Добірка наукової літератури з теми "Suppressive myeloid cells"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Suppressive myeloid cells".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Suppressive myeloid cells"
Van Valckenborgh, Els, Jo Van Ginderachter, Kiavash Movahedi, Eline Menu, and Karin Vanderkerken. "Myeloid-Derived Suppressor Cells in Multiple Myeloma." Blood 114, no. 22 (November 20, 2009): 2794. http://dx.doi.org/10.1182/blood.v114.22.2794.2794.
Повний текст джерелаJoseph, Ann Mary, Dominique Parker, Tarik Hawkins, Nicholas Ciavattone, and Eduardo Davila. "TLR-stimulated T cells acquire resistance to MDSC mediated suppression." Journal of Immunology 198, no. 1_Supplement (May 1, 2017): 205.15. http://dx.doi.org/10.4049/jimmunol.198.supp.205.15.
Повний текст джерелаParker, Katherine, and Suzanne Ostrand-Rosenberg. "HMGB1: a regulator of myeloid-derived suppressor cell potency? (66.37)." Journal of Immunology 186, no. 1_Supplement (April 1, 2011): 66.37. http://dx.doi.org/10.4049/jimmunol.186.supp.66.37.
Повний текст джерелаDu, Hong, Xinchun Ding, and Cong Yan. "Metabolic reprogramming of myeloid-derived suppressive cells." Oncoscience 4, no. 3-4 (April 28, 2017): 29–30. http://dx.doi.org/10.18632/oncoscience.349.
Повний текст джерелаOliver, Liliana, Rydell Alvarez, Raquel Diaz, Anet Valdés, Sean H. Colligan, Michael J. Nemeth, Danielle Y. F. Twum, et al. "Mitigating the prevalence and function of myeloid-derived suppressor cells by redirecting myeloid differentiation using a novel immune modulator." Journal for ImmunoTherapy of Cancer 10, no. 9 (September 2022): e004710. http://dx.doi.org/10.1136/jitc-2022-004710.
Повний текст джерелаFrosch, Jennifer, Ilia Leontari, and John Anderson. "Combined Effects of Myeloid Cells in the Neuroblastoma Tumor Microenvironment." Cancers 13, no. 7 (April 6, 2021): 1743. http://dx.doi.org/10.3390/cancers13071743.
Повний текст джерелаTakacs, Gregory, Christian Kreiger, Defang Luo, Guimei Tian, Loic Deleyrolle, and Jeffrey Harrison. "IMMU-21. GLIOMA-DERIVED FACTORS RECRUIT AND INDUCE AN IMMUNE SUPPRESSIVE PHENOTYPE IN BONE MARROW-DERIVED CCR2+ MYELOID CELLS." Neuro-Oncology 24, Supplement_7 (November 1, 2022): vii135—vii136. http://dx.doi.org/10.1093/neuonc/noac209.519.
Повний текст джерелаTopal Gorgun, Gullu, Hiroto Ohguchi, Teru Hideshima, Yu-Tzu Tai, Noopur Raje, Nikhil C. Munshi, Paul G. Richardson, Jacob P. Laubach, and Kenneth C. Anderson. "Inhibition Of Myeloid Derived Suppressor Cells (MDSC) In The Multiple Myeloma Bone Marrow Microenvironment." Blood 122, no. 21 (November 15, 2013): 3089. http://dx.doi.org/10.1182/blood.v122.21.3089.3089.
Повний текст джерелаPetersson, Julia, Sandra Askman, Åsa Pettersson, Stina Wichert, Thomas Hellmark, Åsa C. M. Johansson, and Markus Hansson. "Bone Marrow Neutrophils of Multiple Myeloma Patients Exhibit Myeloid-Derived Suppressor Cell Activity." Journal of Immunology Research 2021 (August 6, 2021): 1–10. http://dx.doi.org/10.1155/2021/6344344.
Повний текст джерелаD’Amico, Lucia, Sahil Mahajan, Aude-Hélène Capietto, Zhengfeng Yang, Ali Zamani, Biancamaria Ricci, David B. Bumpass, et al. "Dickkopf-related protein 1 (Dkk1) regulates the accumulation and function of myeloid derived suppressor cells in cancer." Journal of Experimental Medicine 213, no. 5 (April 4, 2016): 827–40. http://dx.doi.org/10.1084/jem.20150950.
Повний текст джерелаДисертації з теми "Suppressive myeloid cells"
Benner, Brooke Nicole. "Enhancing Immunotherapy for Cancer by Targeting Suppressive Myeloid cells." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1583766367545941.
Повний текст джерелаOrtiz, Myrna Lillian. "Immature Myeloid Cells Promote Tumor Formation Via Non-Suppressive Mechanism." Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5089.
Повний текст джерелаCollazo, Ruiz Michelle Marie. "The Role of Tumor Suppressors, SHIP and Rb, in Immune Suppressive Cells." Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/4016.
Повний текст джерелаZwing, Natalie [Verfasser], Falk [Akademischer Betreuer] Nimmerjahn, Falk [Gutachter] Nimmerjahn, and Gerhard [Gutachter] Krönke. "Spatial Distribution of Suppressive Myeloid Cells and Cytotoxic T Cells in Colorectal Cancer / Natalie Zwing ; Gutachter: Falk Nimmerjahn, Gerhard Krönke ; Betreuer: Falk Nimmerjahn." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2020. http://d-nb.info/123423856X/34.
Повний текст джерелаBoyer, Thomas. "Impact des cellules myéloïdes immunosuppressives dans l’induction de cellules souches cancéreuses." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0221.
Повний текст джерелаThe tumor microenvironment is strongly influenced by myeloid cells, with macrophages, neutrophils, and monocytes being major representatives. Research over the past decades has shown that almost all tumors are infiltrated in myeloid cells, making it impossible for “cold” tumors to exist with respect to these cells. Moreover, results from numerous clinical studies focusing on the myeloid immune compartment clearly show that these cells are almost universally associated with poor clinical outcome in patients, motivating a better understanding of their biology and efforts to target them. However, a central question has long been to understand what determines the functions of these cells in cancer.During emergency myelopoiesis, pathological activation of myeloid progenitors gives rise to myeloid-derived suppressor cells (MDSC), a term that encompasses a group of immature cells with a common property: immunosuppression. Indeed, MDSC play a crucial role in regulating antitumor immune responses but also promote tumor progression through non-immunological mechanisms, such as influencing angiogenesis and the extracellular matrix, resistance to therapies, and the preparation of the pre-metastatic niche.The preparation of the pre-metastatic niche is essential for the emergence of metastases at distant sites from the primary tumor, the leading cause of cancer-related deaths. These metastases are initiated by a subpopulation of tumor cells with stem-like properties: cancer stem cells (CSC). These cells, also known as Tumor-Initiating cells (TIC), encompass a minor subpopulation within the tumor and are characterized by intrinsic properties such as self-renewal potential, asymmetric division, and the ability to induce a new, heterogeneous tumor. Highly plastic, CSC transition from one cellules state to another through the epithelial-to-mesenchymal transition (EMT) or its counterpart, the mesenchymal-to-epithelial transition (MET). Therefore, a better understanding and specific treatment strategies targeting CSC could transform clinical management and significantly improve patient survival rates.The complexity of the tumor microenvironment, reflected by the presence of numerous actors and their interactions, exerts strong selective pressure on cancer cells and provides a favorable environment for the growth of CSC. Furthermore, the clinical implications associated with the issues of MDSC and CSC drive the emergence of studies on their reciprocal interactions, but the limitations in detecting these two actors make the evaluation and understanding of their interaction mechanisms diffuse and incomplete.In this thesis, we studied the role of suppressive myeloid cells in the induction of cancer cells with stemness properties. We have shown Human Monocyte Derived Suppressive Cells (HuMoSC) generated in vitro, but also their murine and patient derived equivalent promoted the apparition of CSC. Our results have highlighted a stemness induction mediated through a direct cell-to-cell contact and involving membrane-bound TGF-β. Finally, transcriptomic study of myeloid and cancer cells allowed us to identify a subpopulation of myeloid cells, expressing the glycoprotein CD52, as responsible for the immunosuppressive properties and the plasticity of CSC towards a mesenchymal-like phenotype
Ricchetti, Giuseppe Antonio. "An examination of the suppression of IL-10 suppression of TNF in myeloid cells." Thesis, Imperial College London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.427864.
Повний текст джерелаKo, Jennifer S. "Mechanism of Myeloid-Derived Suppressor Cell Accumulation in Cancer and Susceptibility to Reversal by Sunitinib." Case Western Reserve University School of Graduate Studies / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=case1259869673.
Повний текст джерелаCabbage, Sarah E. "Reversible regulatory T cell-mediated suppression of myelin basic protein-specific T cells /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/5034.
Повний текст джерелаCorzo, Cesar Alexander. "Regulatory Mechanism of Myeloid Derived Suppressor Cell Activity." Scholar Commons, 2010. http://scholarcommons.usf.edu/etd/3561.
Повний текст джерелаTUMINO, NICOLA. "In HIV+ patients, Myeloid Derived Suppressor Cells induce T cell anergy by suppressing CD3ζ expression through ELF-1 inhibition". Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2013. http://hdl.handle.net/2108/211078.
Повний текст джерелаЧастини книг з теми "Suppressive myeloid cells"
Derré, Laurent. "Myeloid-Derived Suppressive Cells in the Tumor Contexture." In Handbook of Cancer and Immunology, 1–18. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-030-80962-1_381-1.
Повний текст джерелаPapaioannou, Antonis Stylianos, Athina Boumpas, Miranta Papadopoulou, Aikaterini Hatzioannou, Themis Alissafi, and Panayotis Verginis. "Measuring Suppressive Activity and Autophagy in Myeloid-Derived Suppressor Cells." In Methods in Molecular Biology, 85–98. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-1060-2_9.
Повний текст джерелаMa, Ge, Ping-Ying Pan, and Shu-Hsia Chen. "Myeloid-Derived Suppressive Cells and Their Regulatory Mechanisms in Cancer." In Innate Immune Regulation and Cancer Immunotherapy, 231–50. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9914-6_13.
Повний текст джерелаBueno, Valquiria, and Graham Pawelec. "Myeloid-Derived Suppressive Cells in Ageing and Age-Related Diseases." In Healthy Ageing and Longevity, 53–64. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87532-9_4.
Повний текст джерелаRodríguez, Paulo C., and Augusto C. Ochoa. "Arginine Metabolism, a Major Pathway for the Suppressive Function of Myeloid-Derived Suppressor Cells." In Tumor-Induced Immune Suppression, 369–86. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4899-8056-4_13.
Повний текст джерелаSerafini, Paolo, and Vincenzo Bronte. "Myeloid-Derived Suppressor Cells in Tumor-Induced T Cell Suppression and Tolerance." In Tumor-Induced Immune Suppression, 99–150. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4899-8056-4_4.
Повний текст джерелаZilio, Serena, Giacomo Desantis, Mariacristina Chioda, and Vincenzo Bronte. "Tumour-Induced Immune Suppression by Myeloid Cells." In Tumour-Associated Macrophages, 49–62. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0662-4_4.
Повний текст джерелаVlachou, Katerina, and Panayotis Verginis. "In Vitro Suppression of CD4+ T-Cell Responses by Murine and Human Myeloid-Derived Suppressor Cells." In Methods in Molecular Biology, 119–28. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-8938-6_9.
Повний текст джерелаMicouin, Anne, and Brigitte Bauvois. "Expression of Dipeptidylpeptidase IV (DPP IV/CD26) Activity on Human Myeloid and B Lineage Cells, and Cell Growth Suppression by the Inhibition of DPP IV Activity." In Advances in Experimental Medicine and Biology, 201–5. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-9613-1_26.
Повний текст джерелаOstrand-Rosenberg, Suzanne. "Immune Suppressive Myeloid-Derived Suppressor Cells in Cancer." In Encyclopedia of Immunobiology, 512–25. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-12-374279-7.17015-8.
Повний текст джерелаТези доповідей конференцій з теми "Suppressive myeloid cells"
Yan, Cong, Xinchun Ding, Lingyan Wu, and Hong Du. "Abstract A12: Establishment of myeloid lineage cell line that resembles myeloid-derived suppressive cells." In Abstracts: AACR Special Conference: Metabolism and Cancer; June 7-10, 2015; Bellevue, WA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1557-3125.metca15-a12.
Повний текст джерелаMarx, M., S. Troschke-Meurer, M. Zumpe, H. Lode, and N. Siebert. "Blockade of suppressive myeloid cells is effective against neuroblastoma." In 32. Jahrestagung der Kind-Philipp-Stiftung für pädiatrisch onkologische Forschung. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1687139.
Повний текст джерелаBouchkouj, Najat, Haiying Qin, Susana Galli, John Buckley, Joanna L. Meadors, Shannon Larabee, Crystall L. Mackall, Maria G. Tsokos, and Terry J. Fry. "Abstract 1332: Pediatric sarcomas are infiltrated with myeloid derived suppressive cells." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-1332.
Повний текст джерелаCondamine, Thomas C., Vinit Kumar, and Dmitry I. Gabrilovich. "Abstract 3176: Linking suppressive activity and ER-Stress in Myeloid Derived Suppressor Cells." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-3176.
Повний текст джерелаMarkowitz, Joseph, Taylor R. Brooks, and William E. Carson. "Abstract 3663: Immune suppressive myeloid cells expansion in vitro requires a simulated tumor microenvironment." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-3663.
Повний текст джерелаBodogai, Monica, Catalina Lee Chang, and Arya Biragyn. "Abstract 3671: Myeloid-derived suppressive cells require education from tumor-evoked Bregs to mediate metastasis." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-3671.
Повний текст джерелаBaugh, Aaron G., Edgar Gonzalez, Sabrina K. Zhong, Matthew B. Jacobo, Kaliya Acevedo, Jesse Kreger, Yingtong Liu, Adam L. MacLean, and Evanthia T. Roussos Torres. "874 Epigenetic modulation of myeloid derived suppressor cells decreases suppressive signaling through the STAT3 pathway." In SITC 39th Annual Meeting (SITC 2024) Abstracts, A988. BMJ Publishing Group Ltd, 2024. http://dx.doi.org/10.1136/jitc-2024-sitc2024.0874.
Повний текст джерелаTakacs, Gregory, Julia Garcia, Alexandra Sherman, Christian Kreiger, Defang Luo, and Jeffrey Harrison. "987 Glioma-derived factors induce an immune suppressive phenotype in bone marrow-derived CCR2+ myeloid cells." In SITC 38th Annual Meeting (SITC 2023) Abstracts. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jitc-2023-sitc2023.0987.
Повний текст джерелаMarkowitz, Joseph, Bonnie K. Paul, Taylor R. Brooks, Lai Wei, Jeff Pan, Katherine L. Martin, Eric Luedke, et al. "Abstract 456: Immune-suppressive myeloid cells are induced during disease progression in patients with advanced pancreatic adenocarcinoma." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-456.
Повний текст джерелаHamilton, Melisa J., Momir Bosiljcic, Bryant T. Harbourne, Nancy E. LePard, Elizabeth C. Halvorsen, Ada Y. Kim, Judit P. Banath, Gerald Krystal, and Kevin L. Bennewith. "Abstract A9: Immune suppressive myeloid cells induced by hypoxic mammary tumor cells persist after primary tumor resection and promote metastatic growth." In Abstracts: AACR Special Conference on Tumor Invasion and Metastasis - January 20-23, 2013; San Diego, CA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.tim2013-a9.
Повний текст джерела