Добірка наукової літератури з теми "(Sub)Millimeter lines"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "(Sub)Millimeter lines".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "(Sub)Millimeter lines"
Evans, Neal J., Lee G. Mundy, John H. Davis, and Paul Vanden Bout. "Sub-Millimeter Spectral Line Observations in Very Dense Regions." Symposium - International Astronomical Union 115 (1987): 173. http://dx.doi.org/10.1017/s0074180900095322.
Повний текст джерелаTafoya, D., J. A. Toalá, W. H. T. Vlemmings, M. A. Guerrero, E. De Beck, M. González, S. Kimeswenger, A. A. Zijlstra, Á. Sánchez-Monge, and S. P. Treviño-Morales. "(Sub)millimeter emission lines of molecules in born-again stars." Astronomy & Astrophysics 600 (March 22, 2017): A23. http://dx.doi.org/10.1051/0004-6361/201630074.
Повний текст джерелаDavid, F., M. Chatras, C. Dalmay, L. Lapierre, L. Carpentier, and P. Blondy. "Surface-Micromachined Rectangular Micro-Coaxial Lines for Sub-Millimeter-Wave Applications." IEEE Microwave and Wireless Components Letters 26, no. 10 (October 2016): 756–58. http://dx.doi.org/10.1109/lmwc.2016.2604867.
Повний текст джерелаLankhaar, Boy, and Wouter Vlemmings. "PORTAL: Three-dimensional polarized (sub)millimeter line radiative transfer." Astronomy & Astrophysics 636 (April 2020): A14. http://dx.doi.org/10.1051/0004-6361/202037509.
Повний текст джерелаHumphreys, E. M. L. "Submillimeter and millimeter masers." Proceedings of the International Astronomical Union 3, S242 (March 2007): 471–80. http://dx.doi.org/10.1017/s1743921307013622.
Повний текст джерелаOhno, Yuki, Takahiro Oyama, Akemi Tamanai, Shaoshan Zeng, Yoshimasa Watanabe, Riouhei Nakatani, Takeshi Sakai, and Nami Sakai. "Laboratory Measurement of Millimeter-wave Transitions of 13CH2DOH for Astronomical Use." Astrophysical Journal 932, no. 2 (June 1, 2022): 101. http://dx.doi.org/10.3847/1538-4357/ac6b9e.
Повний текст джерелаMeyer, Romain A., Fabian Walter, Claudia Cicone, Pierre Cox, Roberto Decarli, Roberto Neri, Mladen Novak, Antonio Pensabene, Dominik Riechers та Axel Weiss. "Physical Constraints on the Extended Interstellar Medium of the z = 6.42 Quasar J1148+5251: [C ii]158 μm, [N ii]205 μm, and [O i]146 μm Observations". Astrophysical Journal 927, № 2 (1 березня 2022): 152. http://dx.doi.org/10.3847/1538-4357/ac4e94.
Повний текст джерелаBaron, Philippe, Donal Murtagh, Patrick Eriksson, Jana Mendrok, Satoshi Ochiai, Kristell Pérot, Hideo Sagawa, and Makoto Suzuki. "Simulation study for the Stratospheric Inferred Winds (SIW) sub-millimeter limb sounder." Atmospheric Measurement Techniques 11, no. 7 (July 31, 2018): 4545–66. http://dx.doi.org/10.5194/amt-11-4545-2018.
Повний текст джерелаLee, Seungwon, Paul von Allmen, Lucas Kamp, Samuel Gulkis, and Björn Davidsson. "Non-LTE radiative transfer for sub-millimeter water lines in Comet 67P/Churyumov-Gerasimenko." Icarus 215, no. 2 (October 2011): 721–31. http://dx.doi.org/10.1016/j.icarus.2011.07.007.
Повний текст джерелаTong, Cheuk‐yu Edward, Raymond Blundell, Bruce Bumble, Jeffrey A. Stern, and Henry G. LeDuc. "Quantum limited heterodyne detection in superconducting non‐linear transmission lines at sub‐millimeter wavelengths." Applied Physics Letters 67, no. 9 (August 28, 1995): 1304–6. http://dx.doi.org/10.1063/1.114405.
Повний текст джерелаДисертації з теми "(Sub)Millimeter lines"
Cabbia, Marco. "(Sub)-millimeter wave on-wafer calibration and device characterization." Thesis, Bordeaux, 2021. http://www.theses.fr/2021BORD0017.
Повний текст джерелаPrecision measurements play a crucial role in electronic engineering, particularly in the characterization of silicon-based heterojunction bipolar transistors (HBTs) embedded into devices for THz applications using the BiCMOS technology. Thanks to ongoing innovations in terms of nanoscale technology manufacturing, devices capable of operating in the sub-millimeter wave region are becoming a reality, and need to support the demand for high frequency circuits and systems. To have accurate models at such frequencies, it is no longer possible to limit the parameter extraction below 110 GHz, and new techniques for obtaining reliable measurements of passive and active devices must be investigated.In this thesis, we examine the on-wafer S-parameters characterization of various passive test structures and SiGe HBTs in STMicroelectronics' B55 technology, up to 500 GHz. We start with an introduction of the measuring equipment usually employed for this type of analysis, then moving on to the various probe stations adopted at the IMS Laboratory, and finally focusing on calibration and deembedding techniques, reviewing the major criticalities of high-frequency characterization and comparing two on-wafer calibration algorithms (SOLT and TRL) up to the WR-2.2 band.Two photomask production runs for on-wafer characterization, both designed at IMS, are considered: we introduce a new floorplan design and evaluate its ability to limit parasitic effects as well as the effect of the environment (substrate, neighbors, and crosstalk). For our analysis, we rely on electromagnetic simulations and joint device model + probe EM simulations, both including probe models for an evaluation of measurement results closer to real-world conditions.Finally, we present some test structures to evaluate unwanted impacts on millimeter wave measurements and novel transmission line design solutions. Two promising designs are carefully studied: the "M3 layout", which aims to characterize the DUT in a single-tier calibration, and the "meander lines", which keeps the inter-probe distance constant by avoiding any sort of probe displacement during on-wafer measurements
Bottinelli, Sandrine. "Hot corinos : molécules pré-biotiques autour des protoétoiles de type solaire." Grenoble 1, 2006. http://www.theses.fr/2006GRE10127.
Повний текст джерелаOne of the major goals of modern astrophysics is to understand the formation of our Solar System. Since low-mass protostars are suns in the making, the study of these objects and their environment provides one of the best ways to investigate the Sun's formation process and to peek in the past history of our Solar System. In my thesis, I focused on the chemistry occuring in Class 0 sources (the earliest known phases in the evolutionary scenario of low-mass protostars) by studying complex organic molecules in their envelopes. Such molecules have been discovered in IRAS16293--2422, the prototype of Class 0 sources, proving the existence of hot corinos, the inner regions of the protostellar envelope where the icy grain mantles sublimate. Some of these molecules have also been observed in comets in our Solar System, raising the question of whether (and if so, how) the chemistry of Class 0 objects affects the chemical composition of the protoplanetary disk material from which comets and other planetary bodies form. However, it is first necessary to determine whether hot corinos are ubiquitous in low-mass protostars or if IRAS16293-2422 is an exception. This was the first goal of my thesis. The approach consisted mainly in observing three Class 0 sources to search for complex organic molecules. I thereby discovered and/or confirmed three more hot corinos. The second goal was then to constrain the size of emission of complex molecules. For this, I carried out interferometric observations of the two brightest hot corinos: this emission is compact (<150 AU) with, in one of the sources, an extended component originating from the cooler, less dense outer envelope. The third goal consisted in confronting the possible formation pathways with the results of my observations to try and discriminate whether complex organic molecules form via gas-phase or grain-surface reactions. Although it was not possible to arrive at a definite answer, my data seem to favor the later formation route. Moreover, the comparison of hot corinos and their high-mass analogs, the hot cores (showing that complex molecules are relatively more abundant in hot corinos), also support grain-surface synthesis of these molecules
Частини книг з теми "(Sub)Millimeter lines"
Notsu, Shota. "Modeling Studies III. Sub-millimeter H$$_{2}$$ $$^{16}$$O and H$$_{2}$$ $$^{18}$$O Lines." In Water Snowline in Protoplanetary Disks, 83–111. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7439-9_4.
Повний текст джерела"Proceedings of the First International Snakehead Symposium." In Proceedings of the First International Snakehead Symposium, edited by Hae H. Kim, Jason A. Emmel, and Quinton E. Phelps. American Fisheries Society, 2019. http://dx.doi.org/10.47886/9781934874585.ch4.
Повний текст джерелаHuu Trung, Nguyen. "Multiplexing Techniques for Applications Based-on 5G Systems." In Multiplexing - Recent Advances and Novel Applications [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.101780.
Повний текст джерелаТези доповідей конференцій з теми "(Sub)Millimeter lines"
Gritsunov, A. V., and N. V. Ostapyuk. "Numerical Simulation of UWB Electromagnetic Pulses Propagation in Dispersive Electrodynamic Lines." In 2007 International Kharkiv Symposium Physics and Engrg. of Millimeter and Sub-Millimeter Waves (MSMW). IEEE, 2007. http://dx.doi.org/10.1109/msmw.2007.4294646.
Повний текст джерелаWicks, M. C. "Frequency measurement of sub-millimetre wavelength laser lines using Josephson junctions." In 18th International Conference on Infrared and Millimeter Waves. SPIE, 1993. http://dx.doi.org/10.1117/12.2298571.
Повний текст джерелаBuijtendorp, Bruno T., Akira Endo, Kenichi Karatsu, David J. Thoen, Vignesh Murugesan, Kevin Kouwenhoven, Sebastian Hähnle, Jochem J. A. Baselmans, and Sten Vollebregt. "Low-loss a-SiC:H for superconducting microstrip lines for (sub-)millimeter astronomy." In Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI, edited by Jonas Zmuidzinas and Jian-Rong Gao. SPIE, 2022. http://dx.doi.org/10.1117/12.2630107.
Повний текст джерелаChahadih, Abdallah, Magdalena Chudzik, Israel Arnedo, Abbas Ghaddar, Ivan Arregui, Fernando Teberio, Aintzane Lujambio, Miguel A. G. Laso, Txema Lopetegi, and Tahsin Akalin. "Low loss microstrip transmission-lines using cyclic olefin copolymer COC-substrate for sub-THz and THz applications." In 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2013). IEEE, 2013. http://dx.doi.org/10.1109/irmmw-thz.2013.6665702.
Повний текст джерелаYefimov, B. P., M. O. Khorunzhiy, and A. N. Kuleshov. "Microvawe Discharge Properties in Goubau Line." In 2007 International Kharkiv Symposium Physics and Engrg. of Millimeter and Sub-Millimeter Waves (MSMW). IEEE, 2007. http://dx.doi.org/10.1109/msmw.2007.4294734.
Повний текст джерелаFurxhi, Orges, and Eddie L. Jacobs. "A sub-millimeter wave line imaging device." In SPIE Defense, Security, and Sensing, edited by David A. Wikner and Arttu R. Luukanen. SPIE, 2010. http://dx.doi.org/10.1117/12.850152.
Повний текст джерелаFurxhi, Orges, and Eddie L. Jacobs. "A sub-millimeter wave line scanning imager." In Security + Defence, edited by Keith A. Krapels and Neil A. Salmon. SPIE, 2010. http://dx.doi.org/10.1117/12.865100.
Повний текст джерелаGnilenko, Alexey B. "Entire-Domain Method of Moments Analysis of Shielded Microstrip Transmission Line." In 2007 International Kharkiv Symposium Physics and Engrg. of Millimeter and Sub-Millimeter Waves (MSMW). IEEE, 2007. http://dx.doi.org/10.1109/msmw.2007.4294640.
Повний текст джерелаYurchenko, V. B., and L. V. Yurchenko. "Complex Dynamics of Gunn Diode Circuits with Time-Delay Microstrip-Line Coupling." In 2007 International Kharkiv Symposium Physics and Engrg. of Millimeter and Sub-Millimeter Waves (MSMW). IEEE, 2007. http://dx.doi.org/10.1109/msmw.2007.4294751.
Повний текст джерелаIvanyuta, O. M., Ya I. Kishenko, and O. V. Prokopenko. "Investigation Modulator on Slot Line with Surface Oriented p - i - n Structures." In 2007 International Kharkiv Symposium Physics and Engrg. of Millimeter and Sub-Millimeter Waves (MSMW). IEEE, 2007. http://dx.doi.org/10.1109/msmw.2007.4294788.
Повний текст джерела