Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Surface acoustic wave sensor.

Статті в журналах з теми "Surface acoustic wave sensor"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Surface acoustic wave sensor".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

da Cunha, Mauricio Pereira. "Surface acoustic wave sensor." Journal of the Acoustical Society of America 120, no. 5 (2006): 2397. http://dx.doi.org/10.1121/1.2395087.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kalantar-Zadeh, Kourosh, and Wojtek Wlodarski. "Surface acoustic wave sensor." Journal of the Acoustical Society of America 120, no. 5 (2006): 2409. http://dx.doi.org/10.1121/1.2395140.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Länge, Kerstin. "Bulk and Surface Acoustic Wave Sensor Arrays for Multi-Analyte Detection: A Review." Sensors 19, no. 24 (December 6, 2019): 5382. http://dx.doi.org/10.3390/s19245382.

Повний текст джерела
Анотація:
Bulk acoustic wave (BAW) and surface acoustic wave (SAW) sensor devices have successfully been used in a wide variety of gas sensing, liquid sensing, and biosensing applications. Devices include BAW sensors using thickness shear modes and SAW sensors using Rayleigh waves or horizontally polarized shear waves (HPSWs). Analyte specificity and selectivity of the sensors are determined by the sensor coatings. If a group of analytes is to be detected or if only selective coatings (i.e., coatings responding to more than one analyte) are available, the use of multi-sensor arrays is advantageous, as the evaluation of the resulting signal patterns allows qualitative and quantitative characterization of the sample. Virtual sensor arrays utilize only one sensor but combine it with enhanced signal evaluation methods or preceding sample separation, which results in similar results as obtained with multi-sensor arrays. Both array types have shown to be promising with regard to system integration and low costs. This review discusses principles and design considerations for acoustic multi-sensor and virtual sensor arrays and outlines the use of these arrays in multi-analyte detection applications, focusing mainly on developments of the past decade.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Talbi, A., F. Sarry, O. Elmazria, M. B. Assouar, L. Bouvot, and P. Alnot. "Surface Acoustic Wave Pressure Sensor." Ferroelectrics 273, no. 1 (January 2002): 53–58. http://dx.doi.org/10.1080/00150190211800.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Oglesby, Donald M., Billy T. Upchurch, Bradley D. Leighty, James P. Collman, Xumu Zhang, and P. C. Hermann. "Surface Acoustic Wave Oxygen Sensor." Analytical Chemistry 66, no. 17 (September 1994): 2745–51. http://dx.doi.org/10.1021/ac00089a023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Caliendo, C., E. Verona, A. D'Amico, A. Furlani, G. Iucci, and M. V. Russo. "Surface acoustic wave humidity sensor." Sensors and Actuators B: Chemical 16, no. 1-3 (October 1993): 288–92. http://dx.doi.org/10.1016/0925-4005(93)85197-i.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cook, James D. "Encapsulated surface acoustic wave sensor." Journal of the Acoustical Society of America 121, no. 5 (2007): 2482. http://dx.doi.org/10.1121/1.2739144.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dierkes, M., and U. Hilleringmann. "Telemetric surface acoustic wave sensor for humidity." Advances in Radio Science 1 (May 5, 2003): 131–33. http://dx.doi.org/10.5194/ars-1-131-2003.

Повний текст джерела
Анотація:
Abstract. Surface acoustic wave sensors consist of a piezoelectric substrate with metal interdigital transducers (IDT) on top. The acoustic waves are generated on the surface of the substrate by a radio wave, as it is well known in band pass filters. The devices can be used as wireless telemetric sensors for temperature and humidity, transmitting the sensed signal as a shift of the sensor’s resonance frequency.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hejczyk, Tomasz, Marian Urbańczyk, Tadeusz Pustelny, and Wiesław Jakubik. "Numerical and Experimental Analysis of the Response of a SAW Structure with WO3 Layers on Action of Carbon Monoxide." Archives of Acoustics 40, no. 1 (March 1, 2015): 19–24. http://dx.doi.org/10.1515/aoa-2015-0003.

Повний текст джерела
Анотація:
Abstract The paper presents the results of an analysis of gaseous sensors based on a surface acoustic wave (SAW) by means of the equivalent model theory. The applied theory analyzes the response of the SAW sensor in the steady state affected by carbon monoxide (CO) in air. A thin layer of WO3 has been used as a sensor layer. The acoustical replacing impedance of the sensor layer was used, which takes into account the profile of the concentration of gas molecules in the layer. Thanks to implementing the Ingebrigtsen equation, the authors determined analytical expressions for the relative changes of the velocity of the surface acoustic wave in the steady state. The results of the analysis have shown that there is an optimum thickness of the layer of CO sensor at which the acoustoelectric effect (manifested here as a change in the acoustic wave velocity) is at its highest. The theoretical results were verified and confirmed experimentally
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sonner, Maximilian M., Farhad Khosravi, Lisa Janker, Daniel Rudolph, Gregor Koblmüller, Zubin Jacob, and Hubert J. Krenner. "Ultrafast electron cycloids driven by the transverse spin of a surface acoustic wave." Science Advances 7, no. 31 (July 2021): eabf7414. http://dx.doi.org/10.1126/sciadv.abf7414.

Повний текст джерела
Анотація:
Spin-momentum locking is a universal wave phenomenon promising for applications in electronics and photonics. In acoustics, Lord Rayleigh showed that surface acoustic waves exhibit a characteristic elliptical particle motion strikingly similar to spin-momentum locking. Although these waves have become one of the few phononic technologies of industrial relevance, the observation of their transverse spin remained an open challenge. Here, we observe the full spin dynamics by detecting ultrafast electron cycloids driven by the gyrating electric field produced by a surface acoustic wave propagating on a slab of lithium niobate. A tubular quantum well wrapped around a nanowire serves as an ultrafast sensor tracking the full cyclic motion of electrons. Our acousto-optoelectrical approach opens previously unknown directions in the merged fields of nanoacoustics, nanophotonics, and nanoelectronics for future exploration.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Huang, Jian, Yuanyuan Li, Bei Jiang, and Le Cao. "Analysis of measurement uncertainty of a surface acoustic wave micro-pressure sensor." Measurement and Control 52, no. 1-2 (January 2019): 116–21. http://dx.doi.org/10.1177/0020294018819554.

Повний текст джерела
Анотація:
As an important support for test and control projects, sensor’s performance is directly related to the accuracy of the measurement. To fully analyze the sources of measurement uncertainty for a surface acoustic wave micro-pressure sensor, in this study the Monte Carlo method and Guide to the Expression of Uncertainty in Measurement to evaluate measurement uncertainty of sensors are used, the sensing experiment was conducted and the measurement addition model was established. We determined the source of measurement uncertainty for a surface acoustic wave micro-pressure sensor. The results show that the Monte Carlo method can obtain a more reliable and accurate inclusion interval in the measurement uncertainty evaluation of a surface acoustic wave micro-pressure sensor.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Jose, K. A., S. Gangadharan, V. V. Varadan, and V. K. Varadan. "Wireless surface acoustic wave ice sensor." Journal of the Acoustical Society of America 108, no. 5 (November 2000): 2599. http://dx.doi.org/10.1121/1.4743676.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Joshi, S. G. "Surface-acoustic-wave (SAW) flow sensor." IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 38, no. 2 (March 1991): 148–54. http://dx.doi.org/10.1109/58.68472.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Kurosawa, Minoru, Yoshimitsu Fukuda, Masaya Takasaki, and Toshiro Higuchi. "A surface-acoustic-wave gyro sensor." Sensors and Actuators A: Physical 66, no. 1-3 (April 1998): 33–39. http://dx.doi.org/10.1016/s0924-4247(97)01713-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Beck, K., T. Kunzelmann, M. von Schickfus, and S. Hunklinger. "Contactless surface acoustic wave gas sensor." Sensors and Actuators A: Physical 76, no. 1-3 (August 1999): 103–6. http://dx.doi.org/10.1016/s0924-4247(98)00359-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Feng, Yang, Haoda Yu, Wenbo Liu, Keyong Hu, Shuifa Sun, Zhen Yang, and Ben Wang. "Grooving and Absorption on Substrates to Reduce the Bulk Acoustic Wave for Surface Acoustic Wave Micro-Force Sensors." Micromachines 15, no. 5 (May 9, 2024): 637. http://dx.doi.org/10.3390/mi15050637.

Повний текст джерела
Анотація:
Improving measurement accuracy is the core issue with surface acoustic wave (SAW) micro-force sensors. An electrode transducer can stimulate not only the SAW but also the bulk acoustic wave (BAW). A portion of the BAW can be picked up by the receiving transducer, leading to an unwanted or spurious signal. This can harm the device’s frequency response characteristics, thereby potentially reducing the precision of the micro-force sensor’s measurements. This paper examines the influence of anisotropy on wave propagation, and it also performs a phase-matching analysis between interdigital transducers (IDTs) and bulk waves. Two solutions are shown to reduce the influence of BAW for SAW micro sensors, which are arranged with acoustic absorbers at the ends of the substrate and in grooving in the piezoelectric substrate. Three different types of sensors were manufactured, and the test results showed that the sidelobes of the SAW micro-force sensor could be effectively inhibited (3.32 dB), thereby enhancing the sensitivity and performance of sensor detection. The SAW micro-force sensor manufactured using the new process was tested and the following results were obtained: the center frequency was 59.83 MHz, the fractional bandwidth was 1.33%, the range was 0–1000 mN, the linearity was 1.02%, the hysteresis was 0.59%, the repeatability was 1.11%, and the accuracy was 1.34%.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Srinivasaraghavan Govindarajan, Rishikesh, Eduardo Rojas-Nastrucci, and Daewon Kim. "Surface Acoustic Wave-Based Flexible Piezocomposite Strain Sensor." Crystals 11, no. 12 (December 17, 2021): 1576. http://dx.doi.org/10.3390/cryst11121576.

Повний текст джерела
Анотація:
A surface acoustic wave (SAW), device composed of polymer and ceramic fillers, exhibiting high piezoelectricity and flexibility, has a wide range of sensing applications in the aerospace field. The demand for flexible SAW sensors has been gradually increasing due to their small size, wireless capability, low fabrication cost, and fast response time. This paper discusses the structural, thermal, and electrical properties of the developed sensor, based on different micro- and nano-fillers, such as lead zirconate titanate (PZT), calcium copper titanate (CCTO), and carbon nanotubes (CNTs), along with polyvinylidene fluoride (PVDF) as a polymer matrix. The piezocomposite substrate of the SAW sensor is fabricated using a hot press, while interdigital transducers (IDTs) are deposited through 3D printing. The piezoelectric properties are also enhanced using a non-contact corona poling technique under a high electric field to align the dipoles. Results show that the developed passive strain sensor can measure mechanical strains by examining the frequency shifts of the detected wave signals.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Liu, Huali, Zhixin Zhou, and Liang Lou. "Wireless Temperature Measurement for Curved Surfaces Based on AlN Surface Acoustic Wave Resonators." Micromachines 15, no. 5 (April 25, 2024): 562. http://dx.doi.org/10.3390/mi15050562.

Повний текст джерела
Анотація:
In this paper, we propose a novel method for temperature measurement using surface acoustic wave (SAW) temperature sensors on curved or irregular surfaces. We integrate SAW resonators onto flexible printed circuit boards (FPCBs) to ensure better conformity of the temperature sensor with the surface of the object under test. Compared to traditional rigid PCBs, FPCBs offer greater dynamic flexibility, lighter weight, and thinner thickness, which make them an ideal choice for making SAW devices working for temperature measurements under curved surfaces. We design a temperature sensor array consisting of three devices with different operating frequencies to measure the temperature at multiple points on the surface of the object. To distinguish between different target points in the sensor array, each sensor operates at a different frequency, and the operating frequency bands do not overlap. This differentiation is achieved using Frequency Division Multiple Access (FDMA) technology. Experimental results indicate that the frequency temperature coefficients of these sensors are −30.248 ppm/°C, −30.195 ppm/°C, and −30.115 ppm/°C, respectively. In addition, the sensor array enables wireless communication via antenna and transceiver circuits. This innovation heralds enhanced adaptability and applicability for SAW temperature sensor applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Jeng, Ming-Jer, Mukta Sharma, Ying-Chang Li, Yi-Chen Lu, Chia-Yu Yu, Chia-Lung Tsai, Shiang-Fu Huang, Liann-Be Chang, and Chao-Sung Lai. "Surface Acoustic Wave Sensor for C-Reactive Protein Detection." Sensors 20, no. 22 (November 19, 2020): 6640. http://dx.doi.org/10.3390/s20226640.

Повний текст джерела
Анотація:
A surface acoustic wave (SAW) sensor was investigated for its application in C-reactive protein (CRP) detection. Piezoelectric lithium niobate (LiNbO3) substrates were used to study their frequency response characteristics in a SAW sensor with a CRP sensing area. After the fabrication of the SAW sensor, the immobilization process was performed for CRP/anti-CRP interaction. The CRP/anti-CRP interaction can be detected as mass variations in the sensing area. These mass variations may produce changes in the amplitude of sensor response. It was clearly observed that a CRP concentration of 0.1 μg/mL can be detected in the proposed SAW sensor. A good fitting linear relationship between the detected insertion loss (amplitude) and the concentrations of CRP from 0.1 μg/mL to 1 mg/mL was obtained. The detected shifts in the amplitude of insertion loss in SAW sensors for different CRP concentrations may be useful in the diagnosis of risk of cardiovascular diseases.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Li, Yuanyuan, Wenke Lu, Changchun Zhu, Qinghong Liu, Haoxin Zhang, and Chenchao Tang. "Circuit Design of Surface Acoustic Wave Based Micro Force Sensor." Mathematical Problems in Engineering 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/701723.

Повний текст джерела
Анотація:
Pressure sensors are commonly used in industrial production and mechanical system. However, resistance strain, piezoresistive sensor, and ceramic capacitive pressure sensors possess limitations, especially in micro force measurement. A surface acoustic wave (SAW) based micro force sensor is designed in this paper, which is based on the theories of wavelet transform, SAW detection, and pierce oscillator circuits. Using lithium niobate as the basal material, a mathematical model is established to analyze the frequency, and a peripheral circuit is designed to measure the micro force. The SAW based micro force sensor is tested to show the reasonable design of detection circuit and the stability of frequency and amplitude.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Mukhin, Nikolay V. "Microfluidic Acoustic Metamaterial SAW Based Sensor." Journal of the Russian Universities. Radioelectronics 22, no. 4 (October 1, 2019): 75–81. http://dx.doi.org/10.32603/1993-8985-2019-22-4-75-81.

Повний текст джерела
Анотація:
Introduction. Microacoustic sensors based on surface acoustic wave (SAW) devices allow the sensor integration into a wafer based microfluidic analytical platforms such as lab-on-a-chip. Currently exist various approaches of application of SAW devices for liquid properties analysis. But this sensors probe only a thin interfacial liquid layer. The motivation to develop the new SAW-based sensor is to overcome this limitation. The new sensor introduced here uses acoustic measurements, including surface acoustic waves (SAW) and acoustic methamaterial sensor approaches. The new sensor can become the starting point of a new class of microsensor. It measures volumetric properties of liquid analytes in a cavity, not interfacial properties to some artificial sensor surface as the majority of classical chemical and biochemical sensors.Objective. The purpose of the work is to find solutions to overcome SAW-based liquid sensors limitations and the developing of a new sensor that uses acoustic measurements and includes a SAW device and acoustic metamaterial.Materials and methods. A theoretical analysis of sensor structure was carried out on the basis of numerical simulation using COMSOL Multiphysics software. Lithium niobate (LiNbO3) 127.86° Y-cut with wave propagation in the X direction was chosen as a substrate material. Microfluidic structure was designed as a set of rectangular shape channels. A method for measuring volumetric properties of liquids, based on SAW based fluid sensor concept, comprising the steps of: (a) providing sensor structure with the key elements: a SAW resonator, a high-Q set of liquid-filled cavities and intermediate layer with artificial elastic properties between them; (b) measuring of resonance frequency shift, associated with the resonance in liquid-filled cavity, in the response of weakly coupled resonators of SAW resonator loaded by periodic microfluidic structure; (c) determination of volumetric properties of the fluid on the basis of a certain relationship between the speed of sound in liquid, the resonant frequency of the set of liquid-filled cavities, and the geometry design of the cavity.Results. The new sensor approach is introduced. The eigenmodes of the sensor structure with a liquid analyte are carried out. The characteristic of sensor structure is determined. The key elements of introduced microfluidic sensor are a SAW structure, an acoustic metamaterial with a periodic set of microfluidic channels. The SAW device acts as electromechanical transducer. It excites surface waves propagating in the X direction lengthwise the periodic structure and detects the acoustic load generated by the microfluidic structure resonator. The origin of the sensor signal is a small frequency change caused by small variations of acoustic properties of the analyte within the set of microfluidic channels.Conclusion. The principle of the new microacoustic sensor, which can become the basis for creating a new class of microfluidic sensors, is shown.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Ma, Xiaoxin, Qiang Xiao, Yanping Fan, and Xiaojun Ji. "Design and analysis of SAW pressure sensing element based on IDT/AlN/Mo/diamond multilayered structure." Acta Acustica 6 (2022): 38. http://dx.doi.org/10.1051/aacus/2022038.

Повний текст джерела
Анотація:
The multilayer structure of surface acoustic wave sensor is an important development direction of surface acoustic wave devices in recent years. In this paper, the IDT/AlN/Mo/diamond structure of surface acoustic wave pressure sensing element is modeled and simulated. The influence of the thickness of AlN and IDT on pressure coefficient frequency and K2 were simulated and analyzed. The performance of surface acoustic wave pressure sensing element is compared when the metal layer is Mo, no metal layer and the metal layer is Pt. Finally, the relationship between frequency variation and pressure of the designed multilayer surface acoustic wave pressure sensing element is obtained. This research provides a good guidance for the design of surface acoustic wave pressure sensor.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Dong, Qi, Qutong Yang, Xiaoyang Liu, Shenghe Hu, Wenzhe Nie, Zhao Jiang, Xiaoming Fan, Jingting Luo, Ran Tao, and Chen Fu. "Ultra-High Frequency Surface Acoustic Wave Sensors for Temperature Detection." Micromachines 15, no. 1 (January 15, 2024): 135. http://dx.doi.org/10.3390/mi15010135.

Повний текст джерела
Анотація:
Highly sensitive surface acoustic wave (SAW) sensors have recently been recognized as a promising tool for various industrial and medical applications. However, existing SAW sensors generally suffer from a complex design, large size, and poor robustness. In this paper, we develop a simple and stable delay line ultra-high frequency (UHF) SAW sensor for highly sensitive detection of temperature. A Z-shaped delay line is specially designed on the piezoelectric substrate to improve the sensitivity and reduce the substrate size. Herein, the optimum design parameters of extremely short-pitch interdigital transducers (IDTs) are given by numerical simulations. The extremely short pitch gives the SAW sensor ultra-high operating frequency and consequently ultra-high sensitivity. Several experiments are conducted to demonstrate that the sensitivity of the Z-shaped SAW delay line sensor can reach up to 116.685°/°C for temperature detection. The results show that the sensor is an attractive alternative to current SAW sensing platforms in many applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Giffney, Timothy J., Y. H. Ng, and K. C. Aw. "A Surface Acoustic Wave Ethanol Sensor with Zinc Oxide Nanorods." Smart Materials Research 2012 (December 26, 2012): 1–4. http://dx.doi.org/10.1155/2012/210748.

Повний текст джерела
Анотація:
Surface acoustic wave (SAW) sensors are a class of piezoelectric MEMS sensors which can achieve high sensitivity and excellent robustness. A surface acoustic wave ethanol sensor using ZnO nanorods has been developed and tested. Vertically oriented ZnO nanorods were produced on a ZnO/128∘ rotated Y-cut LiNbO3 layered SAW device using a solution growth method with zinc nitrate, hexamethylenetriamine, and polyethyleneimine. The nanorods have average diameter of 45 nm and height of 1 μm. The SAW device has a wavelength of 60 um and a center frequency of 66 MHz at room temperature. In testing at an operating temperature of 270 with an ethanol concentration of 2300 ppm, the sensor exhibited a 24 KHz frequency shift. This represents a significant improvement in comparison to an otherwise identical sensor using a ZnO thin film without nanorods, which had a frequency shift of 9 KHz.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Chivukula, Venkata, Daumantas Ciplys, Michael Shur, and Partha Dutta. "ZnO nanoparticle surface acoustic wave UV sensor." Applied Physics Letters 96, no. 23 (June 7, 2010): 233512. http://dx.doi.org/10.1063/1.3447932.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Filipiak, J., L. Solarz, and G. Steczko. "Surface Acoustic Wave Vibration Sensor Electronic System." Acta Physica Polonica A 120, no. 4 (October 2011): 598–603. http://dx.doi.org/10.12693/aphyspola.120.598.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Haworth, John. "Inclined electrode surface acoustic wave substance sensor." Journal of the Acoustical Society of America 92, no. 5 (November 1992): 3024. http://dx.doi.org/10.1121/1.404339.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Liu, Bo, Xiao Chen, Hualin Cai, Mohammad Mohammad Ali, Xiangguang Tian, Luqi Tao, Yi Yang, and Tianling Ren. "Surface acoustic wave devices for sensor applications." Journal of Semiconductors 37, no. 2 (February 2016): 021001. http://dx.doi.org/10.1088/1674-4926/37/2/021001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Avramescu, Viorel V. "Vacuum sealed surface acoustic wave pressure sensor." Journal of the Acoustical Society of America 122, no. 3 (2007): 1311. http://dx.doi.org/10.1121/1.2781405.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Caron, J. J., R. B. Haskell, P. Benoit, and J. F. Vetelino. "A surface acoustic wave mercury vapor sensor." IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 45, no. 5 (September 1998): 1393–98. http://dx.doi.org/10.1109/58.726467.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Magee, Steven J. "Surface acoustic wave sensor methods and systems." Journal of the Acoustical Society of America 122, no. 1 (2007): 18. http://dx.doi.org/10.1121/1.2756395.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Scholl, G., F. Schmidt, and U. Wolff. "Surface Acoustic Wave Devices for Sensor Applications." physica status solidi (a) 185, no. 1 (May 2001): 47–58. http://dx.doi.org/10.1002/1521-396x(200105)185:1<47::aid-pssa47>3.0.co;2-q.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Memon, Maria Muzamil, Qiong Liu, Ali Manthar, Tao Wang, and Wanli Zhang. "Surface Acoustic Wave Humidity Sensor: A Review." Micromachines 14, no. 5 (April 27, 2023): 945. http://dx.doi.org/10.3390/mi14050945.

Повний текст джерела
Анотація:
The Growing demands for humidity detection in commercial and industrial applications led to the rapid development of humidity sensors based on different techniques. Surface acoustic wave (SAW) technology is one of these methods that has been found to provide a powerful platform for humidity sensing owing to its intrinsic features, including small size, high sensitivity, and simple operational mechanism. Similar to other techniques, the principle of humidity sensing in SAW devices is also realized by an overlaid sensitive film, which serves as the core element whose interaction with water molecules is responsible for overall performance. Therefore, most researchers are focused on exploring different sensing materials to achieve optimum performance characteristics. This article reviews sensing materials used to develop SAW humidity sensors and their responses based on theoretical aspects and experimental outcomes. Herein the influence of overlaid sensing film on the performance parameters of the SAW device, such as quality factor, signal amplitude, insertion loss, etc., is also highlighted. Lastly, a recommendation to minimize the significant change in device characteristics is presented, which we believe will be a good step for the future development of SAW humidity sensors.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Viespe, Dinca, Popescu-Pelin, and Miu. "Love Wave Surface Acoustic Wave Sensor with Laser-Deposited Nanoporous Gold Sensitive Layer." Sensors 19, no. 20 (October 16, 2019): 4492. http://dx.doi.org/10.3390/s19204492.

Повний текст джерела
Анотація:
Laser-deposited gold immobilization layers with different porosities were incorporated into Love Wave Surface Acoustic Wave sensors (LW-SAWs). Acetylcholinesterase (AChE) enzyme was immobilized onto three gold interfaces with different morphologies, and the sensor response to chloroform was measured. The response of the sensors to various chloroform concentrations indicates that their sensing properties (sensitivity, limit of detection) are considerably improved when the gold layers are porous, in comparison to a conventional dense gold layer. The results obtained can be used to improve properties of SAW-based biosensors by controlling the nanostructure of the gold immobilization layer, in combination with other enzymes and proteins, since the design of the present sensor is the same as that for a Love Wave biosensor.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Aktaş, Başak, Talha Şahin, Ersin Toptaş, Aydın Güllü, Ahmet Feyzioğlu, and Sezgin Ersoy. "Material selection in sensor design for additive manufacturing." Journal of Mechatronics and Artificial Intelligence in Engineering 4, no. 2 (December 30, 2023): 122–32. http://dx.doi.org/10.21595/jmai.2023.23794.

Повний текст джерела
Анотація:
Surface acoustic sensor technology plays a crucial role in numerous mechatronic systems as it enables the detection of physical interactions with the environment. These sensors, operating at micro scales, can be seamlessly integrated into various industrial applications. To harness their full potential, it is essential to establish a systematic approach for the design and manufacturing of these sensors to meet the demands of cutting-edge applications. This study focuses on creating a finite element analysis-based model, aiming to identify the most suitable Interdigital Transducer (IDT) material for the production of surface acoustic wave sensors using additive manufacturing techniques. By leveraging statistical methods, the research seeks to optimize material selection. The structural design parameters of the chosen material will then be utilized to evaluate the performance of the surface acoustic wave sensor. The study also delves into the prospective applications of this technology in diverse fields, shedding light on its promising future.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Alemayehu, Birhanu, Kaushik Annam, Eunsung Shin, and Guru Subramanyam. "Indium-Doped SnO2 Based Surface Acoustic Wave Gas Sensor with Ba0.6Sr0.4TiO3 Film." Crystals 14, no. 4 (April 12, 2024): 366. http://dx.doi.org/10.3390/cryst14040366.

Повний текст джерела
Анотація:
SnO2-based gas sensors have been widely synthesized and used for the detection of various hazardous gases. However, the use of doped SnO2 in sensing applications has recently attracted increased interest due to the formation of a synergistic effect between the dopant and the host. Moreover, in the case of a surface acoustic wave (SAW) sensor, the piezoelectric material used in the fabrication of the sensor plays a crucial role in defining the response of the SAW sensor. As a ferroelectric material, barium strontium titanate (Ba0.6Sr0.4TiO3) has recently been studied due to its intriguing dielectric and electromechanical properties. Its high acoustic velocity and coupling coefficient make it a promising candidate for the development of acoustic devices; however, its use as a piezoelectric material in SAW sensors is still in its infancy. In this paper, we present the design, fabrication and validation of an indium doped SnO2-based SAW gas sensor on Ba0.6Sr0.4TiO3 thin film for room temperature (RT) applications. Pulsed laser deposition was used to deposit thin films of Ba0.6Sr0.4TiO3 and indium-doped SnO2. Different characterization techniques were employed to analyze the morphology and crystallization of the films. The performance of the fabricated sensor was validated by exposing it to different concentrations of ethanol and then analyzing the recorded frequency shift. The sensor exhibited fast response (39 s) and recovery (50 s) times with a sensitivity of 9.9 MHz/Δ. Moreover, the sensor had good linear response and reproducibility. The fabricated indium-doped SnO2-based SAW gas sensor could be suitable for practical room temperature applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Miu, Dana, Izabela Constantinoiu, Cornelia Enache, and Cristian Viespe. "Effect of Pd/ZnO Morphology on Surface Acoustic Wave Sensor Response." Nanomaterials 11, no. 10 (October 2, 2021): 2598. http://dx.doi.org/10.3390/nano11102598.

Повний текст джерела
Анотація:
Laser deposition was used to obtain Pd/ZnO bilayers, which were used as sensing layers in surface acoustic wave (SAW) sensors. The effect of laser deposition parameters such as deposition pressure, laser energy per pulse, laser wavelength or pulse duration on the porosity of the Pd and ZnO films used in the sensors was studied. The effect of the morphology of the Pd and ZnO components on the sensor response to hydrogen was assessed. Deposition conditions producing more porous films lead to a larger sensor response. The morphology of the ZnO component of the bilayer is decisive and has an influence on the sensor properties in the same order of magnitude as the use of a bilayer instead of a single Pd or ZnO layer. The effect of the Pd film morphology is considerably smaller than that of ZnO, probably due to its smaller thickness. This has implications in other bilayer material combinations used in such sensors and for other types of analytes.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Li, Yuanyuan, Meng Shao, Bei Jiang, and Le Cao. "Surface acoustic wave pressure sensor and its matched antenna design." Measurement and Control 52, no. 7-8 (June 21, 2019): 947–54. http://dx.doi.org/10.1177/0020294019857744.

Повний текст джерела
Анотація:
Interdigital transducer and signal transmission in surface acoustic wave pressure sensor design is one of the difficulties in sensor design. The transmission antenna is an important design indicator to determine the wireless function of the sensor. In this paper, we simulated the design of the interdigital transducer of surface acoustic wave pressure sensor through COMSOL and analyzed the relationship between the eigenfrequency of the single-pair interdigital model and the interdigital electrode. Then, we obtained the design of the interdigital electrode with error of 0.01 MHz. We also simulated the size, bandwidth, impedance matching, and other parameters of antenna through high frequency structure simulator, and a matching dipole transmission antenna was designed and miniaturized. When the bandwidth is satisfied, the control matching impedance error is within [Formula: see text], and it is verified that the antenna satisfies the signal transmission requirement of the surface acoustic wave pressure sensor. This design provides a more comprehensive approach to the design of interdigital transducers and signal transmission for the field of surface acoustic wave measurement pressure.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Pan, Yong, Qin Molin, Tengxiao Guo, Lin Zhang, Bingqing Cao, Junchao Yang, Wen Wang, and Xufeng Xue. "Wireless passive surface acoustic wave (SAW) technology in gas sensing." Sensor Review 41, no. 2 (March 22, 2021): 135–43. http://dx.doi.org/10.1108/sr-03-2020-0061.

Повний текст джерела
Анотація:
Purpose This paper aims to give an overview about the state of wireless passive surface acoustic wave (SAW) gas sensor used in the detection of chemical vapor. It also discusses a variety of different architectures including delay line and array sensor for gas detection, and it is considered that this technology has a good application prospect. Design/methodology/approach The authors state the most of the wireless passive SAW methods used in gas sensing, such as CO2, CO, CH4, C2H4, NH3, NO2, et al., the sensor principles, design procedures and technological issues are discussed in detail; their advantages and disadvantages are also summarized. In conclusion, it gives a prospect of wireless passive SAW sensor applications and proposes the future research field might lie in the studying of many kinds of harmful gases. Findings In this paper, the authors will try to cover most of the important methods used in gas sensing and their recent developments. Although wireless passive SAW sensors have been used successfully in harsh environments for the monitoring of temperature or pressure, the using in chemical gases are seldom reported. This review paper gives a survey of the present state of wireless passive SAW sensor in gas detection and suggests new and exciting perspectives of wireless passive SAW gas sensor technology. Research limitations/implications The authors will review most of the methods used in wireless passive SAW sensor and discuss the current research status and development trend; the potential application in future is also forecasted. Originality/value The authors will review most of the methods used in wireless passive SAW sensor and discuss the current research status and development trend; the potential application in future is also forecasted.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Hu, You Wang, Ji Wen Xiang, and Xiao Yan Sun. "Temperature Compensation Experiment of Love Wave Sensor." Advanced Materials Research 490-495 (March 2012): 673–77. http://dx.doi.org/10.4028/www.scientific.net/amr.490-495.673.

Повний текст джерела
Анотація:
Love wave sensor is one of the most promising SAW sensors for liquid detection, because of acoustic energy can be confined in sensing surface by waveguide layer of Love wave sensor, which resulted in higher sensitivity to surface perturbations. Temperature coefficient of frequency (TCF) has deep effect on effective sensitivity of Love wave sensor. In order to improve the performance of Love wave sensor, the theoretical relationship of TCF on substrates and guiding layers temperature properties is researched. It found that reasonable combinations of substrates and guiding layers was a feasible method to obtain effective temperature compensation, and experimental TCF of sensitive element is reduced to 0.75ppm/°C by this method.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Sun, Ping, Xing Feng, and Zhong Hua Ou. "Simulation of a Surface Acoustic Wave Methane Sensor." Applied Mechanics and Materials 373-375 (August 2013): 354–57. http://dx.doi.org/10.4028/www.scientific.net/amm.373-375.354.

Повний текст джерела
Анотація:
Study on the working principle of the surface acoustic wave (SAW) methane sensor. Establish the physical and chemical model of sensitive mechanism based on the mass-effect and the adsorption characteristics of gas on the sensitive membrane. The linear solvation energy relationship (LSER) has been developed to describe and quantify these various interactions. Simulate the mass-sensitive gas sensor based on COMSOL multiphysics software. The simulation significantly reduces the amount of prototype experiments, sensor development cycle and development costs.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Ying, Zhi Hua, Jia Hu, Cong Ping Wu, Yi Qing Yang, Liang Zheng, and Kai Xin Song. "Bilayer Structure Based Surface Acoustic Wave Sensor for Formaldehyde Detection." Advanced Materials Research 664 (February 2013): 986–89. http://dx.doi.org/10.4028/www.scientific.net/amr.664.986.

Повний текст джерела
Анотація:
This study contributes to the measurements of formaldehyde at room temperature. A bilayer structure based surface acoustic wave (SAW) sensor has been fabricated and experimentally studied. The coating materials carbon nanotubes (CNTs) and poly (4-vinylphenol) (P4VP) were deposited by a spray-painting method onto SAW sensors configured as 433.92MHz two-port resonator-based oscillators. The results display high sensitivity and entirely reversibility. The response and recovery times of the bilayer structure are very short, and the response values are obviously greater than plus of the two single layers. Some sensing mechanisms between analytes and the bilayer structure SAW sensor will be discussed preliminarily.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Voinova, Marina V. "On Mass Loading and Dissipation Measured with Acoustic Wave Sensors: A Review." Journal of Sensors 2009 (2009): 1–13. http://dx.doi.org/10.1155/2009/943125.

Повний текст джерела
Анотація:
We summarize current trends in the analysis of physical properties (surface mass density, viscosity, elasticity, friction, and charge) of various thin films measured with a solid-state sensor oscillating in a gaseous or liquid environment. We cover three different types of mechanically oscillating sensors: the quartz crystal microbalance with dissipation (QCM-D) monitoring, surface acoustic wave (SAW), resonators and magnetoelastic sensors (MESs). The fourth class of novel acoustic wave (AW) mass sensors, namely thin-film bulk acoustic resonators (TFBARs) on vibrating membranes is discussed in brief. The paper contains a survey of theoretical results and practical applications of the sensors and includes a comprehensive bibliography.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Jiang, Jing Bo, Zuo Tao Ni, Si Ren Li, and De Jun Gong. "A Wave-Powered Technique for Water Column Profiling." Applied Mechanics and Materials 284-287 (January 2013): 1739–43. http://dx.doi.org/10.4028/www.scientific.net/amm.284-287.1739.

Повний текст джерела
Анотація:
A technique using surface wave energy to move a sensor platform up and down a mooring wire is introduced in this paper. It permits a complete vertical profile to be obtained with a single sensor, eliminating the need for multiple sensors on the mooring line. The sensor platform can be pre-programmed to dwell at depth for set periods of time. The platform can be configured to carry a variety of payloads including CTD, optical and acoustic sensors.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Wang, Wei Na, and Qing Fan. "Tire Pressure Monitoring System and Wireless Passive Surface Acoustic Wave Sensor." Applied Mechanics and Materials 536-537 (April 2014): 333–37. http://dx.doi.org/10.4028/www.scientific.net/amm.536-537.333.

Повний текст джерела
Анотація:
The TPMS can not only save fuel and protect the tire, but also make the driver more safety. Tire safety is attracting the driver's attention, the United States had developed laws to enforce the TPMS installation in the car and the deadline is in 2008. In this paper, the basic structure and the implement method of TPMS are introduced. The active sensors are already used in most of the TPMS applications. The SAW theory and some wireless passive SAW pressure and temperature sensors which suit for the TPMS application are illustrated, because the passive sensor is becoming the focus in the TPMS research field. Passive SAW sensor is the good choice for TPMS, according to its wireless, passive, zero age rate, small size etc. The wireless passive SAW TPMS is one of the most important research direction. In this paper, some kinds of passive SAW sensor are introduced, which are used in TPMS.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Dhagat, Vishal M., Jonathan Kahl, Devendra Kalonia, and Faquir C. Jain. "Characterization of Protein Using Two-Port STW Resonators." International Journal of High Speed Electronics and Systems 24, no. 03n04 (September 2015): 1520010. http://dx.doi.org/10.1142/s0129156415200104.

Повний текст джерела
Анотація:
A surface acoustic wave (SAW) is an acoustic, mechanical wave that propagates on the surface of a piezoelectric crystal. Coupling to any medium that interacts the surface strongly affects the velocity and amplitude of the wave. In a typical surface transversal wave (STW) resonator, an electrical signal is converted at interdigital transducers (IDT’s) into polarized transversal waves travelling parallel to the sensing surface, utilizing the piezoelectric properties of the substrate material. This approach is very sensitive to biological interactions on the sensor surface. Typically, the wave transmitted is confined to the surface of the substrate. Thus, the acoustic energy is concentrated within the guiding layer rather than in the bulk of the piezoelectric material. The sensitivity of the sensor for surface modifications is increased, by the choice of material, and the design of the guiding layer as well as by the structure of the sensor and the transducers. The output signals are transformed in terms of their frequency or phase with respect to the input signals, due to the interaction of the input signal with the fluid contacting the sensitive surface. Surface acoustic wave (SAW) devices hold a promise in providing ultra fast sensing platform. Research focus is on studying methods to characterize conductance, susceptance, viscosity, and other properties of protein samples, like albumin using Two-Port Surface Transverse Wave (STW) resonator devices quickly and inexpensively using nano-liter volume. When a mass is deposited on the electrode the resultant decrease in resonant frequency can detect mass changes at nanogram level. We propose to advance the sensitivity of the characterization by use of quartz Two-Port STW resonator since they can operate at much higher frequency than bulk wave oscillators.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Zhang, Kun, Wen Di Wang, and Zhao Mei Qiu. "Research on the Surface Acoustic Wave Temperature Sensor." Applied Mechanics and Materials 543-547 (March 2014): 1266–69. http://dx.doi.org/10.4028/www.scientific.net/amm.543-547.1266.

Повний текст джерела
Анотація:
This paper puts forward an idea of designing a surface acoustic wave (SAW) sensor to provide a research basis for subsequent researchers. We have made a SAW temperature sensor based on this idea. The experimental results demonstrated the feasibility of the idea, and shown that the frequency-temperature characteristic of the sensing unit is good and the temperature measurement accuracy of the testing unit is high.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Hamamed, Najah, Charfeddine Mechri, Taoufik Mhammedi, Nourdin Yaakoubi, Rachid El Guerjouma, Slim Bouaziz, and Mohamed Haddar. "Comparative Study of Leak Detection in PVC Water Pipes Using Ceramic, Polymer, and Surface Acoustic Wave Sensors." Sensors 23, no. 18 (September 7, 2023): 7717. http://dx.doi.org/10.3390/s23187717.

Повний текст джерела
Анотація:
The detection and location of pipeline leakage can be deduced from the time arrival leak signals measured by acoustic sensors placed at the pipe. Ongoing research in this field is primarily focused on refining techniques for accurately estimating the time delays. This enhancement predominantly revolves around the application of advanced signal processing methods. Additionally, researchers are actively immersed in the utilization of machine learning approaches on vibro-acoustic data files, to determine the presence or absence of leaks. Less attention has been given to evaluating the sensitivity, performance, and overall effectiveness of these sensors in leak detection; although acoustic methods have been successfully used for leak detection in metallic pipes, they are less effective in plastic pipes due to the high attenuation of leak noise signals. The primary thrust of this research centers on identifying sensors that not only possess sensitivity but also exhibit high efficiency. To accomplish this goal, we conducted an exhaustive evaluation of the performance of three distinct categories of acoustic sensors employed for detecting water leaks in plastic pipes: specifically, lead zirconate titanate (PZT) sensors, polyvinylidene fluoride (PVDF) sensors, and surface acoustic wave (SAW) sensors. Our evaluation encompassed the performance of PVDF and SAW sensors in leak detection, comparing them to PZT sensors under a variety of conditions, including different leak sizes, flow rates, and distances from the leak. The results showed that all three sensors, when they were placed in the same position, were able to detect water leaks in plastic pipes with different sensitivities. For small leaks (1 mm, 2 mm), the PVDF sensor showed the greatest sensitivity (0.4 dB/L/h, 0.33 dB/L/h), followed by the SAW sensor (0.16 dB/L/h, 0.14 dB/L/h), and finally the PZT (0.13 dB/L/h, 0.12 dB/L/h). Similarly, for larger leaks (4 mm, 10 mm), the PVDF sensor continued to show superior sensitivity (0.2 dB/L/h, 0.17 dB/L/h), followed by the SAW sensor (0.13 dB/L/h, 0.11), and finally the PZT sensor (0.12 dB/L/h, 0.1 dB/L/h), outperforming the PZT sensor. This suggests that SAW and PVDF sensors, have the potential to serve as valuable, cost-effective alternatives to traditional commercial leak noise transducers. The outcomes of this comparative study involving three acoustic sensors hold the potential to advance the development of robust and dependable systems for the detection of water leaks in plastic pipelines.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Shiokawa, Showko, and Jun Kondoh. "Surface Acoustic Wave Sensors." Japanese Journal of Applied Physics 43, no. 5B (May 28, 2004): 2799–802. http://dx.doi.org/10.1143/jjap.43.2799.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Sinha, Bikash K., and Michel Gouilloud. "Surface acoustic wave sensors." Journal of the Acoustical Society of America 78, no. 5 (November 1985): 1932. http://dx.doi.org/10.1121/1.392695.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії