Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Subwavelength grating metamaterials.

Статті в журналах з теми "Subwavelength grating metamaterials"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Subwavelength grating metamaterials".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Luque-González, José Manuel, Alejandro Sánchez-Postigo, Abdelfettah Hadij-ElHouati, Alejandro Ortega-Moñux, J. Gonzalo Wangüemert-Pérez, Jens H. Schmid, Pavel Cheben, Íñigo Molina-Fernández, and Robert Halir. "A review of silicon subwavelength gratings: building break-through devices with anisotropic metamaterials." Nanophotonics 10, no. 11 (August 13, 2021): 2765–97. http://dx.doi.org/10.1515/nanoph-2021-0110.

Повний текст джерела
Анотація:
Abstract Silicon photonics is playing a key role in areas as diverse as high-speed optical communications, neural networks, supercomputing, quantum photonics, and sensing, which demand the development of highly efficient and compact light-processing devices. The lithographic segmentation of silicon waveguides at the subwavelength scale enables the synthesis of artificial materials that significantly expand the design space in silicon photonics. The optical properties of these metamaterials can be controlled by a judicious design of the subwavelength grating geometry, enhancing the performance of nanostructured devices without jeopardizing ease of fabrication and dense integration. Recently, the anisotropic nature of subwavelength gratings has begun to be exploited, yielding unprecedented capabilities and performance such as ultrabroadband behavior, engineered modal confinement, and sophisticated polarization management. Here we provide a comprehensive review of the field of subwavelength metamaterials and their applications in silicon photonics. We first provide an in-depth analysis of how the subwavelength geometry synthesizes the metamaterial and give insight into how properties like refractive index or anisotropy can be tailored. The latest applications are then reviewed in detail, with a clear focus on how subwavelength structures improve device performance. Finally, we illustrate the design of two ground-breaking devices in more detail and discuss the prospects of subwavelength gratings as a tool for the advancement of silicon photonics.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sánchez-Postigo, Alejandro, Pablo Ginel-Moreno, Alejandro Ortega-Moñux, J. Gonzalo Wangüemert-Pérez, Robert Halir, Daniel Pereira-Martín, Abdelfettah Hadij-ElHouati, et al. "Building high-performance integrated optical devices using subwavelength grating metamaterials -INVITED." EPJ Web of Conferences 255 (2021): 01001. http://dx.doi.org/10.1051/epjconf/202125501001.

Повний текст джерела
Анотація:
The use of subwavelength grating structures in silicon waveguides have fuelled the development of integrated optical components with superior performance. By a judicious lithographic patterning of the grating, the optical properties of the synthesized metamaterial can be accurately tailored. In this work, we review our latest advances in subwavelength-grating-engineered silicon and germanium planar devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pérez-Armenta, Carlos, Alejandro Ortega-Moñux, José Manuel Luque-González, Robert Halir, Pedro Reyes-Iglesias, Jens H. Schmid, Pavel Cheben, íñigo Molina-Fernández, and J. Gonzalo Wangüemert Pérez. "Polarization independent 2×2 multimode interference coupler with bricked subwavelength metamaterial." EPJ Web of Conferences 266 (2022): 01009. http://dx.doi.org/10.1051/epjconf/202226601009.

Повний текст джерела
Анотація:
The silicon-on-insulator (SOI) platform enables high integration density in photonic integrated circuits while maintaining compatibility with CMOS fabrication processes. Nevertheless, its inherently high modal birefringence hinders the development of polarization-insensitive devices. The dispersion and anisotropy engineering leveraging subwavelength grating (SWG) metamaterials makes possible the development of polarization agnostic waveguide components. In this work we build upon the bricked SWG metamaterial nanostructures to design a polarization independent 2×2 multimode interference (MMI) coupler for the 220 nm SOI platform, operating in the telecom O-band. The designed device exhibits a 160 nm bandwidth with excess loss, polarization dependent loss and imbalance below 1 dB and phase error lower than 5°.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Vakarin, Vladyslav, Daniele Melati, Thi Thuy Duong Dinh, Xavier Le Roux, Warren Kut King Kan, Cécilia Dupré, Bertrand Szelag, et al. "Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography." Nanomaterials 11, no. 11 (November 3, 2021): 2949. http://dx.doi.org/10.3390/nano11112949.

Повний текст джерела
Анотація:
Subwavelength grating (SWG) metamaterials have garnered a great interest for their singular capability to shape the material properties and the propagation of light, allowing the realization of devices with unprecedented performance. However, practical SWG implementations are limited by fabrication constraints, such as minimum feature size, that restrict the available design space or compromise compatibility with high-volume fabrication technologies. Indeed, most successful SWG realizations so far relied on electron-beam lithographic techniques, compromising the scalability of the approach. Here, we report the experimental demonstration of an SWG metamaterial engineered beam splitter fabricated with deep-ultraviolet immersion lithography in a 300-mm silicon-on-insulator technology. The metamaterial beam splitter exhibits high performance over a measured bandwidth exceeding 186 nm centered at 1550 nm. These results open a new route for the development of scalable silicon photonic circuits exploiting flexible metamaterial engineering.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kameshkov, Oleg, Vasily Gerasimov, and Boris Knyazev. "Numerical Optimization of Refractive Index Sensors Based on Diffraction Gratings with High Aspect Ratio in Terahertz Range." Sensors 22, no. 1 (December 28, 2021): 172. http://dx.doi.org/10.3390/s22010172.

Повний текст джерела
Анотація:
Terahertz surface plasmon resonance (SPR) sensors have been regarded as a promising technology in biomedicine due to their real-time, label-free, and ultrasensitive monitoring features. Different authors have suggested a lot of SPR sensors, including those based on 2D and 3D metamaterials, subwavelength gratings, graphene, and graphene nanotube, as well as others. However, one of the traditional approaches to realize high sensitivity SPR sensors based on metal diffraction gratings has been studied poorly in the terahertz frequency range. In this article, a linear metal rectangular diffraction grating with high aspect ratio is studied. The influence of the grating structure parameters on the sensor sensitivity is simulated. Effects arising from different ratios of depth and width were discovered and explained. The results show that the sensitivity can be increased to 2.26 THz/RIU when the refractive index range of the gas to measure is between 1 and 1.002 with the resolution 5×10−5 RIU.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fraser, William, Radovan Korček, Ivan Glesk, Jan Litvik, Jens H. Schmid, Pavel Cheben, Winnie N. Ye, and Daniel Benedikovic. "High-Efficiency Metamaterial-Engineered Grating Couplers for Silicon Nitride Photonics." Nanomaterials 14, no. 7 (March 27, 2024): 581. http://dx.doi.org/10.3390/nano14070581.

Повний текст джерела
Анотація:
Silicon nitride (Si3N4) is an ideal candidate for the development of low-loss photonic integrated circuits. However, efficient light coupling between standard optical fibers and Si3N4 chips remains a significant challenge. For vertical grating couplers, the lower index contrast yields a weak grating strength, which translates to long diffractive structures, limiting the coupling performance. In response to the rise of hybrid photonic platforms, the adoption of multi-layer grating arrangements has emerged as a promising strategy to enhance the performance of Si3N4 couplers. In this work, we present the design of high-efficiency surface grating couplers for the Si3N4 platform with an amorphous silicon (α-Si) overlay. The surface grating, fully formed in an α-Si waveguide layer, utilizes subwavelength grating (SWG)-engineered metamaterials, enabling simple realization through single-step patterning. This not only provides an extra degree of freedom for controlling the fiber–chip coupling but also facilitates portability to existing foundry fabrication processes. Using rigorous three-dimensional (3D) finite-difference time-domain (FDTD) simulations, a metamaterial-engineered grating coupler is designed with a coupling efficiency of −1.7 dB at an operating wavelength of 1.31 µm, with a 1 dB bandwidth of 31 nm. Our proposed design presents a novel approach to developing high-efficiency fiber–chip interfaces for the silicon nitride integration platform for a wide range of applications, including datacom and quantum photonics.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Luque‐González, José Manuel, Robert Halir, Juan Gonzalo Wangüemert‐Pérez, José de‐Oliva‐Rubio, Jens H. Schmid, Pavel Cheben, Íñigo Molina‐Fernández, and Alejandro Ortega‐Moñux. "An Ultracompact GRIN‐Lens‐Based Spot Size Converter using Subwavelength Grating Metamaterials." Laser & Photonics Reviews 13, no. 11 (September 23, 2019): 1900172. http://dx.doi.org/10.1002/lpor.201900172.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Benedikovic, Daniel, Carlos Alonso-Ramos, Sylvain Guerber, Xavier Le Roux, Pavel Cheben, Cécilia Dupré, Bertrand Szelag, et al. "Sub-decibel silicon grating couplers based on L-shaped waveguides and engineered subwavelength metamaterials." Optics Express 27, no. 18 (August 30, 2019): 26239. http://dx.doi.org/10.1364/oe.27.026239.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chang, Ruei-Jan, and Chia-Chien Huang. "Simulation of a High-Performance Polarization Beam Splitter Assisted by Two-Dimensional Metamaterials." Nanomaterials 12, no. 11 (May 28, 2022): 1852. http://dx.doi.org/10.3390/nano12111852.

Повний текст джерела
Анотація:
It is challenging to simultaneously consider device dimension, polarization extinction ratio (PER), insertion loss (IL), and operable bandwidth (BW) to design a polarization beam splitter (PBS) that is extensively used in photonic integrated circuits. The function of a PBS is to separate polarizations of light, doubling the transmission bandwidth in optical communication systems. In this work, we report a high-performance PBS comprising two-dimensional subwavelength grating metamaterials (2D SWGMs) between slot waveguides. The 2D SWGMs exhibited biaxial permittivity by tailoring the material anisotropy. The proposed PBS showed PERs of 26.8 and 26.4 dB for TE and TM modes, respectively, and ILs of ~0.25 dB for both modes, with an unprecedented small footprint of 1.35 μm × 2.75 μm working at the wavelength λ = 1550 nm. Moreover, the present structure attained satisfactory PERs of >20 dB and ILs of <0.5 dB within an ultrabroad BW of 200 nm.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Badri, S. Hadi, and M. M. Gilarlue. "Silicon nitride waveguide devices based on gradient-index lenses implemented by subwavelength silicon grating metamaterials." Applied Optics 59, no. 17 (June 10, 2020): 5269. http://dx.doi.org/10.1364/ao.393501.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Sun, Lu, Yong Zhang, Yu He, Hongwei Wang, and Yikai Su. "Subwavelength structured silicon waveguides and photonic devices." Nanophotonics 9, no. 6 (May 1, 2020): 1321–40. http://dx.doi.org/10.1515/nanoph-2020-0070.

Повний текст джерела
Анотація:
AbstractSubwavelength structures such as subwavelength gratings (SWGs) and subwavelength metamaterials are capable of tailoring the optical properties of materials and controlling the flow of light at the nanoscale. The effective indices of the subwavelength structured strip and slab waveguides can be changed in a wide range by choosing an appropriate duty cycle or a filling factor of silicon, which provides an effective method to manipulate the optical field and achieve effective index matching for functional devices. Recent advances in nanofabrication techniques have made it possible to implement subwavelength structures in silicon strip and slab waveguides. Here we review various approaches used to design subwavelength structures and achieve exotic optical responses and discuss how these structures can be used to realize high-performance silicon photonic devices. Both one-dimensional SWG devices and two-dimensional subwavelength metamaterial devices are covered in this review, including subwavelength structure–based polarization handling devices, mode manipulation devices, and building blocks for integrated optical interconnects. Perspectives on subwavelength structured silicon photonic devices are also discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Kanamori, Yoshiaki, Daisuke Ema, and Kazuhiro Hane. "Miniature Spectroscopes with Two-Dimensional Guided-Mode Resonant Metal Grating Filters Integrated on a Photodiode Array." Materials 11, no. 10 (October 10, 2018): 1924. http://dx.doi.org/10.3390/ma11101924.

Повний текст джерела
Анотація:
A small spectroscope with 25 color sensors was fabricated by combining metamaterial color filters and Si photodiodes. The metamaterial color filters consisted of guided-mode resonant metal gratings with subwavelength two-dimensional periodic structures. Transmittance characteristics of the color filters were designed to obtain peak wavelengths proportional to grating periods. For each color sensor, a peak wavelength of the spectral sensitivity could be tuned in the range of visible wavelengths by adjusting each grating period. By performing spectrum reconstruction using Tikhonov regularization, the spectrum of an incident light was obtained from the signal of photodiodes. Several monochromatic lights were made incident on the fabricated device and the spectral characteristics of the incident light were reconstructed from the output signals obtained from the respective color sensors. The peak wavelengths of the reconstructed spectra were in good agreement with the center wavelengths of the monochromatic lights.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Ortega-Moñux, Alejandro, Jiří Čtyroký, Pavel Cheben, Jens H. Schmid, Shurui Wang, Íñigo Molina-Fernández, and Robert Halir. "Disorder effects in subwavelength grating metamaterial waveguides." Optics Express 25, no. 11 (May 16, 2017): 12222. http://dx.doi.org/10.1364/oe.25.012222.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Halir, Robert, Alejandro Ortega-Monux, Daniel Benedikovic, Goran Z. Mashanovich, J. Gonzalo Wanguemert-Perez, Jens H. Schmid, Inigo Molina-Fernandez, and Pavel Cheben. "Subwavelength-Grating Metamaterial Structures for Silicon Photonic Devices." Proceedings of the IEEE 106, no. 12 (December 2018): 2144–57. http://dx.doi.org/10.1109/jproc.2018.2851614.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Sarmiento-Merenguel, J. Darío, Alejandro Ortega-Moñux, Jean-Marc Fédéli, J. Gonzalo Wangüemert-Pérez, Carlos Alonso-Ramos, Elena Durán-Valdeiglesias, Pavel Cheben, Íñigo Molina-Fernández, and Robert Halir. "Controlling leakage losses in subwavelength grating silicon metamaterial waveguides." Optics Letters 41, no. 15 (July 19, 2016): 3443. http://dx.doi.org/10.1364/ol.41.003443.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Cheben, Pavel, Jiří Čtyroký, Jens H. Schmid, Shurui Wang, Jean Lapointe, J. Gonzalo Wangüemert-Pérez, Íñigo Molina-Fernández, et al. "Bragg filter bandwidth engineering in subwavelength grating metamaterial waveguides." Optics Letters 44, no. 4 (February 15, 2019): 1043. http://dx.doi.org/10.1364/ol.44.001043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Naraine, Cameron M., Jeremy W. Miller, Henry C. Frankis, David E. Hagan, Peter Mascher, Jens H. Schmid, Pavel Cheben, Andrew P. Knights, and Jonathan D. B. Bradley. "Subwavelength grating metamaterial waveguides functionalized with tellurium oxide cladding." Optics Express 28, no. 12 (June 5, 2020): 18538. http://dx.doi.org/10.1364/oe.393729.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Xu, Xiaochuan, Zeyu Pan, Chi-Jui Chung, Ching-Wen Chang, Hai Yan, and Ray T. Chen. "Subwavelength Grating Metamaterial Racetrack Resonator for Sensing and Modulation." IEEE Journal of Selected Topics in Quantum Electronics 25, no. 3 (May 2019): 1–8. http://dx.doi.org/10.1109/jstqe.2019.2915980.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Kim, Wonkyu, Junpeng Guo, and Joshua Hendrickson. "Subwavelength metal grating metamaterial for polarization-selective optical antireflection coating." Journal of the Optical Society of America B 32, no. 7 (June 15, 2015): 1392. http://dx.doi.org/10.1364/josab.32.001392.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Luque‐González, José Manuel, Alejandro Ortega‐Moñux, Robert Halir, Jens H. Schmid, Pavel Cheben, Íñigo Molina‐Fernández, and J. Gonzalo Wangüemert‐Pérez. "Bricked Subwavelength Gratings: A Tailorable On‐Chip Metamaterial Topology." Laser & Photonics Reviews 15, no. 6 (May 2, 2021): 2000478. http://dx.doi.org/10.1002/lpor.202000478.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Luque-González, José Manuel, Alaine Herrero-Bermello, Alejandro Ortega-Moñux, Íñigo Molina-Fernández, Aitor V. Velasco, Pavel Cheben, Jens H. Schmid, Shurui Wang, and Robert Halir. "Tilted subwavelength gratings: controlling anisotropy in metamaterial nanophotonic waveguides." Optics Letters 43, no. 19 (September 21, 2018): 4691. http://dx.doi.org/10.1364/ol.43.004691.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Mohammadi Estakhri, Nasim, Christos Argyropoulos, and Andrea Alù. "Graded metascreens to enable a new degree of nanoscale light management." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, no. 2049 (August 28, 2015): 20140351. http://dx.doi.org/10.1098/rsta.2014.0351.

Повний текст джерела
Анотація:
Optical metasurfaces, typically referred to as two-dimensional metamaterials, are arrays of engineered subwavelength inclusions suitably designed to tailor the light properties, including amplitude, phase and polarization state, over deeply subwavelength scales. By exploiting anomalous localized interactions of surface elements with optical waves, metasurfaces can go beyond the functionalities offered by conventional diffractive optical gratings. The innate simplicity of implementation and the distinct underlying physics of their wave–matter interaction distinguish metasurfaces from three-dimensional metamaterials and provide a valuable means of moulding optical waves in the desired manner. Here, we introduce a general approach based on the electromagnetic equivalence principle to develop and synthesize graded, non-periodic metasurfaces to generate arbitrarily prescribed distributions of electromagnetic waves. Graded metasurfaces are realized with a single layer of spatially modulated, electrically polarizable nanoparticles, tailoring the scattering response of the surface with nanoscale resolutions. We discuss promising applications based on the proposed local wave management technique, including the design of ultrathin optical carpet cloaks, alignment-free polarization beam splitters and a novel approach to enable broadband light absorption enhancement in thin-film solar cells. This concept opens up a practical route towards efficient planarized optical structures with potential impact on the integrated nanophotonic technology.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Čtyroký, Jiří, Juan Gonzalo Wangüemert-Pérez, Pavel Kwiecien, Ivan Richter, Ján Litvik, Jens H. Schmid, Íñigo Molina-Fernández, Alejandro Ortega-Moñux, Milan Dado, and Pavel Cheben. "Design of narrowband Bragg spectral filters in subwavelength grating metamaterial waveguides." Optics Express 26, no. 1 (January 2, 2018): 179. http://dx.doi.org/10.1364/oe.26.000179.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Penades, J. Soler, A. Ortega-Moñux, M. Nedeljkovic, J. G. Wangüemert-Pérez, R. Halir, A. Z. Khokhar, C. Alonso-Ramos, et al. "Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding." Optics Express 24, no. 20 (September 23, 2016): 22908. http://dx.doi.org/10.1364/oe.24.022908.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Butt, Muhammad Ali. "Numerical investigation of a small footprint plasmonic Bragg grating structure with a high extinction ratio." Photonics Letters of Poland 12, no. 3 (September 30, 2020): 82. http://dx.doi.org/10.4302/plp.v12i3.1042.

Повний текст джерела
Анотація:
In this paper, miniaturized design of a plasmonic Bragg grating filter is investigated via the finite element method (FEM). The filter is based on a plasmonic metal-insulator-metal waveguide deposited on a quartz substrate. The corrugated Bragg grating designed for near-infrared wavelength range is structured on both sides of the waveguide. The spectral characteristics of the filter are studied by varying the geometric parameters of the filter design. As a result, the maximum ER and bandwidth of 36.2 dB and 173 nm is obtained at λBragg=976 nm with a filter footprint of as small as 1.0 x 8.75 µm2, respectively. The ER and bandwidth can be further improved by increasing the number of grating periods and the strength of the grating, respectively. Moreover, the Bragg grating structure is quite receptive to the refractive index of the medium. These features allow the employment of materials such as polymers in the metal-insulator-metal waveguide which can be externally tuned or it can be used for refractive index sensing applications. The sensitivity of the proposed Bragg grating structure can offer a sensitivity of 950 nm/RIU. We believe that the study presented in this paper provides a guideline for the realization of small footprint plasmonic Bragg grating structures which can be employed in filter and refractive index sensing applications. Full Text: PDF ReferencesJ. W. Field et al., "Miniaturised, Planar, Integrated Bragg Grating Spectrometer", 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 2019, CrossRef L. Cheng, S. Mao, Z. Li, Y. Han, H.Y. Fu, "Grating Couplers on Silicon Photonics: Design Principles, Emerging Trends and Practical Issues", Micromachines, 11, 666 (2020). CrossRef J. Missinne, N. T. Beneitez, M-A. Mattelin, A. Lamberti, G. Luyckx, W. V. Paepegem, G. V. Steenberge, "Bragg-Grating-Based Photonic Strain and Temperature Sensor Foils Realized Using Imprinting and Operating at Very Near Infrared Wavelengths", Sensors, 18, 2717 (2018). CrossRef M. A. Butt, S.N. Khonina, N.L. Kazanskiy, "Numerical analysis of a miniaturized design of a Fabry–Perot resonator based on silicon strip and slot waveguides for bio-sensing applications", Journal of Modern Optics, 66, 1172-1178 (2019). CrossRef H. Qiu, J. Jiang, P. Yu, T. Dai, J. Yang, H. Yu, X. Jiang, "Silicon band-rejection and band-pass filter based on asymmetric Bragg sidewall gratings in a multimode waveguide", Optics Letters, 41, 2450 (2016). CrossRef M. A. Butt, S.N. Khonina, N.L. Kazanskiy, "Optical elements based on silicon photonics", Computer Optics, 43, 1079-1083 (2019). CrossRef N. L. Kazanskiy, S.N. Khonina, M.A. Butt, "Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review", Physica E, 117, 113798 (2020). CrossRef L. Lu et al, "Mode-Selective Hybrid Plasmonic Bragg Grating Reflector", IEEE Photonics Technology Letters, 22, 1765-1767 (2012). CrossRef R. Negahdari, E. Rafiee, F. Emami, "Design and simulation of a novel nano-plasmonic split-ring resonator filter", Journal of Electromagnetic Waves and Applications, 32, 1925-1938 (2018). CrossRef M. Janfaza, M. A. Mansouri-Birjandi, "Tunable plasmonic band-pass filter based on Fabry–Perot graphene nanoribbons", Applied Physics B, 123, 262 (2017). CrossRef C. Wu, G. Song, L. Yu, J.H. Xiao, "Tunable narrow band filter based on a surface plasmon polaritons Bragg grating with a metal–insulator–metal waveguide", Journal of Modern Optics, 60, 1217-1222 (2013). CrossRef J. Zhu, G. Wang, "Sense high refractive index sensitivity with bragg grating and MIM nanocavity", Results in Physics, 15, 102763 (2019). CrossRef Y. Binfeng, H. Guohua, C. Yiping, "Design of a compact and high sensitive refractive index sensor base on metal-insulator-metal plasmonic Bragg grating", Optics Express, 22, 28662-28670 (2014). CrossRef A.D. Simard, Y. Painchaud, S. Larochelle, "Small-footprint integrated Bragg gratings in SOI spiral waveguides", International Quantum Electronics Conference Lasers and Electro-Optics Europe, IEEE, Munich, Germany (2013). CrossRef C. Klitis, G. Cantarella, M. J. Strain, M. Sorel, "High-extinction-ratio TE/TM selective Bragg grating filters on silicon-on-insulator", Optics Letters, 42, 3040 (2017). CrossRef J. Ctyroky et al., "Design of narrowband Bragg spectral filters in subwavelength grating metamaterial waveguides", Optics Express, 26, 179 (2018). CrossRef M.A. Butt, N.L. Kazanskiy, S.N. Khonina, "Hybrid plasmonic waveguide race-track µ-ring resonator: Analysis of dielectric and hybrid mode for refractive index sensing applications", Laser Phys., 30, 016202 (2020). CrossRef M. A. Butt, N.L. Kazanskiy, S.N. Khonina, "Label-free detection of ambient refractive index based on plasmonic Bragg gratings embedded resonator cavity sensor", Journal of Modern Optics, 66, 1920-1925 (2019). CrossRef N. L. Kazanskiy, M.A. Butt, Photonics Letters of Poland, 12, 1-3 (2020). CrossRef Z. Guo, K. Wen, Q. Hu, W. Lai, J. Lin, Y. Fang, "Plasmonic Multichannel Refractive Index Sensor Based on Subwavelength Tangent-Ring Metal–Insulator–Metal Waveguide", Sensors, 18, 1348 (2018). CrossRef
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Huang, Laixin, Fei Li, Feiyan Cai, Long Meng, Wei Zhou, Deqing Kong, and Hairong Zheng. "Phononic crystal-induced standing Lamb wave for the translation of subwavelength microparticles." Applied Physics Letters 121, no. 2 (July 11, 2022): 023505. http://dx.doi.org/10.1063/5.0098468.

Повний текст джерела
Анотація:
Phononic crystals (PCs) can modulate an incident acoustic wave to provide subwavelength microparticles with stable and flexible manipulation. However, fixed artificial structures of the PCs usually result in a steady acoustic field profile, thus limiting the dynamic manipulation of microparticles. This study proposes the construction of a phononic crystal plate (PCP) using a pair of periodic oppositely arranged gratings on a plate. Under the PCP's resonance frequency, a pair of nonleaky A0 mode traveling Lamb waves that intrinsically exist in a thin plate were excited and propagated. The pair of waves formed a highly localized standing Lamb wave field between the pair of periodic gratings. By adjusting the phase of the incident acoustic wave, the positions of pressure nodes of the PCP-induced standing Lamb wave were changed in a quantitatively tunable manner. Thus, polystyrene microparticles trapped and aligned at the pressure nodes via the acoustic radiation force could be moved to achieve the translation motion with a resolution of 2.2 μm, approximately 1/160 wavelength in water. The proposed methodology will lead to the fabrication of a disposable and easily operated tool for dynamically manipulating microparticles in subwavelength regions by engineering acoustic fields using acoustic metamaterials in microfluidic devices for cell sorting and drug delivery.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Sánchez-Postigo, Alejandro, Alejandro Ortega-Moñux, Jordi Soler Penadés, Ahmed Osman, Milos Nedeljkovic, Zhibo Qu, Yangbo Wu, et al. "Suspended germanium waveguides with subwavelength-grating metamaterial cladding for the mid-infrared band." Optics Express 29, no. 11 (May 17, 2021): 16867. http://dx.doi.org/10.1364/oe.422764.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Chang, Ching-Wen, Xiaochuan Xu, Swapnajit Chakravarty, Hui-Chun Huang, Li-Wei Tu, Quark Yungsung Chen, Hamed Dalir, Michael A. Krainak, and Ray T. Chen. "Pedestal subwavelength grating metamaterial waveguide ring resonator for ultra-sensitive label-free biosensing." Biosensors and Bioelectronics 141 (September 2019): 111396. http://dx.doi.org/10.1016/j.bios.2019.111396.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Lourenço, Paulo, Alessandro Fantoni, João Costa, Miguel Fernandes, and Manuela Vieira. "Subwavelength structures for taper waveguides." Journal of Physics: Conference Series 2407, no. 1 (December 1, 2022): 012040. http://dx.doi.org/10.1088/1742-6596/2407/1/012040.

Повний текст джерела
Анотація:
Abstract In Photonic Integrated Circuits (PICs) it is often necessary some sort of mismatch adaptation between waveguides of different cross-sections. There are several instances of such a designing constraint, being the vertical coupling between the PIC and an optical fibre probably the most representative of all examples. Here, the beam of electromagnetic energy inside the PIC must be inserted/extracted through/to an optical fibre. Typical core diameters are approximately 10 μm and 5 μm, for single mode optical fibres operating in the near infrared and visible wavelengths, respectively. On the other hand, the optical interconnects linking individual structures in PICs are usually single mode waveguides, 400 to 500 nm wide and a few hundreds of nanometres thick. This presents a bidimensional mismatch between the optical fibre and the single mode waveguide within the PIC, that requires both lateral and longitudinal beam expansions. In this work, we have approached the lateral expansion of the fundamental mode propagating in a single mode waveguide, at the operating wavelength of 1550 nm and being coupled out into an optical fibre, through a grating structure 14.27 μm wide. To this end, we have designed and simulated a subwavelength metamaterial planar structure, which is able to expand laterally the fundamental mode’s profile from 450 nm to 14.27 μm, within 11.1 μm. Furthermore, we will be presenting the results obtained when comparing this structure with several linear inverted taper waveguides, regarding coupling and propagation efficiencies. Namely, we compared the coupling efficiencies of the modes propagating in an 100 μm long waveguide, when being excited by the analytically calculated fundamental mode and the fields obtained at the end of the designed structure. The results obtained for the designed structure 11.1 μm long and the calculated fundamental mode showed a coupling efficiency of -1.53 dB and -1.20 dB, respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Liu, Jia-Min, and De-Long Zhang. "Ultra-broadband thin-film lithium niobate TM-pass waveguide polarizer using subwavelength grating metamaterial." Optics & Laser Technology 164 (September 2023): 109556. http://dx.doi.org/10.1016/j.optlastec.2023.109556.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Zhang, Zecen, Jin Zhou, Callum G. Littlejohns, Graham T. Reed, Hong Wang, Geok Ing Ng, Ting Hu, et al. "Mid-Infrared Sensor Based on a Suspended Microracetrack Resonator With Lateral Subwavelength-Grating Metamaterial Cladding." IEEE Photonics Journal 10, no. 2 (April 2018): 1–8. http://dx.doi.org/10.1109/jphot.2018.2809662.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Zhang, Chi, Qiang Liu, Xiao Peng, Zhengbiao Ouyang, and Suling Shen. "Sensitive THz sensing based on Fano resonance in all-polymeric Bloch surface wave structure." Nanophotonics 10, no. 15 (October 5, 2021): 3879–88. http://dx.doi.org/10.1515/nanoph-2021-0339.

Повний текст джерела
Анотація:
Abstract Simultaneous realization of high quality factor (Q), sensitivity, and figure of merit (FOM) play a pivotal role in building the THz sensor. For such purpose, we propose an all-polymeric Bloch surface wave (BSW) structure that supports a bright BSW mode and a dark surface Fano state that is embedded in the continuum, both of which coupled to the same radiation channels. The existence of the sharp dip with a maximum depth of Fano line could be interpreted with the physics of Friedrich–Wintgen bound states in the continuum (FW-BICs), because of the destructive interference between bright BSW and dark surface Fano modes. A strong angular- and frequency-dependent Q was found. Related influential factors to Q value may also include an asymmetric arrangement of top and grating layers, together with the weak coupling provided by photonic crystals. One numerically optimized design shows a quality factor Q of the Fano mode as 23,670, which is almost two orders higher than that in conventional metallic-metamaterial-based designs. The optimized sensitivity can numerically reach 4.34 THz/RIU in the frequency domain, which is one order higher than that reported in all-dielectric metasurfaces. We infer the high sensitivity is related to the phase-matching condition provided by near-subwavelength gratings. The associated FOM can reach 8857/RIU. Besides, the proposed design also numerically demonstrates high sensitivity in the angular domain ∼125.5°/RIU. Considering it poses no specific requirement for materials that own high contrast of permittivity in the THz regime, large interfacing area, the mechanical and chemical robustness offered by polymers and low cost in fabrication, such all-polymeric BSW structure that supports novel Fano resonance in THz window may give access to rich applications in hazardous gas detection and label-free bio-sensing.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Zhu, Danfeng, Han Ye, Yumin Liu, Jing Li, and Zhongyuan Yu. "High-Contrast and Compact Integrated Wavelength Diplexer Based on Subwavelength Grating Anisotropic Metamaterial for 1550/2000 nm." IEEE Photonics Journal 13, no. 2 (April 2021): 1–10. http://dx.doi.org/10.1109/jphot.2021.3061966.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Iftimie, Nicoleta, Rozina Steigmann, Dagmar Faktorova, and Adriana Savin. "Metallic Structures Based on Zinc Oxide Film for Enzyme Biorecognition." Micromachines 13, no. 11 (November 17, 2022): 1997. http://dx.doi.org/10.3390/mi13111997.

Повний текст джерела
Анотація:
Two structures (Ag/ZnO/ITI/glass: #1 sample and Ag/ZnO/SiO2/Si: #2 sample) are investigated, on the one hand, from the point of view of the formation of evanescent waves in the gratings of metal strips on the structures when the incident TEz wave in the radio frequency range is used. The simulation of the formation of evanescent waves at the edge of the Ag strips, with thicknesses in the range of micrometers, was carried out before the test in the subwavelength regime, with the help of a new improved transducer with metamaterial (MM) lenses. By simulation, a field snapshot was obtained in each sequence of geometry. The evanescent waves are emphasized in the plane XY, due to the scattering of the field on the edge of the strips. On the other hand, ZnO nanoparticles are investigated as a convenient high-efficiency biodetection material, where these structures were used as a biosensitive element to various enzymes (glucose, cholesterol, uric acid, and ascorbic acid). The obtained results demonstrate that the investigated structures based on ZnO nanostructures deposited on different supports are fast and sensitive for enzyme detection and can be successfully incorporated into a device as a biosensing element.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Butt, Muhammad Ali, and Nikolai Lvovich Kazansky. "SOI Suspended membrane waveguide at 3.39 µm for gas sensing application." Photonics Letters of Poland 12, no. 2 (July 1, 2020): 67. http://dx.doi.org/10.4302/plp.v12i2.1034.

Повний текст джерела
Анотація:
In this letter, we present a numerical study on the designing of silicon-on-insulator (SOI) suspended membrane waveguide (SMW). The waveguide geometry is optimized at 3.39 µm TE-polarized light which is the absorption line of methane gas by utilizing a 3D finite element method (FEM). The transmission loss (TL) and evanescent field ratio (EFR) of the waveguide are calculated for different geometric parameters such as the width of core, the height of core and period of the cladding. We found out that TL is directly related to EFR. Therefore, a waveguide geometry can be designed which can offer high EFR at the cost of high TL or low EFR with low TL, as desired. Based on the geometric parameters used in this paper, we have obtained a TL and EFR which lies in the range of 1.54 dB-3.37 dB and 0.26-0.505, respectively. Full Text: PDF ReferencesL. Vivien et al., "High speed silicon-based optoelectronic devices on 300mm platform", 2014 16th International conference on transparent optical networks (ICTON), Graz, 2014, pp. 1-4, CrossRef Y. Zou, S. Chakravarty, "Mid-infrared silicon photonic waveguides and devices [Invited]", Photonic Research, 6(4), 254-276 (2018). CrossRef J.S. Penades et al., "Suspended SOI waveguide with sub-wavelength grating cladding for mid-infrared", Optics letters, 39(19), 5661-5664 (2014). CrossRef T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, "Silicon-on-sapphire integrated waveguides for the mid-infrared", Opt. Express, 18(12),12127-12135 (2010). CrossRef J. Mu, R. Soref, L. C. Kimerling, and J. Michel, "Silicon-on-nitride structures for mid-infrared gap-plasmon waveguiding", Appl. Phys. Lett., 104(3), 031115 (2014). CrossRef J.S. Penades et al., "Suspended silicon waveguides for long-wave infrared wavelengths", Optics letters, 43 (4), 795-798 (2018). CrossRef J.S. Penades et al., "Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding", Optics Express, 24, (20), 22908-22916 (2016). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, "Modelling of Rib channel waveguides based on silicon-on-sapphire at 4.67 μm wavelength for evanescent field gas absorption sensor", Optik, 168, 692-697 (2018). CrossRef S.N. Khonina, N.L. Kazanskiy, M.A. Butt, "Evanescent field ratio enhancement of a modified ridge waveguide structure for methane gas sensing application", IEEE Sensors Journal CrossRef M.A. Butt, S.A. Degtyarev, S.N. Khonina, N.L. Kazanskiy, "An evanescent field absorption gas sensor at mid-IR 3.39 μm wavelength", Journal of Modern Optics, 64(18), 1892-1897 (2017). CrossRef S. Zampolli et al., "Selectivity enhancement of metal oxide gas sensors using a micromachined gas chromatographic column", Sensors and Actuators B Chemical, 105 (2), 400-406 (2005). CrossRef N. Dossi, R. Toniolo, A. Pizzariello, E. Carrilho, E. Piccin, S. Battiston, G. Bontempelli, "An electrochemical gas sensor based on paper supported room temperature ionic liquids", Lab Chip, 12 (1), 153-158 (2011). CrossRef V. Avetisov, O. Bjoroey, J. Wang, P. Geiser, K. G. Paulsen, "Hydrogen Sensor Based on Tunable Diode Laser Absorption Spectroscopy", Sensors, 19 (23), 5313 (2019). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, "Silicon on silicon dioxide slot waveguide evanescent field gas absorption sensor", Journal of Modern Optics, 65(2), 174-178 (2018). CrossRef Nikolay Lvovich Kazanskiy, Svetlana Nikolaevna Khonina, Muhammad Ali Butt, "Subwavelength Grating Double Slot Waveguide Racetrack Ring Resonator for Refractive Index Sensing Application", Sensors, 20, 3416 (2020). CrossRef H. Tai, H. Tanaka, T. Yoshino, "Fiber-optic evanescent-wave methane-gas sensor using optical absorption for the 3.392-μm line of a He–Ne laser", Opt. Lett., 12, 437-439 (1987). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, "Hybrid plasmonic waveguide-assisted Metal–Insulator–Metal ring resonator for refractive index sensing", Journal of Modern Optics, 65(9), 1135-1140 (2018). CrossRef S.A. Degtyarev, M.A. Butt, S.N. Khonina, R.V. Skidanov, "Modelling of TiO2 based slot waveguides with high optical confinement in sharp bends", 2016 International Conference on Computing, Electronic and Electrical Engineering, ICE Cube, Quetta, 2016, 10-13 CrossRef
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Mia, Md Borhan, Nafiz Jaidye, Ishtiaque Ahmed, Syed Ziauddin Ahmed, and Sangsik Kim. "Broadband integrated polarization splitter and rotator using subwavelength grating metamaterials." Optics Express, January 4, 2023. http://dx.doi.org/10.1364/oe.479195.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Fernández de Cabo, Raquel, Alejandro Sánchez-Sánchez, Yijun Yang, Daniele Melati, Carlos Alonso-Ramos, Aitor V. Velasco, and David González-Andrade. "Broadband mode exchanger based on subwavelength Y-junctions." Nanophotonics, August 7, 2024. http://dx.doi.org/10.1515/nanoph-2024-0291.

Повний текст джерела
Анотація:
Abstract Multimode silicon photonics, leveraging mode-division multiplexing technologies, offers significant potential to increase capacity of large-scale multiprocessing systems for on-chip optical interconnects. These technologies have implications not only for telecom and datacom applications, but also for cutting-edge fields such as quantum and nonlinear photonics. Thus, the development of compact, low-loss and low-crosstalk multimode devices, in particular mode exchangers, is crucial for effective on-chip mode manipulation. This work introduces a novel mode exchanger that exploits the properties of subwavelength grating metamaterials and symmetric Y-junctions, achieving low losses and crosstalk over a broad bandwidth and a compact size of only 6.5 µm × 2.6 µm. The integration of SWG nanostructures in our design enables precise control of mode exchange through different propagation constants in the arms and metamaterial, and takes advantage of dispersion engineering to broaden the operating bandwidth. Experimental characterization demonstrates, to the best of our knowledge, the broadest operational bandwidth covering from 1,420 nm to 1,620 nm, with measured losses as low as 0.5 dB and extinction ratios higher than 10 dB. Enhanced performance is achieved within a 149 nm bandwidth (1,471–1,620 nm), showing measured losses below 0.4 dB and extinction ratios greater than 18 dB.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Guo, Zhenzhao, Shengbao Wu, Yunfeng Lai, and Shuying Cheng. "Ultracompact and Polarization-Independent On-Chip Mode Exchangers Enabled by Subwavelength Grating Metamaterials." Journal of Lightwave Technology, 2024, 1–8. http://dx.doi.org/10.1109/jlt.2024.3451234.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Kabir, Md Faiyaz, Md Borhan Mia, Ishtiaque Ahmed, Nafiz Jaidye, Syed Z. Ahmed, and Sangsik Kim. "Anisotropic leaky-like perturbation with subwavelength gratings enables zero crosstalk." Light: Science & Applications 12, no. 1 (June 2, 2023). http://dx.doi.org/10.1038/s41377-023-01184-5.

Повний текст джерела
Анотація:
AbstractElectromagnetic coupling via an evanescent field or radiative wave is a primary characteristic of light, allowing optical signal/power transfer in a photonic circuit but limiting integration density. A leaky mode, which combines both evanescent field and radiative wave, causes stronger coupling and is thus considered not ideal for dense integration. Here we show that a leaky oscillation with anisotropic perturbation rather can achieve completely zero crosstalk realized by subwavelength grating (SWG) metamaterials. The oscillating fields in the SWGs enable coupling coefficients in each direction to counteract each other, resulting in completely zero crosstalk. We experimentally demonstrate such an extraordinarily low coupling between closely spaced identical leaky SWG waveguides, suppressing the crosstalk by ≈40 dB compared to conventional strip waveguides, corresponding to ≈100 times longer coupling length. This leaky-SWG suppresses the crosstalk of transverse–magnetic (TM) mode, which is challenging due to its low confinement, and marks a novel approach in electromagnetic coupling applicable to other spectral regimes and generic devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Guo, Zhenzhao, Jinbiao Xiao, and Shengbao Wu. "Experimental demonstration of flexible and high-performance mode-order converter using subwavelength grating metamaterials." Optics Express, March 2, 2023. http://dx.doi.org/10.1364/oe.484384.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Yu, Qianli, Zhenzhao Guo, Jiabao Zhu, Lei Zhang, PENG HAO, Jinbiao Xiao, Ting Feng, and Shengbao Wu. "Ultra-compact and polarization-insensitive silicon waveguide 3×3 star-crossing based on composite subwavelength grating metamaterials." Optics Letters, July 15, 2024. http://dx.doi.org/10.1364/ol.529947.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Li, Wanxin, Jiewen Li, Lin Yu, Yang Feng, Yong Yao, Yunxu Sun, Yi Zou, and Xiaochuan Xu. "Observation of Aulter-Townes Splitting in Subwavelength Grating Metamaterial Ring Resonators." APL Photonics, December 8, 2022. http://dx.doi.org/10.1063/5.0122472.

Повний текст джерела
Анотація:
Subwavelength grating metamaterial (SGM) waveguide is typically treated as a homogeneous medium without considering the intra-waveguide reflection. However, this approximation is not always valid, especially in resonators. Inthis paper, we show that the reflection induced mutual coupling between the clock-wise (CW) and counter clock- wise(CCW) resonant modes in subwavelength grating metamaterial waveguide ring resonator (SGMRR) breaks the degeneracy of the two modes, leading to the formation of Autler-Townes splitting (ATS). This phenomenon could beleveraged to improve the detection limit of SGMRR based sensors.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Fraser, William, Daniel Benedikovic, Radovan Korcek, Maziyar Milanizadeh, Dan-Xia Xu, Jens H. Schmid, Pavel Cheben, and Winnie N. Ye. "High-efficiency self-focusing metamaterial grating coupler in silicon nitride with amorphous silicon overlay." Scientific Reports 14, no. 1 (May 22, 2024). http://dx.doi.org/10.1038/s41598-024-62336-0.

Повний текст джерела
Анотація:
AbstractEfficient fiber-chip coupling interfaces are critically important for integrated photonics. Since surface gratings diffract optical signals vertically out of the chip, these couplers can be placed anywhere in the circuit allowing for wafer-scale testing. While state-of-the-art grating couplers have been developed for silicon-on-insulator (SOI) waveguides, the moderate index contrast of silicon nitride (SiN) presents an outstanding challenge for implementing efficient surface grating couplers on this platform. Due to the reduced grating strength, a longer structure is required to radiate the light from the chip which produces a diffracted field that is too wide to couple into the fiber. In this work, we present a novel grating coupler architecture for silicon nitride photonic integrated circuits that utilizes an amorphous silicon (α-Si) overlay. The high refractive index of the α-Si overlay breaks the coupler’s vertical symmetry which increases the directionality. We implement subwavelength metamaterial apodization to optimize the overlap of the diffracted field with the optical fiber Gaussian mode profile. Furthermore, the phase of the diffracted beam is engineered to focalize the field into an SMF-28 optical fiber placed 55 µm above the surface of the chip. The coupler was designed using rigorous three-dimensional (3D) finite-difference time-domain (FDTD) simulations supported by genetic algorithm optimization. Our grating coupler has a footprint of 26.8 × 32.7 µm2 and operates in the O-band centered at 1.31 μm. It achieves a high directionality of 85% and a field overlap of 90% with a target fiber mode size of 9.2 µm at the focal plane. Our simulations predict a peak coupling efficiency of − 1.3 dB with a 1-dB bandwidth of 31 nm. The α-Si/SiN grating architecture presented in this work enables the development of compact and efficient optical interfaces for SiN integrated photonics circuits with applications including optical communications, sensing, and quantum photonics.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

MacKay, Kevan K., Shurui Wang, Pavel Cheben, and Winnie N. Ye. "Subwavelength Grating Metamaterial Multimode Bend for Silicon Waveguides." Advanced Materials Technologies, March 25, 2022, 2200038. http://dx.doi.org/10.1002/admt.202200038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Jen, Yi-Jun, Po-Chun Lin, and Xing-Hao Lo. "Silver split nano-tube array as a meta-atomic monolayer for high-reflection band." Scientific Reports 12, no. 1 (August 10, 2022). http://dx.doi.org/10.1038/s41598-022-17703-0.

Повний текст джерела
Анотація:
AbstractIn this work, an ultra-thin silver film-coated grating as a split silver nanotube array exhibits not only high TE polarized reflectance as a conventional subwavelength grating but also high TM polarized reflectance that is close to or higher than TE reflectance at certain wavelength range. The TM reflectance peak shifts with the morphology of the silver covering. The near-field analysis reveals that the silver nanotube array is an ultra-thin optical double negative metamaterial. The negative permeability associated magnetic field reversal is induced within the grating that is surrounded by a split current loop at the TM reflectance peak wavelength. The near field simulation is used to retrieve the equivalent electromagnetic parameters and optical constants that cause the anomalous TM high reflection. It is demonstrated that the TM impedances have a low magnitude and high magnitude with respect to unity for light incident onto the top and bottom of the grating at the peak wavelength, respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Farmani, Ali, and Anis Omidniaee. "Observation of Plasmonics Talbot effect in graphene nanostructures." Scientific Reports 14, no. 1 (January 23, 2024). http://dx.doi.org/10.1038/s41598-024-52595-2.

Повний текст джерела
Анотація:
AbstractWe report on the theoretical models of the plasmoincs Talbot effect in graphene nanostructure. The Talbot effect for the plasmonics applications in the IR range is theoretically studied and the respective Talbot effect for the novel advanced plasmonics structures are numerically investigated for the first time. It is shown that the metamaterial structures with periodic grating configuration represents a complex three-dimensional lattice of beamlet-like graphene plasmonics devices. The calculated results agree well with the experimental ones. The results obtained can be used to create and optimize the structures considering diffraction limit for a wide range of application areas. Effective focusing of plasmonic waves with exact focal spots and a subwavelength full width at half maximum can be obtained by using periodic graphene grating.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Naraine, Cameron M., Jocelyn N. Westwood‐Bachman, Cameron Horvath, Mirwais Aktary, Andrew P. Knights, Jens H. Schmid, Pavel Cheben, and Jonathan D. B. Bradley. "Subwavelength Grating Metamaterial Waveguides and Ring Resonators on a Silicon Nitride Platform." Laser & Photonics Reviews, December 19, 2022, 2200216. http://dx.doi.org/10.1002/lpor.202200216.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Liu, Weixin, Yiming Ma, Yuhua Chang, Bowei Dong, Jingxuan Wei, Zhihao Ren, and Chengkuo Lee. "Suspended silicon waveguide platform with subwavelength grating metamaterial cladding for long-wave infrared sensing applications." Nanophotonics, May 7, 2021. http://dx.doi.org/10.1515/nanoph-2021-0029.

Повний текст джерела
Анотація:
Abstract Long-wave infrared (LWIR, 6–14 µm) processes enormous potential for chem/biosensing as it covers abundant molecular absorption fingerprints. Waveguides provide an attractive chip-scale miniaturization solution for optical sensors. However, the exploration of waveguide sensors in this wavelength range is limited. Here, an LWIR photonic platform for fast and sensitive on-chip gas sensing is developed using suspended silicon (Si) waveguide supported by subwavelength grating (SWG) metamaterial claddings. This platform provides a viable approach to fully exploit the transparency window of Si. The SWG structure provides a promising solution to engineer the mode profile for strong light–analyte interaction. Propagation loss and bending loss are studied in the broad wavelength range of 6.4–6.8 µm. Functional devices including grating couplers, Y-junctions, and directional couplers are also demonstrated with high performance. Sensing demonstration based on our platform is presented using toluene vapor detection as an example. The corresponding limit of detection reaches 75 ppm. The response and recovery time to 75 ppm toluene are about 0.8 and 3.4 s, respectively. This good performance makes our platform a promising candidate for on-site medical and environmental applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Zhang, Lei, Zhenzhao Guo, Xiaofei Gu, Jinbiao Xiao, Ting Feng, and Shengbao Wu. "All-silicon TM polarizer covering 1260-1675nm bandwidth using band engineered subwavelength grating metamaterial." Optics Letters, June 6, 2023. http://dx.doi.org/10.1364/ol.495558.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Zhang, Jinsong, Luhua Xu, Deng Mao, Yannick D’Mello, Zixian Wei, Weijia Li, and David V. Plant. "Temperature-insensitive and low-loss single-mode silicon waveguide crossing covering all optical communication bands enabled by curved anisotropic metamaterial." Nanophotonics, October 6, 2023. http://dx.doi.org/10.1515/nanoph-2023-0524.

Повний текст джерела
Анотація:
Abstract We propose two designs of low-loss and temperature-insensitive single-mode waveguide crossing on silicon-on-insulator (SOI) platform with 415-nm operation bandwidth covering all optical communication bands. Both designs are enabled by subwavelength grating (SWG) modeled as an anisotropic metamaterial. The initial design applies straight SWG as the lateral cladding of the waveguide crossing to minimize the refractive index contrast and reduce the insertion loss (IL), but needs a relatively long taper. An improved design is then proposed where the curved SWG is introduced to replace the straight SWG to decrease the taper length and improve the performance. The waveguide crossing with the improved design achieves a calculated maximum IL of 0.229 dB and maximum crosstalk of −35.6 dB over a 415-nm wavelength range from 1260 nm to 1675 nm. The proposed devices are fabricated and characterized. Measured results of the improved design show a maximum IL of 0.264 dB and maximum crosstalk of −30.9 dB over a 230-nm wavelength range including O-, C-, and L-bands, which accord well with the simulation. Low temperature sensitivity has also been demonstrated in both simulations and experiments.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії