Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Structure formation mechanism.

Статті в журналах з теми "Structure formation mechanism"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Structure formation mechanism".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Savchenko, V. F., and S. D. Grivko. "MECHANISM OF FORMATION AND ACTIVITY OF INNOVATION CLUSTER STRUCTURE OF ENGINEERING COMPLEX." SCIENTIFIC BULLETIN OF POLISSIA 2, no. 1(9) (2017): 40–47. http://dx.doi.org/10.25140/2410-9576-2017-2-1(9)-40-47.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Manabe, Sei-ichi. "Formation Mechanism of Artificial Membrane Structure." membrane 22, no. 4 (1997): 172–79. http://dx.doi.org/10.5360/membrane.22.172.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

MAKABE, Koki. "Structure Formation Mechanism of Beta-Sheet." Seibutsu Butsuri 50, no. 3 (2010): 126–27. http://dx.doi.org/10.2142/biophys.50.126.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Savvova, Оksana, Hennadiy Voronov, Оlena Babich, Oleksii Fesenko, Sviatoslav Riabinin, and Robert Bieliakov. "Solid Solutions Formation Mechanism in Cordierite-Mullite Glass Materials During Ceramization." Chemistry & Chemical Technology 14, no. 4 (December 15, 2020): 583–89. http://dx.doi.org/10.23939/chcht14.04.583.

Повний текст джерела
Анотація:
Relevance of the development of high-strength glass-ceramic coatings obtained by resource-saving technology for protective elements has been established. Structure formation mechanism in magnesium aluminosilicate glasses during heat treatment has been analyzed. Selection of the system was substantiated, model glasses and glass-ceramic materials on its base have been developed. Patterns of structure regularity and formation of the phase composition of glass-ceramic materials during their ceramization have been investigated. It was established that the presence of crystalline phase of mullite after melting leads to formation of the primary crystals and allows the formation of the fine crystalline structure under conditions of the low-temperature heat treatment at the nucleation stage. Developed high-strength glass ceramic materials can be used as a base in creating protective elements for special-purpose vehicles by energy-saving technology.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ye, Dan, and Huaying Shu. "Market Structure Formation Mechanism of Bit Product." Modern Economy 03, no. 02 (2012): 245–51. http://dx.doi.org/10.4236/me.2012.32034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Golubev, Sergey N. "Structure Mechanism of Ordinary Matter Mass Formation." Journal of Modern Physics 07, no. 09 (2016): 875–91. http://dx.doi.org/10.4236/jmp.2016.79079.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Dergachova, Victoriia, Maryna Kravchenko, Kateryna Kuznietsova, Anna Dergachova, and Valeriia Melnykova. "Systemic-structural analysis of the machine-building enterprises economic sustainability formation mechanism." Problems and Perspectives in Management 17, no. 3 (September 20, 2019): 395–409. http://dx.doi.org/10.21511/ppm.17(3).2019.32.

Повний текст джерела
Анотація:
Machine-building complex is a system-forming element of Ukrainian economy. Functioning of other industries in many respects depends on the results of its activity. Harsh conditions of globalized economic environment and geopolitical changes taking place in the country have negatively affected the state of machine-building enterprises and determined the need for increasing the level of their economic sustainability. As a result of using the systemic-structural approach, which is being developed in the context of the provisions of systemic economic theory, systemic-structural analysis of economic sustainability of several machine-building enterprises was performed. The study was conducted based on a sample of 16 machine-building enterprises and covered the 2015−2016 period. Economic sustainability was analyzed by way of defining in the structure of enterprises, econometric modeling and assessing the state of four subsystems with different space and time localization and further defining the level of mutual balance. The set of individual parameters for modeling every subsystem was determined mainly by way of regrouping of baseline statistical indicators, as well as expert assessments. Using such an approach enabled to determine structural peculiarities of machine-building enterprises development during the analyzed period and their effect on formation of volatility and stability properties, which ensure their sustainability in space and time. During the analyzed period, the determined disproportions of the subsystems in the structure of enterprises had systemic nature. The identification of economic manifestations of the determined disproportions enabled to formally define non-trivial dependencies between the economic phenomena, which took place in machine building, and to define the nature of their influence on the mechanism of economic sustainability formation. The risks affecting every subsystem under study had volatile nature, that’s why the issue of systemic risk management remains relevant.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Radu, Tamara, Simona Constantinescu, and M. Vlad. "Morphologies of Widmanstätten Structures and Mechanism Formation in Steels." Materials Science Forum 636-637 (January 2010): 550–55. http://dx.doi.org/10.4028/www.scientific.net/msf.636-637.550.

Повний текст джерела
Анотація:
This paper presents a research concerning the equilibrium of ferrite and secondary cementite and Widmanstätten structure formation, resulting in precise conditions. If all researchers agree with the mechanisms of ferrite and massive cementite formation in steels, the Widmanstätten structure formation is rather disputable and new data in the area of massive transformation might account for the formation of Widmanstätten structures in the low carbon steels. For the massive phase and Widmanstätten structures, the mathematic relations regarding the rate of growth are presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

G.P., Metaksa, Moldabayeva G.Zh., and Alisheva Zh.N. "Mechanism of structure formation in fluid-bearing minerals." Mining Informational and analytical bulletin 2 (2019): 78–84. http://dx.doi.org/10.25018/0236-1493-2019-02-0-78-84.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Abu-Sharkh, Basel F. "Structure and mechanism of formation of polyelectrolyte multilayers." Polymer 47, no. 10 (May 2006): 3674–80. http://dx.doi.org/10.1016/j.polymer.2006.03.045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Ikarashi, N., Katsuhiro Akimoto, Atsushi Oshiyama, and Tetsuo Tatsumi. "Si/Ge Ordered Interface: Structure and Formation Mechanism." Materials Science Forum 196-201 (November 1995): 511–16. http://dx.doi.org/10.4028/www.scientific.net/msf.196-201.511.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Tian, Mengkun, Masoud Mahjouri-Samani, Gyula Eres, Ritesh Sachan, Mina Yoon, Matthew F. Chisholm, Kai Wang, et al. "Structure and Formation Mechanism of Black TiO2 Nanoparticles." ACS Nano 9, no. 10 (September 28, 2015): 10482–88. http://dx.doi.org/10.1021/acsnano.5b04712.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Nie, Baisheng, Chao Peng, Kedi Wang, and Longlong Yang. "Structure and Formation Mechanism of Methane Explosion Soot." ACS Omega 5, no. 49 (December 7, 2020): 31716–23. http://dx.doi.org/10.1021/acsomega.0c04234.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Kuczkowski, Robert L. "The structure and mechanism of formation of ozonides." Chemical Society Reviews 21, no. 1 (1992): 79. http://dx.doi.org/10.1039/cs9922100079.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Neverov, S. L., and D. G. Latypov. "Mechanism of Polymer Phosphate Classes Anion Structure Formation." Phosphorus, Sulfur, and Silicon and the Related Elements 51, no. 1-4 (September 1990): 458. http://dx.doi.org/10.1080/10426509008040982.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Uzun, Oktay, Hao Xu, Eunhee Jeoung, Raymond J. Thibault, and Vincent M. Rotello. "Recognition-Induced Polymersomes: Structure and Mechanism of Formation." Chemistry - A European Journal 11, no. 23 (November 18, 2005): 6916–20. http://dx.doi.org/10.1002/chem.200500809.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Qu, Qishu, Wanying Li, and Qing Wu. "Formation Mechanism of Silica Particles with Dendritic Structure." ChemistrySelect 4, no. 21 (June 6, 2019): 6656–61. http://dx.doi.org/10.1002/slct.201900952.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

VERISOKIN, ANDREY YU, and DARYA V. VERVEYKO. "NON-TURING MECHANISM OF SELF-SUSTAINED STRUCTURE FORMATION." International Journal of Bifurcation and Chaos 23, no. 02 (February 2013): 1350037. http://dx.doi.org/10.1142/s0218127413500375.

Повний текст джерела
Анотація:
We study the mechanism of experimentally observed phase waves and clusters in yeast extracts (cells with destroyed membranes) placed into the unstirred medium (gel). As a mathematical model, the distributed Selkov system is used, since it describes the key step of glycolytic reaction cascade — the phosphofructokinase-catalyzed reaction. We argue that the emergence of spatial phase clusters does not correspond to the Turing mechanism because diffusion coefficients used for two considered reagents are taken as equal. We show that the actual background of this phenomenon is connected with various local rotation velocities in phase space. In this case, large diffusion coefficients stabilize spatial patterns and small diffusion provides an asynchronous regime only.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Gorlenko, N. P., Yu S. Sarkisov, V. I. Syryamkin, L. B. Naumova, A. N. Pavlova, and B. I. Laptev. "Wave mechanism of structure formation in cement compositions." IOP Conference Series: Materials Science and Engineering 597 (August 23, 2019): 012030. http://dx.doi.org/10.1088/1757-899x/597/1/012030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Ni, Yong, and Armen G. Khachaturyan. "Mechanism and conditions of the chessboard structure formation." Acta Materialia 56, no. 16 (September 2008): 4498–509. http://dx.doi.org/10.1016/j.actamat.2008.05.035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Liu, Shan, Tao Huang, Deyang Lu, and Yaohe Zhou. "Formation mechanism and structure of spike-like crystals." Scripta Metallurgica et Materialia 30, no. 3 (February 1994): 373–75. http://dx.doi.org/10.1016/0956-716x(94)90391-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Savitskii, A. P. "Mechanism of porous structure formation in intermetallic synthesis." Journal of Engineering Physics and Thermophysics 65, no. 4 (October 1993): 1016–19. http://dx.doi.org/10.1007/bf00862778.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Dovgan, A. D., and V. М. Vyrovoy. "STRUCTURE FORMATION OF DISPERSED-REINFORCED BUILDING COMPOSITES." Bulletin of Odessa State Academy of Civil Engineering and Architecture, no. 85 (December 28, 2021): 71–78. http://dx.doi.org/10.31650/2415-377x-2021-85-71-78.

Повний текст джерела
Анотація:
Abstract. The results of the study of the mechanism of structure formation of cement compositions reinforced with finely dispersed monofilament are presented in the article. The mechanism of microstructure organization of construction composites was studied on models of dispersed systems, with different qualitative and quantitative composition of linear and dispersed particles. At the same time, restrictions had been placed on particle size – fiber diameter and diameter of dispersed particles are proportional to each other. Study of cracking formation kinetics was carried out on disk-shaped samples made of water-clay and water-cement compositions. Physical and mechanical characteristics of dispersed-reinforced cement stone, including non-reinforced stone, have been defined on prisms-shaped samples of square section with size 40×40×160 mm. The analysis of physical models showed that cluster structures filling with particles of various nature and shape increases structural diversity of entire dispersed system. An inserting of linear particles changes nature of system structure formation. Depending on the characteristics, structural components of the system, substructures are formed, which differ in the periods of their formation and geometric parameters. It has been established that dispersed particles of different nature are structured in different ways into clusters with discrete fibers of different length. Linear particles were more active in the creation of structural aggregates (clusters) comparing to dispersed grains. The impact of highly dispersed fibers on the structure organization of the binder compositions was quantified by the damage coefficient determined on samples of different types. The presence of discrete fibers in the composition of the material leads to modify the qualitative characteristic of compositions cracking formation. Improvement of physical and mechanical properties of the dispersed-reinforced composite confirms the ability of the fiber to change a mechanism of material destruction due to a probable deposition of hydration products on monofilaments, to densify and strengthen the interfacial transitional zone.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Galzitskaya, Oxana. "New Mechanism of Amyloid Fibril Formation." Current Protein & Peptide Science 20, no. 6 (May 20, 2019): 630–40. http://dx.doi.org/10.2174/1389203720666190125160937.

Повний текст джерела
Анотація:
Polymorphism is a specific feature of the amyloid structures. We have studied the amyloid structures and the process of their formation using the synthetic and recombinant preparations of Aβ peptides and their three fragments. The fibrils of different morphology were obtained for these peptides. We suppose that fibril formation by Aβ peptides and their fragments proceeds according to the simplified scheme: destabilized monomer → ring-like oligomer → mature fibril that consists of ringlike oligomers. We are the first who did 2D reconstruction of amyloid fibrils provided that just a ringlike oligomer is the main building block in fibril of any morphology, like a cell in an organism. Taking this into account it is easy to explain the polymorphism of fibrils as well as the splitting of mature fibrils under different external actions, the branching and inhomogeneity of fibril diameters. Identification of regions in the protein chains that form the backbone of amyloid fibril is a direction in the investigation of amyloid formation. It has been demonstrated for Aβ(1-42) peptide and its fragments that their complete structure is inaccessible for the action of proteases, which is an evidence of different ways of association of ring-like oligomers with the formation of fibrils. Based on the electron microscopy and mass spectrometry data, we have proposed a molecular model of the fibril formed by both Aβ peptide and its fragments. In connection with this, the unified way of formation of fibrils by oligomers, which we have discovered, could facilitate the development of relevant fields of medicine of common action.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Galzitskaya, Oxana V., Olga M. Selivanova, Elena Y. Gorbunova, Leila G. Mustaeva, Viacheslav N. Azev, and Alexey K. Surin. "Mechanism of Amyloid Gel Formation by Several Short Amyloidogenic Peptides." Nanomaterials 11, no. 11 (November 20, 2021): 3129. http://dx.doi.org/10.3390/nano11113129.

Повний текст джерела
Анотація:
Under certain conditions, many proteins/peptides are capable of self-assembly into various supramolecular formations: fibrils, films, amyloid gels. Such formations can be associated with pathological phenomena, for example, with various neurodegenerative diseases in humans (Alzheimer’s, Parkinson’s and others), or perform various functions in the body, both in humans and in representatives of other domains of life. Recently, more and more data have appeared confirming the ability of many known and, probably, not yet studied proteins/peptides, to self-assemble into quaternary structures. Fibrils, biofilms and amyloid gels are promising objects for the developing field of research of nanobiotechnology. To develop methods for obtaining nanobiomaterials with desired properties, it is necessary to study the mechanism of such structure formation, as well as the influence of various factors on this process. In this work, we present the results of a study of the structure of biogels formed by four 10-membered amyloidogenic peptides: the VDSWNVLVAG peptide (AspNB) and its analogue VESWNVLVAG (GluNB), which are amyloidogenic fragments of the glucantransferase Bgl2p protein from a yeast cell wall, and amyloidogenic peptides Aβ(31–40), Aβ(33–42) from the Aβ(1–42) peptide. Based on the analysis of the data, we propose a possible mechanism for the formation of amyloid gels with these peptides.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Nakazawa, H., H. Kubo, and S. Kato. "Formation mechanism of the domain structure in DSPC bilayers." Seibutsu Butsuri 40, supplement (2000): S83. http://dx.doi.org/10.2142/biophys.40.s83_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Wang, Jia-jun, Hong-sheng Fang, Zhi-gang Yang, and Yan-kang Zheng. "Fine Structure and Formation Mechanism of Bainite in Steels." ISIJ International 35, no. 8 (1995): 992–1000. http://dx.doi.org/10.2355/isijinternational.35.992.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

OUGIZAWA, Toshiaki. "Structure Formation Mechanism of Phase Separation in Polymer Mixtures." Journal of the Japan Society of Colour Material 80, no. 8 (2007): 343–51. http://dx.doi.org/10.4011/shikizai1937.80.343.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Jie, WANG, ZHUANG Hui-Zhao, XUE Cheng-Shan, LI Jun-Lin, and XU Peng. "Structure and Formation Mechanism of Sn-Doped ZnO Nanoneedles." Acta Physico-Chimica Sinica 26, no. 10 (2010): 2840–44. http://dx.doi.org/10.3866/pku.whxb20101024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Rodnina, Marina V., and Wolfgang Wintermeyer. "Peptide bond formation on the ribosome: structure and mechanism." Current Opinion in Structural Biology 13, no. 3 (June 2003): 334–40. http://dx.doi.org/10.1016/s0959-440x(03)00065-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Yin, Jie, Yahua Bi, and Yingchao Ji. "Structure and Formation Mechanism of China-ASEAN Tourism Cooperation." Sustainability 12, no. 13 (July 6, 2020): 5440. http://dx.doi.org/10.3390/su12135440.

Повний текст джерела
Анотація:
Tourism cooperation is an essential element for tourism development in China-ASEAN countries and has made a significant economic contribution to destinations. This study investigates the structure of tourism cooperation in China-ASEAN relations and identifies a set of factors that affect tourism cooperation from a network perspective. By employing social network analysis, the results indicate that the scale of cooperation is small, and the efficiency is not high, although the restrictions on cooperation between countries are reduced. The findings also indicate that differences in the political system, security, population density, and language can promote tourism cooperation, while differences in governance, income, and consumption level impede tourism cooperation. The research results may assist China-ASEAN countries to formulate tourism strategies suitable for international cooperation and national differences.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Lin, Yu-Chiao, Hsin-Lung Chen, Takeji Hashimoto, and Show-An Chen. "Mechanism of Hierarchical Structure Formation of Polymer/Nanoparticle Hybrids." Macromolecules 49, no. 19 (September 29, 2016): 7535–50. http://dx.doi.org/10.1021/acs.macromol.6b01531.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Ohtani, Hiroshi, and Hiroki Abe. "Formation Mechanism of Synchronized Long Period Stacking Ordered Structure." Materia Japan 54, no. 2 (2015): 55–59. http://dx.doi.org/10.2320/materia.54.55.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Göltner-Spickermann, Christine. "Non-ionic templating of silica: formation mechanism and structure." Current Opinion in Colloid & Interface Science 7, no. 3-4 (August 2002): 173–78. http://dx.doi.org/10.1016/s1359-0294(02)00046-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Bartnitskaya, T. S., G. S. Oleinik, A. V. Pokropivnyi, and V. V. Pokropivnyi. "Synthesis, structure, and formation mechanism of boron nitride nanotubes." Journal of Experimental and Theoretical Physics Letters 69, no. 2 (January 1999): 163–68. http://dx.doi.org/10.1134/1.567999.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Shagun, V. A., L. G. Shagun та M. G. Voronkov. "Mechanism of Formation and Molecular Structure of α-Halothioacetones". Russian Journal of General Chemistry 74, № 4 (квітень 2004): 594–99. http://dx.doi.org/10.1023/b:rugc.0000031863.18689.0d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Lu, M. C., Y. L. Chueh, L. J. Chen, L. J. Chou, H. L. Hsiao, and An-Ban Yang. "Synthesis and Formation Mechanism of Gallium Nitride Nanotubular Structure." Electrochemical and Solid-State Letters 8, no. 7 (2005): G153. http://dx.doi.org/10.1149/1.1922847.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Spanos, G. "The fine structure and formation mechanism of lower bainite." Metallurgical and Materials Transactions A 25, no. 9 (September 1994): 1967–80. http://dx.doi.org/10.1007/bf02649045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Bednarek, Melania, and Przemyslaw Kubisa. "Copolyethers with controlled structure: Mechanism of formation and microstructure." Macromolecular Symposia 132, no. 1 (July 1998): 349–58. http://dx.doi.org/10.1002/masy.19981320132.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Padmanabhan, T. "Structure Formation: Models, Dynamics And Status." Symposium - International Astronomical Union 173 (1996): 55–64. http://dx.doi.org/10.1017/s007418090023091x.

Повний текст джерела
Анотація:
All the popular models for structure formation are based on three key ingredients: (a) a model for the background universe (b) some mechanism for generating small perturbations in the early universe and (c) specification of the nature of the dark matter.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Morgoev, B. T., V. G. Cogoev, and A. R. Daurov. "Cluster mechanism of regional innovation system formation." Izvestiya MGTU MAMI 7, no. 1-5 (September 10, 2013): 114–24. http://dx.doi.org/10.17816/2074-0530-67828.

Повний текст джерела
Анотація:
The article considers the conceptual issues of regional innovation system formation on the basis of cluster approach. There are mentioned principles, structure, management bodies, conditions of effective functioning.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Wang, Mei Rong, Ning Guo, Pei Gang He, Jing Bo Yu, and De Chang Jia. "Formation Mechanism and its Pozzolanic Activity of Metakaolin." Key Engineering Materials 602-603 (March 2014): 620–23. http://dx.doi.org/10.4028/www.scientific.net/kem.602-603.620.

Повний текст джерела
Анотація:
In this paper, the process of the transformation from kaolin to metakaolin was investigated. The kaolin was calcined at different temperatures and analyzed by Xray diffraction (XRD), Fourier transform infrared spectra (FTIR) and solid state nuclear magnetic resonance (NMR). The formation of metakaolin structure was based on the stacking polyhedrons changes, which originated from dehydroxylation of kaolinite. With increasing temperature, kaolin kept structure of kaolinite unchanged in the course of dehydroxylation and then structure of kaolinite transformed to metakaolin when the dehydroxylation was over. It was demonstrated that the essence of pozzolanic activity of metakaolin. The result revealed that the pozzolanic activity of metakaolin increased with increasing temperature at the range of 600~900 °C.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Itoh, Yuzuru, Markus J. Bröcker, Shun-ichi Sekine, Gifty Hammond, Shiro Suetsugu, Dieter Söll, and Shigeyuki Yokoyama. "Decameric SelA•tRNASec Ring Structure Reveals Mechanism of Bacterial Selenocysteine Formation." Science 340, no. 6128 (April 4, 2013): 75–78. http://dx.doi.org/10.1126/science.1229521.

Повний текст джерела
Анотація:
The 21st amino acid, selenocysteine (Sec), is synthesized on its cognate transfer RNA (tRNASec). In bacteria, SelA synthesizes Sec from Ser-tRNASec, whereas in archaea and eukaryotes SepSecS forms Sec from phosphoserine (Sep) acylated to tRNASec. We determined the crystal structures of Aquifex aeolicus SelA complexes, which revealed a ring-shaped homodecamer that binds 10 tRNASec molecules, each interacting with four SelA subunits. The SelA N-terminal domain binds the tRNASec-specific D-arm structure, thereby discriminating Ser-tRNASec from Ser-tRNASer. A large cleft is created between two subunits and accommodates the 3′-terminal region of Ser-tRNASec. The SelA structures together with in vivo and in vitro enzyme assays show decamerization to be essential for SelA function. SelA catalyzes pyridoxal 5′-phosphate–dependent Sec formation involving Arg residues nonhomologous to those in SepSecS. Different protein architecture and substrate coordination of the bacterial enzyme provide structural evidence for independent evolution of the two Sec synthesis systems present in nature.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Wang, Zhen Jun, Qiong Wang, and Guang Ying Yang. "Mechanism Analyses of Structure Formation of Cement Asphalt Emulsion Mixtures." Advanced Materials Research 374-377 (October 2011): 799–802. http://dx.doi.org/10.4028/www.scientific.net/amr.374-377.799.

Повний текст джерела
Анотація:
Combing with the concept of soft matter and demulsification mechanism of cationic asphalt emulsion, the authors analyzed mechanism of structure formation of cement asphalt emulsion mixtures; thought that minor dosages of cement make properties of asphalt emulsion concrete be changed greatly, and structure of the mixtures mainly results from structure of asphalt emulsion concrete and solid net structure made from asphalt emulsion particles and cement particles; put forward four functions of cement in structure formation of the mixtures, and discussed influence rules of two kinds of binding materials, cement and asphalt emulsion, on structure formation of the mixtures.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

de Kler, Noël R. M., and Jana Roithová. "Copper arylnitrene intermediates: formation, structure and reactivity." Chemical Communications 56, no. 84 (2020): 12721–24. http://dx.doi.org/10.1039/d0cc05198e.

Повний текст джерела
Анотація:
The mechanism of oxidation of arylamines by copper enzymes is not clarified yet. A possible pathway involves copper(ii)oxyl intermediates transforming arylamines to copper aryl nitrenes. We investigate details of this pathway in a gas phase reaction.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

BRANDENBERGER, ROBERT H. "STRING GAS COSMOLOGY AND STRUCTURE FORMATION." Modern Physics Letters A 22, no. 25n28 (September 14, 2007): 1875–85. http://dx.doi.org/10.1142/s0217732307025091.

Повний текст джерела
Анотація:
For suitable cosmological backgrounds, thermal fluctuations of a gas of strings can generate a scale-invariant spectrum of cosmological fluctuations without requiring a phase of inflationary expansion. We highlight the key points of this mechanism, and discuss cosmological backgrounds in which this scenario can be realized. The spectrum of cosmo-logical perturbations has a small red tilt (like in scalar field-driven inflation) but (unlike in inflation) there is a small blue tilt of the spectrum of gravitational waves.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

BRANDENBERGER, ROBERT H., ALI NAYERI, SUBODH P. PATIL, and CUMRUN VAFA. "STRING GAS COSMOLOGY AND STRUCTURE FORMATION." International Journal of Modern Physics A 22, no. 21 (August 20, 2007): 3621–42. http://dx.doi.org/10.1142/s0217751x07037159.

Повний текст джерела
Анотація:
It has recently been shown that a Hagedorn phase of string gas cosmology may provide a causal mechanism for generating a nearly scale-invariant spectrum of scalar metric fluctuations, without the need for an intervening period of de Sitter expansion. A distinctive signature of this structure formation scenario would be a slight blue tilt of the spectrum of gravitational waves. In this paper we give more details of the computations leading to these results, and the assumptions underlying them.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Peng, Shuang, Shao Bo Wu, and Chun Yan Tu. "On the Technological Innovation Chain’s Structure, Formation and Operation." Applied Mechanics and Materials 174-177 (May 2012): 2024–28. http://dx.doi.org/10.4028/www.scientific.net/amm.174-177.2024.

Повний текст джерела
Анотація:
The technological innovation chain is the innovation system that encircles the core technology and is based on supporting technology. The supporting technology not only includes vertical (the upstream and downstream) complementary supporting technology, but also includes the horizontal supporting technology based on the same technical link. The formation of the technology innovation chain is resulted from the limitedness of the technological knowledge, the complementarity of the products, and the pursuit for economy of velocity of innovation. The operation mechanism of the technological innovation chain includes three ways: which are the operating mechanisms relatively based on innovation platform, patent pool, and the R&D contract.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Bogachev, Evgeny. "Organomorphic Carbon Preform Formation Mechanism." Journal of Composites Science 6, no. 2 (February 6, 2022): 50. http://dx.doi.org/10.3390/jcs6020050.

Повний текст джерела
Анотація:
Looking for ways to increase the structural uniformity of ceramic matrix composites (CMC) resulted in the development of organomorphic composites (C/C, C/SiC, SiC/SiC) where the filament diameter is comparable to the space between the filaments. The structural uniformity of the aforesaid CMCs is determined by their reinforcing preform; however, the mechanism of formation of this structure from polymer fibers remains unclear. This paper discusses an investigation of pressed specimens of the OKSIPAN® nonwoven fabric based on Pyron® polyacrylonitrile (PAN) fibers that were underoxidized as was determined using the electron paramagnetic resonance and microtomography methods. Using electron scanning microscopy, thermomechanical analysis and X-ray tomography, cementation of the preform due to the release and condensation of readily-polymerizing resin-like substances on the fiber surface after pressing at 180 °C was shown to be mainly responsible for retaining the mutual positions occupied by the fibers during pressing. The carbonized residue of the resin-like substances binds the fibers after pyrolysis. The other reason for organomorphic carbon preform consolidation is autohesive interaction of insufficiently cross-linked cores of the PAN fibers, since their thermal oxidation during pyrolysis at up to 1000 °C is hindered by the relatively high density of the compressed polymer preforms. The combination of pressing, thermal stabilization and pyrolysis results in the formation of the organomorphic carbon preform that features a relative density of at least 0.3 and a collection of pores, their normalized diameter ranging between 4 and 40 μm.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Olga, Domakur. "Post-industrial Society: Structure, Features, Mechanism and Regularities of Formation." Journal of Business and Economics 10, no. 6 (June 20, 2019): 531–39. http://dx.doi.org/10.15341/jbe(2155-7950)/06.10.2019/004.

Повний текст джерела
Анотація:
The paper presents the main points of the theory of post-industrial society, its methodology, the definition, criteria and features of the transformation of society from a pre-industrial, industrial to post-industrial society, the mechanism is defined and the legal conformities of post-industrial society formation are formulated.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії