Добірка наукової літератури з теми "Superionic Glasses"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Superionic Glasses".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Superionic Glasses"

1

LIU, C., H. SUNDAR, and C. ANGELL. "All-halide superionic glasses." Solid State Ionics 18-19 (January 1986): 442–48. http://dx.doi.org/10.1016/0167-2738(86)90157-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ingram, Malcolm D. "Superionic glasses: theories and applications." Current Opinion in Solid State and Materials Science 2, no. 4 (August 1997): 399–404. http://dx.doi.org/10.1016/s1359-0286(97)80079-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mercier, R., M. Tachez, J. P. Malugani, and C. Rousselot. "Microstructure of silver superionic glasses." Materials Chemistry and Physics 23, no. 1-2 (August 1989): 13–27. http://dx.doi.org/10.1016/0254-0584(89)90014-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Aniya, Masaru. "Correlating the Annealing Temperature Dependence of the Structural Inhomogeneity and the Diffusion in Zr-Ti-Cu-Ni-Be Glassy System." Solid State Phenomena 330 (April 12, 2022): 11–15. http://dx.doi.org/10.4028/p-m5a30s.

Повний текст джерела
Анотація:
The relation between the annealing temperature dependence of the structural inhomogeneity and the diffusion coefficient in a metallic glass forming system Zr-Ti-Cu-Ni-Be is studied by using reported experimental data. It is shown that the diffusion coefficient increases with the increase of the correlation length of the structural inhomogeneity. Interestingly, the result found resembles the behavior known in superionic glasses. A discussion on the found relationship is given by exploiting the model for the superionic glasses proposed by the author. Based on the model, an inhomogeneity dependent diffusivity maximum is predicted.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bartolotta, A. "Low-energy vibrations in superionic glasses." Solid State Ionics 105, no. 1-4 (January 1, 1998): 97–102. http://dx.doi.org/10.1016/s0167-2738(97)00454-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Minami, Tsutomu. "Recent progress in superionic conducting glasses." Journal of Non-Crystalline Solids 95-96 (December 1987): 107–18. http://dx.doi.org/10.1016/s0022-3093(87)80103-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Russina, M., M. Arai, E. Kartini, F. Mezei, and M. Nakamura. "Mobile cation motion in superionic glasses." Physica B: Condensed Matter 385-386 (November 2006): 240–42. http://dx.doi.org/10.1016/j.physb.2006.05.055.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dianoux, A. J., M. Tachez, R. Mercier, and J. P. Malugani. "Neutron scattering by superionic conductor glasses." Journal of Non-Crystalline Solids 131-133 (June 1991): 973–80. http://dx.doi.org/10.1016/0022-3093(91)90711-e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pradel, A., and M. Ribes. "Ion transport in superionic conducting glasses." Journal of Non-Crystalline Solids 172-174 (September 1994): 1315–23. http://dx.doi.org/10.1016/0022-3093(94)90658-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Marple, M., D. C. Kaseman, S. Kim, and S. Sen. "Superionic conduction of silver in homogeneous chalcogenide glasses." Journal of Materials Chemistry A 4, no. 3 (2016): 861–68. http://dx.doi.org/10.1039/c5ta07301d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Superionic Glasses"

1

Džiaugys, Andrius. "Influence of impurities on dielectric properties of ferroelectric and superionic crystals." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2011. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20110628_134612-56944.

Повний текст джерела
Анотація:
Nowadays the ferroelectrics containing of several feroically active sublattices are very attractive, because interactions between these sublattices can caused novel phenomena. Antiferroelectrics, ferrielectrics and multiferoics belong to these materials. In this work new crystalline materials MNP2X6 (M = Cu, Ag; N=In, Cr, Bi; X=S, Se) were investigated, which have ferrielectric and multiferoic properties. The dielectric and electric properties of above mentioned materials have been investigated by broadband dielectric spectroscopy methods, which allows to analyze the collective processes related to order – disorder and displacive phase transitions, ions migration and freezing of dipoles (glassy state) in wide temperature (25 K - 500 K) and frequency (10-5 HZ - 3 GHz) ranges. By substitution or doping it becomes possible to tailor the ferroelectric materials to different properties. In this work is determined that the substitution of 10% Cu ions by Ag ions shifts the phase transition temperature of CuInP2S6 crystal toward lower temperatures while the addition of In ions shifts the phase transitions temperature toward the higher ones. The phase transition temperature difference is about 50 K for mentioned crystals. If the ferroelectric crystal CuInP2S6 is mixed with the antiferroelectric CuCrP2S6 the dipole glass phase occupies the middle of the phase diagram. The distribution of relaxation times has been calculated from the broadband dielectric spectra of dipolar glasses. The... [to full text]
Šiai dienai ypač populiarūs ferroelektrikai susidedantys iš kelių feroiškai aktyvių subgardelių, kurių persitvarkymas fazinio virsmo temperatūroje atskleidžia naujų, dar neaprašytų reiškinių. Prie šių medžiagų priskiriami antiferoelektrikai, ferielektrikai ir multiferoikai. Šiame darbe buvo tiriama nauja medžiagų šeimos MNP2X6 (M = Cu, Ag; N=In, Cr, Bi; X=S, Se ), kurios pasižymi ferielektrinėmis bei multiferoinėmis savybėmis, ir kurių dielektrines ir elektrines savybes galima efektyviai keisti įvedant priemaišas. Minėtų medžiagų dielektrinės ir elektrinės savybės buvo tiriamos dielektrinės spektroskopijos metodais, kurie leidžia tirti kristalų kolektyvinius reiškinius susijusius su tvarkos – netvarkos bei poslinkio tipo faziniais virsmais, jonų migracija bei dipolių užšalimu (stiklėjimu) plačiame dažnių (10-5 Hz iki 3 GHz) bei temperatūrų (25 K iki 500 K) intervaluose. Įvedus 10% Ag jonų vietoj Cu jonų ferielektriniame kristale CuInP2S6 fazinio virsmo temperatūra pasislenka į žemesnias temperatūras, o padidinus indžio koncentraciją fazinio virsmo temperatūra pasislenka į aukštesnes temperatūras. Minėtų kristalų fazinių virsmų temperatūrų skirtumas 50 K. Sumaišius skirtingomis proporcijomis feroelektriką (CuInP2S6) su antiferoelektriku (CuCrP2S6) stebima dipolinio stiklo fazė. Iš dielektrinių matavimų stiklo fazėje buvo paskaičiuota relaksacijos trukmių pasiskirstymo funkcija, kurios aprašymas dvigubos potencialinės duobės modeliu leido susieti mikroskopinius kristalo... [toliau žr. visą tekstą]
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Buchanan, Piers. "The structure of liquid semiconductors, superionic conductors and glasses by neutron scattering, X-ray diffraction and extended X-ray absorption fine structure." Thesis, University of Bristol, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.392943.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Džiaugys, Andrius. "Priemaišų įtaka feroelektrinių ir superjoninių kristalų dielektrinėms savybėms." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2011. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20110628_134724-71267.

Повний текст джерела
Анотація:
Šiai dienai ypač populiarūs ferroelektrikai susidedantys iš kelių feroiškai aktyvių subgardelių, kurių persitvarkymas fazinio virsmo temperatūroje atskleidžia naujų, dar neaprašytų reiškinių. Prie šių medžiagų priskiriami antiferoelektrikai, ferielektrikai ir multiferoikai. Šiame darbe buvo tiriama nauja medžiagų šeimos MNP2X6 (M = Cu, Ag; N=In, Cr, Bi; X=S, Se ), kurios pasižymi ferielektrinėmis bei multiferoinėmis savybėmis, ir kurių dielektrines ir elektrines savybes galima efektyviai keisti įvedant priemaišas. Minėtų medžiagų dielektrinės ir elektrinės savybės buvo tiriamos dielektrinės spektroskopijos metodais, kurie leidžia tirti kristalų kolektyvinius reiškinius susijusius su tvarkos – netvarkos bei poslinkio tipo faziniais virsmais, jonų migracija bei dipolių užšalimu (stiklėjimu) plačiame dažnių (10-5 Hz iki 3 GHz) bei temperatūrų (25 K iki 500 K) intervaluose. Įvedus 10% Ag jonų vietoj Cu jonų ferielektriniame kristale CuInP2S6 fazinio virsmo temperatūra pasislenka į žemesnias temperatūras, o padidinus indžio koncentraciją fazinio virsmo temperatūra pasislenka į aukštesnes temperatūras. Minėtų kristalų fazinių virsmų temperatūrų skirtumas 50 K. Sumaišius skirtingomis proporcijomis feroelektriką (CuInP2S6) su antiferoelektriku (CuCrP2S6) stebima dipolinio stiklo fazė. Iš dielektrinių matavimų stiklo fazėje buvo paskaičiuota relaksacijos trukmių pasiskirstymo funkcija, kurios aprašymas dvigubos potencialinės duobės modeliu leido susieti mikroskopinius kristalo... [toliau žr. visą tekstą]
Nowadays the ferroelectrics containing of several feroically active sublattices are very attractive, because interactions between these sublattices can caused novel phenomena. Antiferroelectrics, ferrielectrics and multiferoics belong to these materials. In this work new crystalline materials MNP2X6 (M = Cu, Ag; N=In, Cr, Bi; X=S, Se) were investigated, which have ferrielectric and multiferoic properties. The dielectric and electric properties of above mentioned materials have been investigated by broadband dielectric spectroscopy methods, which allows to analyze the collective processes related to order – disorder and displacive phase transitions, ions migration and freezing of dipoles (glassy state) in wide temperature (25 K - 500 K) and frequency (10-5 HZ - 3 GHz) ranges. By substitution or doping it becomes possible to tailor the ferroelectric materials to different properties. In this work is determined that the substitution of 10% Cu ions by Ag ions shifts the phase transition temperature of CuInP2S6 crystal toward lower temperatures while the addition of In ions shifts the phase transitions temperature toward the higher ones. The phase transition temperature difference is about 50 K for mentioned crystals. If the ferroelectric crystal CuInP2S6 is mixed with the antiferroelectric CuCrP2S6 the dipole glass phase occupies the middle of the phase diagram. The distribution of relaxation times has been calculated from the broadband dielectric spectra of dipolar glasses. The... [to full text]
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Biswas, Tanujit. "Investigation of Switching mechanism, Thermal, Electrochemical and Structural properties of Solid Electrolytic, Superionic α-AgI based Silver Molybdate glass for Resistive Memory (RRAM) Applications". Thesis, 2019. https://etd.iisc.ac.in/handle/2005/4346.

Повний текст джерела
Анотація:
Developing efficient, fast performing and thermally stable AgI-Ag2O-MoO3glasses are of great interest for Resistive Random Access Memory (RRAM) applications; however there many challenges such as metallization in bulk, behavior of Vth profile over composition and corrosion reactions. In this thesis work, fast ion conducting (FIC) AgI-Ag2O-MoO3 glasses have been investigated with an idea to solve some technical challenges such as thermal stability, corrosion etc. with the help of deep understanding of the material. Employing various experimental and characterization techniques, this research work aims to identify the links between various material and technical aspects and how to tune these aspects to solve the challenges envisaged. Bulk AgI-Ag2O-MoO3 (50:25:25) glasses have been prepared by melt quenching method (Microwave heating and quenched between two heavy steel plates). The electrical switching experiments have been carried out using a Keithley Source Meter (model 2410) controlled by Lab VIEW 6i, on samples of thicknesses (d) 0.1, 0.2 and 0.3 mm at different ON state currents (Imax) (3 mA, 2 mA, 1 mA, 0.6 mA, 0.4 mA and 0.25 mA); It has been found that these samples exhibit fast near ideal memory switching. The power dissipation (P) increases with both d and Imax. It is also found that the threshold voltage (Vth) increases with d; and for a given thickness, the Vth decreases with increasing Imax. A sample of d = 0.1 mm exhibits near ideal memory switching with the least P for Imax = 0.25 mA. These samples can be used for fast switching applications with minimum power dissipation. Further, the electrical switching behavior of bulk, FIC (AgI)50+x-(Ag2O)25-(MoO3)25-x, for 10 ≤ x ≤ -10 glasses has been investigated, in order to understand the switching mechanism of bulk samples with the inert electrodes. It is found that by using inert electrodes, the switching becomes irreversible, memory type. In these samples, the switching mechanism is an electrochemical metallization process. The inert electrodes restrain ionic mass transfer; however exhibit a low barrier to electron transfer allowing the cathodic metallization reaction to reach Nernst equilibrium faster. The cations involved in this process transport thorough the free volume within the glass structure and follows Mott-Gurney (MG) model for electric field driven thermally activated ion hopping conductivity. This model along with the thermal stability profile provide a narrow region within composition with better switching performance based on swiftness to reach Vth and less power loss. It is found that traces of anionic contribution to metallization are absent. Moreover, anodic oxidation involves reactions that cause bubble formation and corrosion which becomes evident from SEM (Scanning electron Microscope) micrographs of the switched and un-switched parts of the sample. Rigidity percolation phenomena in (AgI)50+x-(Ag2O)25-(MoO3)25-x, for 5 ≤ x ≤ -12.5 has been observed by performing calorimetry (ADSC) and photoelectron spectroscopy experiments (XPS). The temperature dependence of heat capacity (normalized Cp) at glass transition temperature (Tg), exhibits fluctuations for samples with higher AgI concentration indicating the fragile nature of the glass. The composition range chosen in the present study, accommodates both the fragile and strong glasses, and the fragility threshold. Cp (absolute) values, at Tg, exhibits abrupt sign shift at this threshold. The negative Cp is identified as a thermodynamic behavior of nanoclusters. The XPS study shows the formation of covalent structural units, [‒Mo‒O‒Ag‒O‒] and complex molybdenum oxides in the positive Cp region. Finally, the non-reversing enthalpy profile, exhibits square well minima, sandwiched between floppy and stress rigid region, which has been identified to be the intermediate phase, within the range 32.25 ≤ MoO3 concentration ≤ 35. Electrochemical Impedance Spectroscopy (EIS) and Raman studies have been performed on this glass, over a wide range of composition ((AgI)50+x-(Ag2O)25-(MoO3)25-x, for 3.75 ≤ x ≤ -10.5) to understand the features of structure, ion migration and their correlation. These features essentially involve diffusion and relaxation. The coefficients associated with diffusion process, especially, the diffusion coefficient, diffusion length and relaxation time has been determined by applying Nguyen-Breitkopf method. Besides, by tuning the concentration of the constituents, it is possible to obtain samples which exhibit two important structural characteristics, namely fragility and polymeric phase formation. The present study essentially addresses these issues and endeavors to figure out the corroboration among them. The relaxation behavior, when scrutinized in the light of Diffusion Controlled Relaxation (DCR) model, ascertains the fragility threshold which is also identified as the margin between the two types of polymeric phases. Simultaneously, it fathoms into the equivalent circuitry, its elements and their behavioral changes with above mentioned features. The power law behavior of A.C. conductivity exhibits three different non-Jonscher type dispersive regimes along with a high frequency plateau. The sub-linearity and super-linearity remain significantly below and above the Jonscher’s carrier transport limit, 0.5 ≤ n ≤ 0.9. Finally, by observing the behavior of the crossover between these sun-linear and super-linear (SLPL) regime, an intuitive suggestion has been proposed for the appearance of SLPL: oxygen vacancy formation.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kostadinova, Ofeliya. "Raman spectroscopic study and dynamic properties of chalcogenide glasses and liquids." Thesis, 2009. http://nemertes.lis.upatras.gr/jspui/handle/10889/4095.

Повний текст джерела
Анотація:
Chalcogenide glasses (ChGs) are produced by alloying together a “chalcogen” element” (S, Se or Te) with other elements, generally from group V (Sb, As) or group IV (Ge, Si) to form covalently bonded solids. A variety of stable non-crystalline materials can be prepared in bulk, fiber, and thin film forms using melt-quenching, vacuum deposition, and other less common techniques. Being amorphous semiconductors, ChGs exhibit a variety of photo-induced phenomena when irradiated with proper light and therefore find a wide range of technological applications (optical data storage, telecommunications, IR optics, etc). As research in this field is strongly driven by the needs of high-tech industry, physical properties related to the applications are more systematically investigated than the atomic structure, which is ultimately related to the macroscopic properties. A shortcoming of not having yet established microstructure-properties relations in ChGs is the lack of a strategic design of new materials for specific applications. The present study is a systematic investigation of properties for various families of ChGs using experimental techniques that probe structure (near infrared Raman scattering, x-ray and neutron diffraction, EXAFS), dynamics (IR-Photon correlation spectroscopy), thermal properties (differential scanning calorimetry) and glass morphology (scanning electron microscopy). Particular emphasis is given on binary and pseudo-ternary ChGs, which are the basis of more complex multi-component glasses, such as As-Se, Sb-Se, As-Te, Ge-S, Ge-S-AgI, As-Se-AgI, As-Se-Ag, As-S-AgI, As-S-Ag etc. over a wide glass composition range. The binary systems are known for their significant optical properties while the Ag-doped glasses belong to the class of superionic conductors. Although some of these glass-forming systems have been extensively studied in the literature, several details concerning the atomic arrangement are still not fully understood, partly due to that some of these glasses are phase separated at the microscale; a fact that is usually overlooked in related studies. In the present study, using high-resolution off-resonant Raman conditions and a more elaborate analysis of the Raman spectra, in conjunction with thermal and morphological data, we have been able to obtain a better understanding of atomic structure and to advance structure-properties relations for both the homogeneous and phase separated glasses.
Μια κατηγορία υαλωδών υλικών, γνωστή ως χαλκογονούχες ύαλοι αρχίζει να κερδίζει σημαντικό έδαφος στον τομέα των εφαρμογών λόγω των φωτονικών ιδιοτήτων που διαθέτουν. Ως χαλκογονούχες ύαλοι θεωρούνται οι υαλώδεις ενώσεις στις οποίες ένα τουλάχιστον περιέχει ένα από τα στοιχεία χαλκογόνων S, Se, και Te. Η ανάμιξη των στοιχείων αυτών με στοιχεία όπως Sb, As, Ge, Si, κλ.π. οδηγεί στο σχηματισμό σταθερών ομοιοπολικών υαλωδών ενώσεων. Το γεγονός ότι οι χαλκογονούχες ύαλοι είναι άμορφοι ημιαγωγοί έχει ως αποτέλεσμα την εμφάνιση πλήθους φωτο-επαγόμενων φαινομένων όταν οι ενώσεις αυτές ακτινοβοληθούν με φως κατάλληλου μήκους κύματος (συγκρίσιμο με το ενεργειακό τους χάσμα). Οι φωτο-επαγόμενες αλλαγές απορρέουν από τις αλλαγές οι οποίες επέρχονται στην ατομική δομή του υλικού (φωτο-δομικές αλλαγές). Τα φωτο-επαγόμενα φαινόμενα είναι εκμεταλλεύσιμα σε πλήθος τεχνολογικών εφαρμογών, για παράδειγμα στην οπτική αποθήκευση πληροφορίας (DVD), σε οπτικά που λειτουργούν στο υπέρυθρο, στις τηλεπικοινωνίες κλπ. Καθώς η έρευνα πάνω στο εν λόγω επιστημονικό πεδίο καθορίζεται σε μεγάλο βαθμό από τις ανάγκες για βιώσιμες τεχνολογικές εφαρμογές, οι φυσικές ιδιότητες, οι οποίες σχετίζονται άμεσα με τις εφαρμογές, έχουν μελετηθεί εντατικότερα και πιο συστηματικά από την ατομική δομή η οποία είναι κατά βάση υπεύθυνη για τα φωτο-επαγόμενα φαινόμενα. Αυτό έχει ως μειονέκτημα την απουσία συσχετισμών μεταξύ μικροσκοπικών και μακροσκοπικών ιδιοτήτων με αποτέλεσμα την απουσία στρατηγικού σχεδιασμού νέων λειτουργικών υλικών με τις επιθυμητές ιδιότητες. Η παρούσα διατριβή περιλαμβάνει μια συστηματική μελέτη διαφόρων οικογενειών χαλκογονούχων υάλων με τη χρήση πειραματικών τεχνικών οι οποίες διερευνούν την ατομική δομή (σκέδαση Raman, περίθλαση ακτίνων-X και νετρονίων, EXAFS), τις θερμικές ιδιότητες (διαφορική θερμιδομετρία σάρωσης) και την μορφολογία των υάλων (ηλεκτρονική μικροσκοπία σάρωσης). Ιδιαίτερη έμφαση δόθηκε σε δυαδικά και ψευδο-δυαδικά συστήματα χαλκογονούχων υάλων τα οποία συμπεριλαμβάνουν As-Se, Sb-Se, As-Te, Ge-S, Ge-S-AgI, As-Se-AgI, As-Se-Ag, As-S-AgI, As-S-Ag κλπ. για μεγάλο εύρος συστάσεων της κάθε οικογένειας. Τα δυαδικά συστήματα είναι γνωστά για τις εξαίρετες οπτικές τους ιδιότητες ενώ οι ύαλοι με προσμίξεις Αργύρου ανήκουν στην κατηγορία των υπεριοντικών υάλων με αρκετά υψηλές ιοντικές αγωγιμότητες που χαρακτηρίζονται από μικροσκοπικό διαχωρισμό φάσεων σε συγκεκριμένες συγκεντρώσεις του Αργύρου. Παρά το γεγονός ότι ορισμένα από τα προαναφερθέντα άμορφα υλικά έχουν κατ’ επανάληψη μελετηθεί στο παρελθόν, ακριβείς πληροφορίες σχετικά με την ατομική δομή τους δεν είναι διαθέσιμες, εν μέρει εξ’ αιτίας της ελλιπούς πειραματικής προσέγγισης και εν μέρει λόγω του μικροσκοπικού διαχωρισμού φάσεων που χαρακτηρίζει τις υάλους με πρόσμιξη Αργύρου, γεγονός το οποίο συχνά αμελείται σε προγενέστερες μελέτες. Στην παρούσα διατριβή, χρησιμοποιώντας τη φασματοσκοπία σκέδασης Raman υψηλής ανάλυσης και μακριά από συνθήκες συντονισμού, σε συνδυασμό με θερμικά και μορφολογικά δεδομένα των υάλων, κατέστη δυνατό να αποκτηθεί μια πιο σφαιρική γνώσης σχετικά με την ατομικής κλίμακας δομή των υάλων και να προαχθούν συσχετισμοί δομής-ιδιοτήτων τόσο για ομοιογενή όσο και για ανομοιογενείς υάλους.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

"Process Characterization of Silver Iodide-Silver Metaphosphate Ionic Glass Molding For Solid State Superionic Stamping." Master's thesis, 2015. http://hdl.handle.net/2286/R.I.34781.

Повний текст джерела
Анотація:
abstract: In this research work, the process optimization of silver iodide-silver meta phosphate ionic glass molding for solid state super ionic stamping was performed. Solid state super ionic stamping is a process of all solid ambient condition electrochemical nano patterning technique. In solid state super ionic stamping, anodic dissolution on a solid electrolyte –metal interface and subsequent charge-mass transport in the solid electrolyte is used for obtaining nanometer features on the metallic surface. The solid electrolyte referred to as the stamp is pre-patterned with features to be obtained on the metallic surface. This research developed the process for obtaining stamp with specific dimensions by making use of compression molding. The compression molding process was optimized by varying the five process parameters-temperature, pressure, holding time, pressing time and cooling time. The objective of the process optimization was to obtain best geometrical features for the stamp including flatness and surface roughness and by optimizing the compression molding process, stamp with minimum flatness and surface roughness was obtained. After the experimental optimization of the process was completed, statistical analysis was performed to understand the relative significance of the process parameters and the interaction of the process parameters on the flatness and surface roughness values of the molded stamp. Structural characterization was performed to obtain the variation of average domain size of ionic glass particles within the molded glass disk by varying the process parameters of holding time, pressing time and cooling time.
Dissertation/Thesis
Masters Thesis Mechanical Engineering 2015
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Superionic Glasses"

1

Hiki, Y., H. Takahashi, and Y. Kogure. "Thermal Transport in Superionic Conducting Glasses." In Springer Series in Solid-State Sciences, 295–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84888-9_117.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Singh, D. P., L. Sowntharya, K. Shahi, and Kamal K. Kar. "xAgl-(1-x)MPO3 [M = Ag, Li) Superionic Composite Glasses and Their Current Issues." In Composite Materials, 571–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49514-8_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Minami, Tsutomu, and Masahiro Tatsumisago. "Occurrence of High-Temperature α-Phase of AgI at Room Temperature in Superionic AgI-Ag2O-MXOy Glasses." In New Materials, 149–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-08970-5_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Okura, Toshinori, and Kimihiro Yamashita. "New Na+ Superionic Conductor Narpsio Glass-Ceramics." In Theoretical Chemistry for Advanced Nanomaterials, 383–416. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0006-0_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Martin, S. W. "Glasses: Superionic." In Encyclopedia of Materials: Science and Technology, 3586–93. Elsevier, 2001. http://dx.doi.org/10.1016/b0-08-043152-6/00639-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fusco, Florence A., and Harry L. Tuller. "FAST ION TRANSPORT IN GLASSES." In Superionic Solids and Solid Electrolytes Recent Trends, 43–110. Elsevier, 1989. http://dx.doi.org/10.1016/b978-0-12-437075-3.50007-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kawamura, Junichi. "Ion Conducting Materials: Superionic Conductors and Solid-State Ionics." In Encyclopedia of Materials: Technical Ceramics and Glasses, 17–37. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-818542-1.01724-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wesolowski, P., W. Jakubowski, and J. Nowinski. "Electrical Properties of Superionic Silver-Borate Glasses Doped with Agl." In September 16, 81–87. De Gruyter, 1989. http://dx.doi.org/10.1515/9783112472842-005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wesolowski, P., W. Jakubowski, and J. Nowinski. "Electrical Properties of Superionic Silver-Bora te Glasses Doped with Agl." In September 16, 81–87. De Gruyter, 1989. http://dx.doi.org/10.1515/9783112479643-007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fontana, A., G. Mabiotto, and F. Rocca. "Low-Frequency Light Scattering in Superionic Glasses (AGI)x(Ag2O1B2O3) 1-x." In June 1, 489–96. De Gruyter, 1985. http://dx.doi.org/10.1515/9783112495360-005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Superionic Glasses"

1

Teruyoshi Awano. "THz spectroscopy of superionic conducting glasses." In 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2008). IEEE, 2008. http://dx.doi.org/10.1109/icimw.2008.4665773.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kawamura, J. "NMR Hole-Burning Experiments on Superionic Conductor Glasses." In SLOW DYNAMICS IN COMPLEX SYSTEMS: 3rd International Symposium on Slow Dynamics in Complex Systems. AIP, 2004. http://dx.doi.org/10.1063/1.1764268.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Asayama, Ryo. "Ion Dynamics in Organic-Inorganic Composite Superionic Conductor Glasses." In FLOW DYNAMICS: The Second International Conference on Flow Dynamics. AIP, 2006. http://dx.doi.org/10.1063/1.2204485.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

KAWAMURA, JUNICHI, NAOAKI KUWATA, TAKESHI HATTORI, and YOSHIO NAKAMURA. "AG-109 NMR OF AgI BASED SUPERIONIC CONDUCTOR GLASSES." In Proceedings of the 8th Asian Conference. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776259_0086.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mandanici, A. "Microwave dielectric spectroscopy and dynamical processes in superionic glasses." In Fifth scientific conference on nuclear and condensed matter physics. AIP, 2000. http://dx.doi.org/10.1063/1.1303350.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

ANIYA, MASARU. "RELATIONSHIP BETWEEN AVERAGE ELECTRONEGATIVITY AND THE PROPERTIES OF SUPERIONIC GLASSES." In Proceedings of the 7th Asian Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812791979_0027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hosokawa, Shinya, Yukinobu Kawakita, Jens Rüdiger Stellhorn, László Pusztai, Nils Blanc, Nathalie Boudet, Kazutaka Ikeda, and Toshiya Otomo. "Local- and Intermediate-Range Order in Room Temperature Superionic Conducting Ag-GeSe3 Glasses." In Proceedings of the 3rd J-PARC Symposium (J-PARC2019). Journal of the Physical Society of Japan, 2021. http://dx.doi.org/10.7566/jpscp.33.011070.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kawamura, Junichi. "Glass transition and localization of mobile ions in superionic glasses: Investigated by dielectric and thermodynamic relaxation techniques." In Slow dynamics in condensed matter. AIP, 1992. http://dx.doi.org/10.1063/1.42461.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Onodera, Yohei, Hiroshi Nakashima, Kazuhiro Mori, Toshiya Otomo, and Toshiharu Fukunaga. "Structure and Conductivity of Na–P–S Superionic Conducting Glasses Studied by Neutron and X-ray Diffraction." In Proceedings of the 2nd International Symposium on Science at J-PARC — Unlocking the Mysteries of Life, Matter and the Universe —. Journal of the Physical Society of Japan, 2015. http://dx.doi.org/10.7566/jpscp.8.031013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nakamura, M. "Unique Vibrational Excitations in Superionic Conducting Glass." In FLOW DYNAMICS: The Second International Conference on Flow Dynamics. AIP, 2006. http://dx.doi.org/10.1063/1.2204548.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії