identifies SST predictors in the form of dipole structures. An SST dipole that mimics major teleconnection patterns is defined as a function of average SST anomalies over two oceanic areas of appropriate sizes and geographic locations. The screening process of SST-dipole predictors is based on an optimization algorithm that sifts through all possible dipole configurations (with progressively refined data resolutions) and identifies dipoles with the strongest teleconnection to the external hydro-climatic series. The strength of the teleconnection is measured by the Gerrity Skill Score. The significant dipoles are cross-validated and used to generate ensemble hydro-climatic forecasts. The dipole teleconnection method is applied to the forecasting of seasonal precipitation over the southeastern US and East Africa, and the forecasting of streamflow-related variables in the Yangtze and Congo Rivers. These studies show that the new method is indeed able to identify dipoles related to well-known patterns (e.g., ENSO and IOD) as well as to quantify more prominent predictor-predictand relationships at different lead times. Furthermore, the dipole method compares favorably with existing statistical forecasting schemes. An operational forecasting framework to support better water resources management through coupling with detailed hydrologic and water resources models is also demonstrated.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Achlan, Moustafa. "Surface Plasmon Polariton and Wave Guide Modes in a Six Layer Thin Film Stack." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS109.

Повний текст джерела
Анотація:
Dans cette thèse, nous étudions les propriétés optiques d'un système multicouche (air-Au-SiO₂-Au-Ti-verre). Les interfaces sont planes et la modélisation est réalisée en utilisant les coefficients de Fresnel à l'interface et la propagation d'ondes planes dans les couches. Deux modèles sont utilisés où l'échantillon est : i) excité par une source à l'infini ; ii) excité par une source locale. Dans l'expérience que nous avons modélisée l'empilement est excité par les électrons tunnel inélastiques dans un microscope à effet tunnel (STM). Dans le modèle, le courant tunnel inélastique est remplacé par un dipôle oscillant vertical. En utilisant ces modèles, nous avons calculé les flux réfléchis (reflectance) et transmis (transmittance) d'une source de lumière à l'infini et le flux transmis de l'excitation locale. La reflectance, transmittance et le flux transmis montrent des modes plasmoniques (surface plasmon polaritons (SPP)) et photoniques (guide d'onde (WG)). A des longueurs d'onde particulières, les courbes de dispersion des SPP et WG présentent un croisement évité. Le choix des épaisseurs d'or et de silice a deux contraintes: une amplitude importante des observables et une large dépendance en longueurs d'onde du vecteur d'onde dans le plan. Nous étudions aussi l'influence des épaisseurs sur les observables. Nous avons trouvé que les observables ont des amplitudes importantes à pour une épaisseur d'or de [10, 90 nm] pour l'empilement de trois couches et de [10, 50 nm] pour celui de six couches. Les modes de guide d'onde apparaissent pour une épaisseur de la couche de silice de >190 nm. Afin de caractériser la localisation du champ dans l'empilement et déterminer la nature du mode, nous avons calculé le champ électrique en fonction de la coordonnée de pénétration z. Nous avons trouvé que pour le mode SPP le champ est localisé à l'interface Au-air, tandis que le champ électrique du guide d'onde est confiné dans la couche de silice. Les résultats théoriques présentés sont en bon accord avec les résultats des études expérimentales menées dans notre groupe
In this thesis, we investigate the optical properties of a six-layer stack (air-Au-SiO₂-Au-Ti-glass). The interfaces are flat and the modeling is performed using elementary Fresnel expressions at the interface and plane wave propagation in the layers. Two models are used where the sample is: i) excited by a source at infinity (excitation by source at infinity (ESI)); ii) excited by a local source. In the experiments we are modeling this source consists of the inelastic tunneling electrons from a scanning tunneling microscope (STM). In our modeling this source is replaced by a vertical oscillating dipole. Using these two models one calculates the reflected (reflectance) and the transmitted (transmittance) flux from a source at infinity and the transmitted flux of a local source. Surface plasmon polariton (SPP) and wave guide (WG) modes may be identified in the reflectance, transmittance and transmitted flux. In a particular wavelength domain the SPP and WG repel each other giving rise to an avoided crossing. The choice of the gold (Au) and silica (SiO₂) thicknesses of the six-layer stack is guided by two requirements: high amplitude of the observable and wide wavelength dependence of the in-plane wave vector. We also study the influence of the gold and silica thicknesses on the observables. We find that the observables are significant for dAu[10, 90 nm] for the three and dAu[10, 50 nm] for six layer stacks and this predictive study guided the choice of the experimental sample thicknesses. The wave guide mode appears for dSiO₂ >190 nm. The electric field as a function of the penetration coordinate z is calculated in order to characterize the location of the field in the stack and to assign the nature of the modes. We observe that for the SPP the electric field is confined at the Au-air interface whereas, the electric fields corresponding to the WG mode are confined inside SiO₂ layer. Our calculations presented in this work are in good agreement with the experimental measurements performed in our group
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chen, Lihui. "Synthesis and Plasmonic Properties of Copper-based Nanocrystals." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/217134.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Maliniemi, V. (Ville). "Observations of solar wind related climate effects in the Northern Hemisphere winter." Doctoral thesis, University of Oulu, 2016. http://urn.fi/urn:isbn:9789526213545.

Повний текст джерела
Анотація:
Abstract This thesis studies the long-term relation between the solar wind driven energetic particle forcing into the atmosphere and the tropospheric circulation in the Northern Hemisphere winter. The work covers the period of more than one hundred years since the turn of the 20th century to present. The thesis makes a statistical analysis of satellite measurements of precipitating energetic electrons, sunspot number data and geomagnetic activity, and compares them with temperature and pressure measurements made at the Earth's surface. Recent results, both observational and from chemistry climate models, have indicated significant effects in the Earth's middle atmosphere due to the energetic electrons precipitating from the magnetosphere. These effects include the formation of reactive hydrogen and nitrogen oxides in the high latitude mesosphere and the depletion of ozone caused by them. Ozone is a radiatively active and important gas, which affects the thermal structure and dynamics of the middle atmosphere. Accordingly, the depletion of ozone can intensify the large scale stratospheric circulation pattern called the polar vortex. Winter weather conditions on the surface have been shown to be dependent on the polar vortex strength. This thesis shows that there is a significant relation between the average fluxes of medium energy (ten to hundred keVs) precipitating electrons and surface temperatures in parts of the Northern Hemisphere in winter time. Temperatures are positively correlated with electron fluxes in North Eurasia and negatively correlated in Greenland during the period 1980-2010 which is covered by direct satellite observations of precipitating particles. This difference is especially notable when major sudden stratospheric warmings and the quasi-biennial oscillation (QBO), which both are known to affect the polar vortex strength, are taken into account. When extended to the late 19th century, the analysis shows that a similar temperature pattern is predominated during the declining phase of the sunspot cycle. The high speed solar wind streams and energetic particle precipitation typically maximize also at the declining phase of the solar cycle. This specific temperature pattern is related to the variability of the northern annular mode (NAM), which is the most significant circulation pattern in the Northern Hemisphere winter. Before the space era, geomagnetic activity measured by ground observations can be used as a proxy for energetic particle precipitation. Earlier studies have found a significant positive correlation between geomagnetic activity and NAM since the 1960s. We find that, when the QBO measured at 30 hPa height is in the easterly phase, a positive correlation is extended to the beginning of 1900s. We also show that high geomagnetic activity causes a stronger effect in the Northern Hemisphere winter than high sunspot activity, especially in the Atlantic and Eurasia. A comprehensive knowledge of the Earth's climate system and all its drivers is crucial for the future projection of climate. Solar variability effects have been estimated to produce only a small factor to the global climate change. However, there is increasing evidence, including the results presented in this thesis, that the different forms of solar variability can have a substantial effect to regional and seasonal climate variability. With this new evidence, the solar wind related particle effects in the atmosphere are now gaining increasing attention. These effects will soon be included in the next coupled model inter comparison project (CMIP6) as an additional solar related climate effect. This emphasizes the relevance of this thesis.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Awo, Founi Mesmin. "Modes interannnuels de la variabilité climatique de l'Atlantique tropical, dynamiques oscillatoires et signatures en salinité de surface de la mer." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30171/document.

Повний текст джерела
Анотація:
Dans cette thèse, nous avons abordé plusieurs thématiques liées aux modes de variabilité climatique dans l'Atlantique tropical à l'échelle interannuelle. Les analyses statistiques nous ont permis dans un premier temps de mettre en évidence les deux principaux modes dominants de cette variabilité interannuelle: un mode équatorial et un mode méridien. Le mode équatorial est responsable d'anomalies de température de surface de la mer (SST) principalement dans le Golfe de Guinée et est identifié par des variations de la pente du niveau de la mer dans la bande équatoriale. Il est dû à des rétroactions dynamiques entre le vent, le niveau de la mer et la SST. Quant au mode méridien, il se manifeste par des fluctuations inter-hémisphériques de SST et est contrôlé par des rétroactions dynamiques et thermodynamiques entre le vent, l'évaporation et la SST. L'évaluation du couplage de ces variables clés du mode méridien nous a permis de proposer un modèle conceptuel pour expliquer les principaux mécanismes responsables des oscillations du mode méridien. Le modèle a montré que le mode méridien résulte de la superposition d'un mécanisme auto-entretenu basé sur les rétroactions positives et négatives générant des oscillations régulières de haute fréquence (2-3 ans) et d'un autre mécanisme d'oscillation basse fréquence (4-9 ans) lié à l'influence d'ENSO du Pacifique Est. Comme l'évolution de ces deux modes est fortement liée au déplacement méridien de la zone de convergence intertropicale (ITCZ) qui transporte les pluies, nous avons ensuite identifié la signature de ces modes sur la salinité de la surface de la mer à l'aide observations in situ et d'une simulation numérique régionale. Les processus océaniques et/ou atmosphériques responsables de la signature de chaque mode ont été également identifiés grâce à un bilan de sel dans la couche de mélange du modèle validé. Le bilan de sel a révélé que le forçage atmosphérique, lié à la migration de l'ITCZ, contrôle la région équatoriale tandis que l'advection, due à la modulation des courants, du gradient vertical et le mélange à la base de la couche de mélange, explique les variations de SSS dans les régions sous l'influence des panaches. [...]
In this thesis, we investigate several topics related to the interannual climatic modes in the tropical Atlantic. Statistical analyses allows us to extract the two main dominant modes of interannual variability: an equatorial mode and a meridional mode. The equatorial mode is responsible for Sea Surface Temperature (SST) anomalies mainly found in the Gulf of Guinea and is linked to variations of the sea-level slope in the equatorial band. It is due to dynamic feedbacks between zonal wind, sea level and SST. The meridional mode is characterised by inter-hemispheric SST fluctuations and is controlled by dynamic and thermodynamic feedbacks between the wind, evaporation and SST. After quantifying the coupling between key variables involved in the meridional mode, we develop a conceptual model to explain the main mechanisms responsible for meridional mode oscillations. The model shows that the meridional mode results from the superposition of a self-sustaining mechanism based on positive and negative feedbacks generating regular oscillations of high frequency (2-3 years) and another low frequency oscillation mechanism (4-9 years) related to the influence of ENSO. As the evolution of these two modes is strongly linked to the meridional shift of the Intertropical Convergence Zone (ITCZ) and associated rainfall maximum, we identify the signature of these modes on Sea Surface Salinity (SSS) using in situ observations and a regional numerical simulation. Oceanic and/or atmospheric processes responsible for the signature of each mode are also identified through a mixed-layer salt budget in the validated model. The salt balance reveals that the atmospheric forcing, related to the ITCZ migration, controls the equatorial region while the advection, due to the modulation of current dynamics, the vertical gradient and mixing at the base of the mixed layer, explains SSS variations in regions under the influence of plumes. Finally, we study the Equatorial Kelvin wave characteristics and influences on the density that are involved in the meridional and equatorial mode connection processes, using a very simplified model of gravity wave propagation along the equator. After a brief description of this model, which was initially constructed to study dynamics in the equatorial Pacific, we apply it to the specific case of the equatorial Atlantic by validating its analytical and numerical solutions under adiabatic conditions. [...]
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ayina, Ludos-Hervé. "Etude des modes de variabilité de l'océan Atlantique tropical et de leur sensibilité à l'impact des décharges fluviatiles et des précipitations." Paris 6, 2002. http://www.theses.fr/2002PA066019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Thakore, Vaibhav. "Nonlinear dynamic modeling, simulation and characterization of the mesoscale neuron-electrode interface." Doctoral diss., University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5529.

Повний текст джерела
Анотація:
Extracellular neuroelectronic interfacing has important applications in the fields of neural prosthetics, biological computation and whole-cell biosensing for drug screening and toxin detection. While the field of neuroelectronic interfacing holds great promise, the recording of high-fidelity signals from extracellular devices has long suffered from the problem of low signal-to-noise ratios and changes in signal shapes due to the presence of highly dispersive dielectric medium in the neuron-microelectrode cleft. This has made it difficult to correlate the extracellularly recorded signals with the intracellular signals recorded using conventional patch-clamp electrophysiology. For bringing about an improvement in the signal-to-noise ratio of the signals recorded on the extracellular microelectrodes and to explore strategies for engineering the neuron-electrode interface there exists a need to model, simulate and characterize the cell-sensor interface to better understand the mechanism of signal transduction across the interface. Efforts to date for modeling the neuron-electrode interface have primarily focused on the use of point or area contact linear equivalent circuit models for a description of the interface with an assumption of passive linearity for the dynamics of the interfacial medium in the cell-electrode cleft. In this dissertation, results are presented from a nonlinear dynamic characterization of the neuroelectronic junction based on Volterra-Wiener modeling which showed that the process of signal transduction at the interface may have nonlinear contributions from the interfacial medium. An optimization based study of linear equivalent circuit models for representing signals recorded at the neuron-electrode interface subsequently proved conclusively that the process of signal transduction across the interface is indeed nonlinear. Following this a theoretical framework for the extraction of the complex nonlinear material parameters of the interfacial medium like the dielectric permittivity, conductivity and diffusivity tensors based on dynamic nonlinear Volterra-Wiener modeling was developed. Within this framework, the use of Gaussian bandlimited white noise for nonlinear impedance spectroscopy was shown to offer considerable advantages over the use of sinusoidal inputs for nonlinear harmonic analysis currently employed in impedance characterization of nonlinear electrochemical systems. Signal transduction at the neuron-microelectrode interface is mediated by the interfacial medium confined to a thin cleft with thickness on the scale of 20-110 nm giving rise to Knudsen numbers (ratio of mean free path to characteristic system length) in the range of 0.015 and 0.003 for ionic electrodiffusion. At these Knudsen numbers, the continuum assumptions made in the use of Poisson-Nernst-Planck system of equations for modeling ionic electrodiffusion are not valid. Therefore, a lattice Boltzmann method (LBM) based multiphysics solver suitable for modeling ionic electrodiffusion at the mesoscale neuron-microelectrode interface was developed. Additionally, a molecular speed dependent relaxation time was proposed for use in the lattice Boltzmann equation. Such a relaxation time holds promise for enhancing the numerical stability of lattice Boltzmann algorithms as it helped recover a physically correct description of microscopic phenomena related to particle collisions governed by their local density on the lattice. Next, using this multiphysics solver simulations were carried out for the charge relaxation dynamics of an electrolytic nanocapacitor with the intention of ultimately employing it for a simulation of the capacitive coupling between the neuron and the planar microelectrode on a microelectrode array (MEA). Simulations of the charge relaxation dynamics for a step potential applied at t = 0 to the capacitor electrodes were carried out for varying conditions of electric double layer (EDL) overlap, solvent viscosity, electrode spacing and ratio of cation to anion diffusivity. For a large EDL overlap, an anomalous plasma-like collective behavior of oscillating ions at a frequency much lower than the plasma frequency of the electrolyte was observed and as such it appears to be purely an effect of nanoscale confinement. Results from these simulations are then discussed in the context of the dynamics of the interfacial medium in the neuron-microelectrode cleft. In conclusion, a synergistic approach to engineering the neuron-microelectrode interface is outlined through a use of the nonlinear dynamic modeling, simulation and characterization tools developed as part of this dissertation research.
Ph.D.
Doctorate
Physics
Sciences
Physics
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rath, Pranaya Kishore. "Experimental Investigation of Electrons In and Above Liquid Helium." Thesis, 2022. https://etd.iisc.ac.in/handle/2005/5838.

Повний текст джерела
Анотація:
Electrons on the surface of liquid helium form a nearly ideal 2-dimensional electron system (2DES). An electron density up to 2 × 10^9 cm-2, known as the critical electron density, can be achieved on the liquid helium surface, above which an electro-hydrodynamic (EHD) instability sets in, which results in the formation of MEBs. Due to this limitation in maximum possible density, only the classical liquid and solid phases of the 2DES can be accessed in this system. But at the same time, on the surface of thin liquid helium film and with the multi-electron bubbles (MEBs), it may be possible to achieve high electron density than that of the critical electron density. This can allow the observation of quantum melting, i.e., the phase transition between the quantum solid to the liquid phase of the 2DES. Although extensive theoretical and experimental studies have already been done, the quantum melting transition has not been achieved experimentally on these systems yet. In this thesis, we have used multiple new experimental approaches to obtain electron densities higher than what has been achieved before and to study the MEBs effectively. First, we studied the temporal dynamics of the EHD instability and the effect of the applied electric field and charge density on the instability. The unstable wave vectors were determined experimentally, and their temporal growth was studied carefully. The determined unstable wave vectors were found to be a good match with the theoretically expected values obtained from the dispersion relation. At the same time, the analysis of the growth rate of unstable vectors were found to be limited by the kinematic viscosity of the liquid helium. Next, we investigated the lifetime of MEBs trapped on a dielectric surface and compared the result with previous results on free bubbles in bulk liquid helium. The reduced lifetime of trapped bubbles suggested an impact of convective heat flow around the bubbles on their lifetimes. Then we performed an experimental investigation that confirmed the effect of convective heat flow direction inside the experimental cell on the lifetime of such trapped MEBs. Determination of the electronic phase inside an MEB is one of the biggest challenges of the time. Unfortunately, there is no direct way or technique for such investigation. We discussed how the MEB surface fluctuation with an external oscillating electric field could be observed, which may allow a possible way of studying the phase of the 2DES. We studied the surface fluctuations of electrically excited MEBs and observed different normal mechanical modes of the bubble wall. Then we extended our discussion on why liquid helium-4 is not a suitable medium to study the MEBs at low temperatures (below λ), where interesting phenomena occur, and how liquid helium-3, based on its physical property, can be a suitable replacement for this purpose. We generated MEBs inside liquid helium for the first time. The generated MEBs at 1.1 K were found to be stable with long lifetimes. This result opens the possibility of studying the MEBs at much lower temperatures where quantum properties dominate over classical for the 2DES. Finally, we discussed the problem associated with achieving high electron density on the thin helium film and how integrating an NEA material as a substrate can help us overcome the problem. We fabricated NEA materials, i.e., cBN pellet, and optimized the rf sputtering deposition of cBN film. We performed a preliminary pick-up measurement on the charged thin helium with these materials as substrates, which showed some positive indications that need to be confirmed with further advanced experimental investigations.
INSPIRE, DST India
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Das, Surajit. "Role Of Sea Surface Temperature Gradient In Intraseasonal Oscillation Of Convection In An Aquaplanet Model." Thesis, 2012. https://etd.iisc.ac.in/handle/2005/2583.

Повний текст джерела
Анотація:
In this thesis we examine intra-seasonal oscillations (ISO) in the aqua-planet setup of the Community Atmospheric Model (CAM) version 5.1, mainly based on July and January climatological sea surface temperature (SST). We investigate mainly two questions -what should be the SST distribution for the existence of (a) northward moving ISO in summer, and (b) eastward moving MJO-like modes in winter. In the first part of the thesis we discuss the northward propagation. A series of experiments were performed with zonally symmetric and asymmetric SST distributions. The basic lower boundary condition is specified from zonally averaged observed July and January SST. The zonally symmetric July SST experiment produced an inter tropical convergence zone (ITCZ) on both sides of the equator. Poleward movement is not clear, and it is confined to the region between the double ITCZ. In July, the Bay of Bengal (BOB) and West Pacific SST is high compared to the rest of the northern tropics. When we impose a zonally asymmetric SST structure with warm SST spanning about 80 of longitude, the model shows a monsoon-like circulation, and some northward propagating convective events. Analysis of these events shows that two adjacent cells with cyclonic and anticyclonic vorticity are created over the warm SST anomaly and to the west. The propagation occurs due to the convective region drawn north in the convergence zone between these vortices. Zonally propagating Madden-Julian oscillations (MJO) are discussed in the second part of the thesis. All the experiments in this part are based on the zonally symmetric SST. The zonally symmetric January SST configuration gives an MJO-like mode, with zonal wave number 1 and a period of 40-90 days. The SST structure has a nearly meridionally symmetric structure, with local SST maxima on either side of the equator, and a small dip in the equatorial region. If we replace this dip with an SST maximum, the time-scale of MJO becomes significantly smaller (20-40 days). The implication is that an SST maximum in the equatorial region reduces the strength of MJO, and a flat SST profile in the equatorial region is required for more energetic of MJO. This result was tested and found to be valid in a series of further experiments.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Das, Surajit. "Role Of Sea Surface Temperature Gradient In Intraseasonal Oscillation Of Convection In An Aquaplanet Model." Thesis, 2012. http://etd.iisc.ernet.in/handle/2005/2583.

Повний текст джерела
Анотація:
In this thesis we examine intra-seasonal oscillations (ISO) in the aqua-planet setup of the Community Atmospheric Model (CAM) version 5.1, mainly based on July and January climatological sea surface temperature (SST). We investigate mainly two questions -what should be the SST distribution for the existence of (a) northward moving ISO in summer, and (b) eastward moving MJO-like modes in winter. In the first part of the thesis we discuss the northward propagation. A series of experiments were performed with zonally symmetric and asymmetric SST distributions. The basic lower boundary condition is specified from zonally averaged observed July and January SST. The zonally symmetric July SST experiment produced an inter tropical convergence zone (ITCZ) on both sides of the equator. Poleward movement is not clear, and it is confined to the region between the double ITCZ. In July, the Bay of Bengal (BOB) and West Pacific SST is high compared to the rest of the northern tropics. When we impose a zonally asymmetric SST structure with warm SST spanning about 80 of longitude, the model shows a monsoon-like circulation, and some northward propagating convective events. Analysis of these events shows that two adjacent cells with cyclonic and anticyclonic vorticity are created over the warm SST anomaly and to the west. The propagation occurs due to the convective region drawn north in the convergence zone between these vortices. Zonally propagating Madden-Julian oscillations (MJO) are discussed in the second part of the thesis. All the experiments in this part are based on the zonally symmetric SST. The zonally symmetric January SST configuration gives an MJO-like mode, with zonal wave number 1 and a period of 40-90 days. The SST structure has a nearly meridionally symmetric structure, with local SST maxima on either side of the equator, and a small dip in the equatorial region. If we replace this dip with an SST maximum, the time-scale of MJO becomes significantly smaller (20-40 days). The implication is that an SST maximum in the equatorial region reduces the strength of MJO, and a flat SST profile in the equatorial region is required for more energetic of MJO. This result was tested and found to be valid in a series of further experiments.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Lin, Tzong-Shyan, and 林宗賢. "Surface Plasmon Excitation, Mode Splitting in Slab Wave Guides and Dynamic Oscillation Studies of Liquid Crystals." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/52149969599929734277.

Повний текст джерела
Анотація:
博士
國立清華大學
物理學系
90
In this work, we are devoted to study the optical properties of nematic liquid crystal (LC) from the anisotropic birefringence behavior view. These include the shift of minimum attenuated total reflection angle, the mode splitting, and the nonlinear dynamic oscillation. The scenario of this work will be portrayed as follows. Attenuated total reflection (ATR) is a prominent effect in examining the excitation of surface plasmons. The Kretcshmann-Raether configuration is implemented to generate the surface plasmon and to examine the change of the refractive index of LC by an applied field. A mixture of nematic and cholesteric liquid crystal is sandwiched between two glass substrates coated with conducting films. The minimum ATR angle changes less than 1o as the applied voltage increases to as large as 30Vpp, which is controvertible to the calculation based on field induced refractive index change. This fact suggests that the orientation of LC directors adjacent to the electrode surface is unaffected in response to the external field attributing to the strong anchoring effect. Extended Jones matrix simulation imposed with multi-layered structure of LC clearly adducing this fact. Mode splitting is found with a He-Ne laser beam reflecting through a prism-coupled liquid-crystal slab waveguide applied with an electric field. Mode splitting yields stronger manifestation as the imposed voltage passes a critical level, yet it becomes diminished above a critical high voltage. If the voltage increases even higher, mode splitting would disappear, attributing to the turning up of almost all the directors of LC to the surface. Our multi-layered matrix simulation can satisfactorily account for this phenomenon by exploiting the property of the anisotropic optical birefringence of LC under applied voltages. Relaxation oscillations of optical transmittance after the turn-off of the applied electric field of LCs are observed when the detected light transmits through a proper adjustment of the alignment of the polarizer and analyzer. Approximated dynamic simulation, which do not concern the back-flow effect and neglect the inertia terms, of the LC molecule at each layer yields relevant polarization interference of the transmitted light. This effect can satisfactorily portray the oscillation phenomenon. Optics with the extended Jones 4x4 matrix formalism, which is relevant in elucidating the optical properties of anisotropic media, is also implemented to solve this problem.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Royon-Lebeaud, Aude. "Ballottement des liquides dans les réservoirs cylindriques soumis à une oscillation harmonique: régimes d'onde non-linéaire et brisure." Phd thesis, 2005. http://tel.archives-ouvertes.fr/tel-00009117.

Повний текст джерела
Анотація:
Nous considèrons le ballottement des liquides dans les réservoirs cylindriques pour de forts taux de remplissage. Le système est soumis à une oscillation rectiligne horizontale et périodique de basse fréquence. Des visualisations ainsi que des mesures temporelles de la position de la surface libre par sonde capacitive ont permis de détailler les mouvements d'ondes ainsi que la déstabilisation du front. Trois régimes sont mis en évidence : un mode plan antisymétrique, un régime chaotique et un mode tournant. Le mode forcé est très bien modélisé par un pendule simple amorti. Ce modèle mécanique permet de prévoir la coexistence initiale du mode propre décroissant et du mode forcé et de déterminer l'amplitude stationnaire et le déphasage par rapport à l'excitation. La résonance est observée pour des fréquences inférieures à la fréquence propre linéaire du mode 1, la non linéarité est négative pour ces taux de remplissage. Le mode plan déferle alors et un régime pseudo périodique d'alternance des différents modes et de phases de brisure s'installe. L'étude détaillée de la brisure est réalisée en cuve carrée. Le front de l'onde à la paroi est déstabilisé par des ondes transverses de type Faraday. Cette instabilité donne lieu à une forte modification du profil de l'onde. Elle conduit également à une importante création de bulles entraînées et de gouttes par un phénomène de splashing. Pour des fréquences légèrement supérieures à la fréquence de résonance linéaire, le mode tournant, onde progressive azimutale, émerge. Ce mode existe pour des fréquences élevées par mise en rotation de la masse de fluide et effet Doppler. Il reste stable pour des amplitudes d'ondes très importantes.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Venugopal, Thushara. "Sensitivity of Sea Surface Temperature Intraseasonal Oscillation to Diurnal Atmospheric Forcings in an OGCM." Thesis, 2013. http://etd.iisc.ac.in/handle/2005/3347.

Повний текст джерела
Анотація:
Abstract The diurnal cycle is a dominant mode of sea surface temperature (SST) variability in trop-ical oceans, that influences air-sea interaction and climate processes. Diurnal variability of SST generally ranges from ~0.1 to 2.0◦C and is controlled by atmospheric fluxes of heat and momentum. In the present study, the response of intraseasonal variability (ISV) of SST in the Bay of Bengal (BoB) to diurnal atmospheric forcings, during the summer monsoon of 2007, has been examined using an Ocean General Circulation Model (OGCM). The model is based on the Modular Ocean Model Version 4 (MOM4p0), having a horizontal resolution of 0.25◦ and 40 vertical levels, with a fine resolution of 5 m in the upper 60 m. Numerical experiments were conducted by forcing the model with daily and hourly atmospheric forcings to examine the SST-ISV modulation with the diurnal cycle. Additional experiments were performed to determine the relative role of diurnal cycle in solar radiation and winds on SST and mixed layer depth (MLD). Since salinity, which is decisive in SST variability, varies meridionally in the BoB, two locations were selected for analyses: one in the northern bay at 89◦E, 19◦N where salinity is lower and the other in the southern bay at 90◦E, 8◦N where salinity is higher, as well as observations are available from Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) buoy for comparision with model simulation. Diurnal atmospheric forcings modify SST-ISV in both southern and northern bay. SST-ISV in the southern bay, is dominantly controlled by the diurnal cycle of insolation, while in the northern bay, diurnal cycle of insolation and winds have comparable contribution. Diurnal cycle enhanced the amplitude of 3 selected intraseasonal events in the southern bay and 3 out of the 6 events in the northern bay, during the study period. In the southern bay, simulated SST variability with hourly forcing was closer to the observations from RAMA, implying that incorporating the diurnal cycle in model forcing rectifies SST-ISV. Moreover, SST obtained with diurnal forcing consists of additional fluctuations at higher frequencies within and in between intraseasonal events; such fluctuations are absent with daily forcing. The diurnal variability of SST is significant during the warming phase of intraseasonal events and reduces during the cooling phase. Diurnal amplitude of SST decreases with depth; depth dependence also being larger during the warming phase. SST-ISV modulation with diurnal forcing results from the diurnal cycle of upper ocean heat fluxes and vertical mixing. Diurnal warming and cooling result in a net gain or loss of heat in the mixed layer after a day’s cycle. When the retention (loss) of heat in the mixed layer increases with diurnal forcing during the warming (cooling) phase of intraseasonal events, the daily mean SST rise (fall) becomes higher, amplifying the intraseasonal warming (cooling). In the southern bay, SST-ISV amplification is mainly controlled by the diurnal variability of MLD, which modifies the heat fluxes. Increased intraseasonal warming with diurnal forcing results from the increase in radiative heating, due to the shoaling of the daytime mixed layer. Amplified intraseasonal cooling is dominantly con-trolled by the strengthening of sub-surface processes, due to the nocturnal deepening of mixed layer and increased temperature gradients below the mixed layer. In the northern bay, SST-ISV modulation with diurnal forcing is not as large as that in the southern bay. The mean increase in SST-ISV amplitudes with diurnal forcing is ~0.16◦C in the southern bay, while it is only ~0.03◦C in the northern bay. Reduced response of SST-ISV to diurnal forcings in the northern bay is related to the weaker diurnal variability of MLD. Salinity stratification limits diurnal variability of mixed layer in the northern bay, unlike in the southern bay. The seasonal (June - September) mean diurnal amplitude of MLD is ~15 m in the southern bay, while it is reduced to ~1.5 m in the northern bay. Diurnal variability of MLD, spanning only a few meters is not sufficient to create large modifications in mixed layer heat fluxes and SST-ISV in the northern bay. The vertical resolution of the model limits the shallowing of mixed layer to 7.5 m, thus restricting the diurnal variability of simulated MLD.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Venugopal, Thushara. "Sensitivity of Sea Surface Temperature Intraseasonal Oscillation to Diurnal Atmospheric Forcings in an OGCM." Thesis, 2013. http://etd.iisc.ernet.in/2005/3347.

Повний текст джерела
Анотація:
Abstract The diurnal cycle is a dominant mode of sea surface temperature (SST) variability in trop-ical oceans, that influences air-sea interaction and climate processes. Diurnal variability of SST generally ranges from ~0.1 to 2.0◦C and is controlled by atmospheric fluxes of heat and momentum. In the present study, the response of intraseasonal variability (ISV) of SST in the Bay of Bengal (BoB) to diurnal atmospheric forcings, during the summer monsoon of 2007, has been examined using an Ocean General Circulation Model (OGCM). The model is based on the Modular Ocean Model Version 4 (MOM4p0), having a horizontal resolution of 0.25◦ and 40 vertical levels, with a fine resolution of 5 m in the upper 60 m. Numerical experiments were conducted by forcing the model with daily and hourly atmospheric forcings to examine the SST-ISV modulation with the diurnal cycle. Additional experiments were performed to determine the relative role of diurnal cycle in solar radiation and winds on SST and mixed layer depth (MLD). Since salinity, which is decisive in SST variability, varies meridionally in the BoB, two locations were selected for analyses: one in the northern bay at 89◦E, 19◦N where salinity is lower and the other in the southern bay at 90◦E, 8◦N where salinity is higher, as well as observations are available from Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) buoy for comparision with model simulation. Diurnal atmospheric forcings modify SST-ISV in both southern and northern bay. SST-ISV in the southern bay, is dominantly controlled by the diurnal cycle of insolation, while in the northern bay, diurnal cycle of insolation and winds have comparable contribution. Diurnal cycle enhanced the amplitude of 3 selected intraseasonal events in the southern bay and 3 out of the 6 events in the northern bay, during the study period. In the southern bay, simulated SST variability with hourly forcing was closer to the observations from RAMA, implying that incorporating the diurnal cycle in model forcing rectifies SST-ISV. Moreover, SST obtained with diurnal forcing consists of additional fluctuations at higher frequencies within and in between intraseasonal events; such fluctuations are absent with daily forcing. The diurnal variability of SST is significant during the warming phase of intraseasonal events and reduces during the cooling phase. Diurnal amplitude of SST decreases with depth; depth dependence also being larger during the warming phase. SST-ISV modulation with diurnal forcing results from the diurnal cycle of upper ocean heat fluxes and vertical mixing. Diurnal warming and cooling result in a net gain or loss of heat in the mixed layer after a day’s cycle. When the retention (loss) of heat in the mixed layer increases with diurnal forcing during the warming (cooling) phase of intraseasonal events, the daily mean SST rise (fall) becomes higher, amplifying the intraseasonal warming (cooling). In the southern bay, SST-ISV amplification is mainly controlled by the diurnal variability of MLD, which modifies the heat fluxes. Increased intraseasonal warming with diurnal forcing results from the increase in radiative heating, due to the shoaling of the daytime mixed layer. Amplified intraseasonal cooling is dominantly con-trolled by the strengthening of sub-surface processes, due to the nocturnal deepening of mixed layer and increased temperature gradients below the mixed layer. In the northern bay, SST-ISV modulation with diurnal forcing is not as large as that in the southern bay. The mean increase in SST-ISV amplitudes with diurnal forcing is ~0.16◦C in the southern bay, while it is only ~0.03◦C in the northern bay. Reduced response of SST-ISV to diurnal forcings in the northern bay is related to the weaker diurnal variability of MLD. Salinity stratification limits diurnal variability of mixed layer in the northern bay, unlike in the southern bay. The seasonal (June - September) mean diurnal amplitude of MLD is ~15 m in the southern bay, while it is reduced to ~1.5 m in the northern bay. Diurnal variability of MLD, spanning only a few meters is not sufficient to create large modifications in mixed layer heat fluxes and SST-ISV in the northern bay. The vertical resolution of the model limits the shallowing of mixed layer to 7.5 m, thus restricting the diurnal variability of simulated MLD.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Bhattacharya, Anwesa. "Role of Aerosols in Modulating the Intraseasonal Oscillations of Indian Summer Monsoon." Thesis, 2016. http://etd.iisc.ac.in/handle/2005/2864.

Повний текст джерела
Анотація:
In this thesis, we have presented a systematic analysis of the change of cloud properties due to variation in aerosol concentration over Indian region using satellite observations, and Weather Research and Forecasting Model coupled with Chemistry (WRF-Chem) simulations. The Tropical Rainfall Measurement Mission (TRMM) based Microwave Imager (TMI) estimates (2A12) have been used to compare and contrast the characteristics of cloud liquid water and ice over the Indian land region and the surrounding oceans, during the pre-monsoon (May) and monsoon (June–September) seasons. Based on the spatial homogeneity of rainfall, we have selected five regions for our study (three over ocean, two over land). In general, we find that the mean cloud liquid water and cloud ice content of land and oceanic regions are different, with the ocean regions showing higher amount of CLW. A comparison across the ocean regions suggests that the cloud liquid water over the or graphically influenced Arabian Sea (close to the Indian west coast) behaves differently from the cloud liquid water over a trapped ocean (Bay of Bengal) or an open ocean (Equatorial Indian Ocean). Specifically, the Arabian Sea region shows higher liquid water for a lower range of rainfall, whereas the Bay of Bengal and the Equatorial Indian Ocean show higher liquid water for a higher range of rainfall. Apart from geographic differences, we also documented seasonal differences by comparing cloud liquid water profiles between monsoon and pre-monsoon periods, as well as between early and peak phases of the monsoon. We find that the cloud liquid water during the lean periods of rainfall (May or June) is higher than during the peak and late monsoon season (July-September) for raining clouds over central India. However, this is not true over the ocean. As active and break phases are important signatures of the monsoon progression, we also analyzed the differences in cloud liquid water during various phases of the monsoon, namely, active, break, active-to-break (a2b) and break-to-active (b2a) transition phases. We find that the cloud liquid water content during the b2a transition phase is significantly higher than that during the a2b transition phase over central India. We speculate that this could be attributed to higher amount of aerosol loading over this region during the break phase. We lend credence to this aerosol-liquid water/rain association by comparing the central Indian cloud liquid water with Southeast Asia (where the aerosol loading is significantly smaller) and find that in the latter region, there are no significant differences in cloud liquid water during the different phases of their monsoon. The second part of our study involves evaluating the ability of the Weather Research and Forecasting Model coupled with Chemistry (WRF-Chem) to simulate the observed variation of cloud liquid water and rain efficiency. We have used no chemistry option, and the model was run with constant aerosol concentration. The model simulations (at 4.5 km resolution) are done for the month of June–July 2004 since this period was particularly favorable for the study of an active–break cycle of the monsoon. We first evaluate the sensitivity of the model to different parameterizations (microphysical, boundary layer, land surface) on the simulation of rain over central India and Bay of Bengal. This is done to identify an “optimal” combination of parameterizations which reproduces the best correlation with observed rain over these regions. In this default configuration (control run), where the aerosol concentration is kept constant throughout the simulation period, the model is not able to reproduce the observed variations of cloud liquid water during the different phases of an active-break cycle. To this end, we proceeded to modify the model by developing an aerosol-rain relation, using Aerosol Robotic Network (AERONET) and TRMM 3B42 data that realistically captures the variation of aerosol with rain. It is worth highlighting here that our goal was to primarily isolate the indirect effect of aerosols in determining the observed changes in cloud liquid water (CLW) during the active-break phases of the Indian monsoon, without getting into the complexity of a full chemistry model such as that incorporated in WRF-Chem. Moreover, the proposed modification (modified run) is necessitated by the lack of realistic emission estimates over the Indian region as well as the presence of inherent biases in monsoon simulation in WRF. The main differences we find between the modified and control simulations is in the mean as well as spatial variability of CLW. We find that the proposed modification (i.e., rate of change of aerosol concentration as a function of rain rate) leads to a realistic variation in the CLW during the active-break cycle of Indian monsoon. Specifically, the peak value of CLW in the b2a (a2b) phase is larger (smaller) in the modified as compared to the control run. These results indicate a stronger change in CLW amount in the upper levels between the two transition phases in the modified scheme as compared to the control simulation. More significantly, we also observe a change in sign at the lower levels of the atmosphere, i.e., from a strong positive difference in the control run to a negative difference in the modified simulation, similar to that observed. Additionally, we investigated the impact of the proposed modification, via CLW changes, on cloud coverage, size of clouds and their spatial variability. We find that the transformation of optically thin clouds to thick clouds during the break phase was associated with larger cloud size in modified compared to the control simulation. Moreover, the higher rate of decay of the spatial variability of CLW with grid resolution, using the modified scheme, suggests that clusters of larger clouds are more in the modified compared to control simulation. Taken together, the interactive aerosol loading proposed in this thesis yields model simulations that better mimic the observed CLW variability between the transition phases.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Bhattacharya, Anwesa. "Role of Aerosols in Modulating the Intraseasonal Oscillations of Indian Summer Monsoon." Thesis, 2016. http://etd.iisc.ernet.in/handle/2005/2864.

Повний текст джерела
Анотація:
In this thesis, we have presented a systematic analysis of the change of cloud properties due to variation in aerosol concentration over Indian region using satellite observations, and Weather Research and Forecasting Model coupled with Chemistry (WRF-Chem) simulations. The Tropical Rainfall Measurement Mission (TRMM) based Microwave Imager (TMI) estimates (2A12) have been used to compare and contrast the characteristics of cloud liquid water and ice over the Indian land region and the surrounding oceans, during the pre-monsoon (May) and monsoon (June–September) seasons. Based on the spatial homogeneity of rainfall, we have selected five regions for our study (three over ocean, two over land). In general, we find that the mean cloud liquid water and cloud ice content of land and oceanic regions are different, with the ocean regions showing higher amount of CLW. A comparison across the ocean regions suggests that the cloud liquid water over the or graphically influenced Arabian Sea (close to the Indian west coast) behaves differently from the cloud liquid water over a trapped ocean (Bay of Bengal) or an open ocean (Equatorial Indian Ocean). Specifically, the Arabian Sea region shows higher liquid water for a lower range of rainfall, whereas the Bay of Bengal and the Equatorial Indian Ocean show higher liquid water for a higher range of rainfall. Apart from geographic differences, we also documented seasonal differences by comparing cloud liquid water profiles between monsoon and pre-monsoon periods, as well as between early and peak phases of the monsoon. We find that the cloud liquid water during the lean periods of rainfall (May or June) is higher than during the peak and late monsoon season (July-September) for raining clouds over central India. However, this is not true over the ocean. As active and break phases are important signatures of the monsoon progression, we also analyzed the differences in cloud liquid water during various phases of the monsoon, namely, active, break, active-to-break (a2b) and break-to-active (b2a) transition phases. We find that the cloud liquid water content during the b2a transition phase is significantly higher than that during the a2b transition phase over central India. We speculate that this could be attributed to higher amount of aerosol loading over this region during the break phase. We lend credence to this aerosol-liquid water/rain association by comparing the central Indian cloud liquid water with Southeast Asia (where the aerosol loading is significantly smaller) and find that in the latter region, there are no significant differences in cloud liquid water during the different phases of their monsoon. The second part of our study involves evaluating the ability of the Weather Research and Forecasting Model coupled with Chemistry (WRF-Chem) to simulate the observed variation of cloud liquid water and rain efficiency. We have used no chemistry option, and the model was run with constant aerosol concentration. The model simulations (at 4.5 km resolution) are done for the month of June–July 2004 since this period was particularly favorable for the study of an active–break cycle of the monsoon. We first evaluate the sensitivity of the model to different parameterizations (microphysical, boundary layer, land surface) on the simulation of rain over central India and Bay of Bengal. This is done to identify an “optimal” combination of parameterizations which reproduces the best correlation with observed rain over these regions. In this default configuration (control run), where the aerosol concentration is kept constant throughout the simulation period, the model is not able to reproduce the observed variations of cloud liquid water during the different phases of an active-break cycle. To this end, we proceeded to modify the model by developing an aerosol-rain relation, using Aerosol Robotic Network (AERONET) and TRMM 3B42 data that realistically captures the variation of aerosol with rain. It is worth highlighting here that our goal was to primarily isolate the indirect effect of aerosols in determining the observed changes in cloud liquid water (CLW) during the active-break phases of the Indian monsoon, without getting into the complexity of a full chemistry model such as that incorporated in WRF-Chem. Moreover, the proposed modification (modified run) is necessitated by the lack of realistic emission estimates over the Indian region as well as the presence of inherent biases in monsoon simulation in WRF. The main differences we find between the modified and control simulations is in the mean as well as spatial variability of CLW. We find that the proposed modification (i.e., rate of change of aerosol concentration as a function of rain rate) leads to a realistic variation in the CLW during the active-break cycle of Indian monsoon. Specifically, the peak value of CLW in the b2a (a2b) phase is larger (smaller) in the modified as compared to the control run. These results indicate a stronger change in CLW amount in the upper levels between the two transition phases in the modified scheme as compared to the control simulation. More significantly, we also observe a change in sign at the lower levels of the atmosphere, i.e., from a strong positive difference in the control run to a negative difference in the modified simulation, similar to that observed. Additionally, we investigated the impact of the proposed modification, via CLW changes, on cloud coverage, size of clouds and their spatial variability. We find that the transformation of optically thin clouds to thick clouds during the break phase was associated with larger cloud size in modified compared to the control simulation. Moreover, the higher rate of decay of the spatial variability of CLW with grid resolution, using the modified scheme, suggests that clusters of larger clouds are more in the modified compared to control simulation. Taken together, the interactive aerosol loading proposed in this thesis yields model simulations that better mimic the observed CLW variability between the transition phases.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Zvejnieks, Guntars. "Catalytic Surface Reactions: Monte Carlo Simulations of Systems with Creation, Annihilation and Diffusion of Interacting Reactants." Doctoral thesis, 2001. https://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2001061912.

Повний текст джерела
Анотація:
During the last 30 years considerable attention was paid to open systems far from thermal equilibrium. Under certain conditions these dissipative systems show a qualitatively new behavior on macroscopic length scales, which are known as spatiotemporal structures. These new structures arise as a feature of collective behavior of a many-body systems. One particular example of dissipative systems considered in the present Thesis is the systems with reactant birth and death. Such systems arise, e.g., in description of the population growth or the kinetics of chemical reactions. To describe the systems with a large number of particles, one has to impose some restrictions. So, it is assumed that individual properties of particles are not important, only their interaction and interaction result (reaction) are taken into account. A number of rules, which describe the behavior of particles on the microscopic level, are known as a mathematical model. There exist two methods to analyze properties of a mathematical model. The first is analysis based on the master equation. In general, this method fails to describe the properties of spatiotemporal structures. There are no analytical approximations taking into account the effect of long-range particle correlation, which is important for description of the changes on a macroscopic range. The second approach are Monte Carlo (MC) computer simulations, which actually is alternative to experiments. The MC method takes into account long-range reactant correlations. They arise as a result of microscopical model. MC has disadvantages typical for all numerical methods, e.g., a large simulation time. In the present Thesis the Lotka-type and the A+B->0 models are considered in detail. These reactions are commonly found as one of a component in many chemical reactions. The emphasis is made on understanding the basic properties of these models. Further, several physically important modifications of the Lotka-type and the A+B->0 models are made. Firstly, in Chapter 1. the Lotka-type model is extended to investigate the resonance properties. Secondly, the effect of reactant diffusion and interaction is incorporated into Lotka-type model in Chapter 2. Thirdly, the standard A+B->0 reaction is extended to the case of surface reconstruction in Chapter 3. General conclusion is presented at the end of the Thesis, which is ended by four Appendices.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Ghosh, Rohit. "Interannual Variation of Monsoon in a High Resolution AGCM with Climatological SST Forcing." Thesis, 2013. http://etd.iisc.ac.in/handle/2005/3350.

Повний текст джерела
Анотація:
Interannual variation of Indian summer (June-September: JJAS) monsoon rainfall (ISMR) depends on its relative intensity during early (June-July: JJ; contribution 52%) and late (August-September: AS; contribution 49%) phases. Apart from variations in sea surface temperature (SST), the primary reasons behind the variability during JJ and AS can be very different due to change in climatic conditions on account of post-onset processes. Here, using a high resolution general circulation model with seasonally varying climatological SST, mechanisms those govern the intensity of rainfall during JJ and AS are investigated. There is no significant relation-ship between intensity of precipitation over Indian region in JJ and AS. Moreover, the factors determining early monsoon (JJ) precipitation are different than that for late monsoon (AS). In absence of interannual SST variation, pre-monsoon soil moisture do not play a significant role for the interannual variation of monsoon precipitation over India. A large scale oscillation of the ITCZ is noticed on interannual time scale spanning from around 60◦E to 150◦E that brings spatially coherent flood and drought over this region. Early monsoon precipitation has a larger dependency on spring snow depth over Eurasia and phase of the upper tropospheric Rossby wave in May. However, late monsoon precipitation over India is mainly governed by the intensity and time scale of the intraseasonally varying convective cloud bands. This study suggests that early monsoon (JJ) precipitation over Indian region is more correlated with pre-monsoon signatures of land-atmosphere parameters. However, in later parts after the onset (AS), the monsoon intensity is primarily driven by its internal dynamics and characteristics of intraseasonal oscillation.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Ghosh, Rohit. "Interannual Variation of Monsoon in a High Resolution AGCM with Climatological SST Forcing." Thesis, 2013. http://etd.iisc.ernet.in/2005/3350.

Повний текст джерела
Анотація:
Interannual variation of Indian summer (June-September: JJAS) monsoon rainfall (ISMR) depends on its relative intensity during early (June-July: JJ; contribution 52%) and late (August-September: AS; contribution 49%) phases. Apart from variations in sea surface temperature (SST), the primary reasons behind the variability during JJ and AS can be very different due to change in climatic conditions on account of post-onset processes. Here, using a high resolution general circulation model with seasonally varying climatological SST, mechanisms those govern the intensity of rainfall during JJ and AS are investigated. There is no significant relation-ship between intensity of precipitation over Indian region in JJ and AS. Moreover, the factors determining early monsoon (JJ) precipitation are different than that for late monsoon (AS). In absence of interannual SST variation, pre-monsoon soil moisture do not play a significant role for the interannual variation of monsoon precipitation over India. A large scale oscillation of the ITCZ is noticed on interannual time scale spanning from around 60◦E to 150◦E that brings spatially coherent flood and drought over this region. Early monsoon precipitation has a larger dependency on spring snow depth over Eurasia and phase of the upper tropospheric Rossby wave in May. However, late monsoon precipitation over India is mainly governed by the intensity and time scale of the intraseasonally varying convective cloud bands. This study suggests that early monsoon (JJ) precipitation over Indian region is more correlated with pre-monsoon signatures of land-atmosphere parameters. However, in later parts after the onset (AS), the monsoon intensity is primarily driven by its internal dynamics and characteristics of intraseasonal oscillation.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Koch, Philipp. "Partikelmodellierung der Strukturbildung akustischer Kavitationsblasen in Wechselwirkung mit dem Schalldruckfeld." Doctoral thesis, 2006. http://www.gbv.de/dms/goettingen/524828539.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії