Дисертації з теми "Structure de zone de faille"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Structure de zone de faille".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Lefèvre, Mélody. "Propriétés structurales, pétro-physiques et circulations de fluides au sein d'une zone de failles dans les argiles." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4320/document.
Повний текст джерелаFault zones concentrate fluids migration and deformations in the upper crust. The shale hydraulic properties make them excellent storage sites and hydrocarbon reservoirs/source rocks. Fault zones can play two roles in the fluid circulation; drains or barriers, in general, both roles are combined within the same fault zone. What are the conditions that promote the fluid circulation along the fault zones in shales and what are the fault zone impacts on the formation properties are relatively poorly explored key questions. This study focused on characterizing the relationships between fault architecture, paleo-fluid as well as current fluid circulations through the analysis of fault calcite mineralization, injection tests and petrophysical properties conducted on a fault zone outcropping underground in the Tournemire research laboratory nested in the Toarcian shale. The fault zone structure was characterized using boreholes data and reconstructed in 3D through modeling to define different deformation facies. No clear facies organization is observed, a fault core and a fault damage zone being difficult to define as it is in hard rocks. The intact, fractured and breccia facies are characterized by a porosity of 9.5-13.5, 10-15 and 13-21%. Large fluid flowrate concentrated along a few “channels” located at the breccia boundaries and in the secondary fault zones that displayed fractured facies and limited breccia fillings. Detailed microstructural and geochemical analysis at the breccia/fractured zones interface revealed that fluids circulated out of the main shear zones, in micro-more or less inherited fractures highlighting a decoupling between fault slip and fluid migrations
Aubert, Irène. "Fault zone structural and diagenetic evolution in carbonates : impact on reservoir properties (urgonian case study, SE France)." Thesis, Aix-Marseille, 2020. http://www.theses.fr/2020AIXM0175.
Повний текст джерелаFault zones strongly impact carbonates reservoir properties as they can act as drains or barriers depending of their structural and diagenetic properties. Hence, it is important to have an integrativecomprehension of these properties that affect the fault zones hydraulic properties. To this end, the multidisciplinary approach of this thesis combining structural, diagenetic and geochemical approaches aims to (1) constrain the structural and diagenetic evolution of fault zones in carbonates (2) draw rules and geometrical concepts allowing building of coherent geological models, and (3) allow a better understanding of the hydraulic dynamic response of fault zones in carbonates through their evolutions. We studied 3 fault zones (Castellas, D19) affecting lower Barremian platform carbonates (Urgonian facies) located in La Fare and Nerthe anticlines (Provence – SE France). This work allowed the restoration of fault zones diagenetic sequences with cement analyses under catholuminescence and 13C and 18O isotopes. The structural analysis completed the diagenetic evolution by determining the architectural characteristics related to each fault activity and discriminating the effect of pre-existing structures on subsequent fault development. Finally, this study improved our understanding of fault zones hydraulic behaviour in carbonates through times
Vitard, Clément. "Investigation sismique du domaine avant-arc Égéen du segment Sud-Ouest de la zone de subduction Hellénique." Thesis, Université Côte d'Azur (ComUE), 2016. http://www.theses.fr/2016AZUR4116/document.
Повний текст джерелаThe Hellenic subduction zone, in the eastern part of the Mediterranean sea, is characterized by the highest rate of current seismicity in Europe. In the southwestern segment, several earthquakes of large magnitude (Mw 7,5-8) occured a the turn of the 19th to 20th century. This segment of 400 km long, has also been the nucleation site of the largest historical earthquake in Europe, named the 365 AD earthquake, with a magnitude of Mw 8. This event generates a devastating tsunami, which spread along the Adriactic Sea and in the Nile Delta region. Two main models differ about the interplate seismic coupling question in this region, from a total seismic coupling at the interplate, at the opposite assumption of a very weak seismic coupling. However, these opposing models consider an approximate geometry, mostly because of the lack of information available on the geometry and the localization of the interplate in this region of the forearc domain. The localization of the fault responsible of the 365 AD event is also debated, because, there is no available data who provides imagery of the interfaces potentially responsible of this devastating earthquake. The megathrust fault and the forearc domain of the southwestern segment of the Hellenic subduction zone has been the target of the Ulysse marine survey in November 2012. The aim of this survey was to provide information of the structural geometry of the main units in this part of the subduction zone, and to bring information on the recent tectonic activity in this region
Touma, Rita. "Approche matricielle de l’imagerie sismique passive par ondes de volume." Thesis, Université Grenoble Alpes, 2022. http://www.theses.fr/2022GRALU011.
Повний текст джерелаRevealing the structure of fault zones provides insights required to assess seismic hazards. Reflection imaging methods, in particular migration, are commonly used to image the subsurface. An accurate velocity model is often needed to properly locate the reflectors in depth.Imaging fault zones is challenging due to the complex distribution of velocity. Also, most reflection techniques image fault zones indirectly from the discontinuity of geological layers. Wave diffraction by small-scale heterogeneities, such as cracks and fractures is generally neglected.In this thesis, we propose a matrix imaging approach for geophysical exploration that handles the velocity variation in the crust and allows to resolve heterogeneities of the order of the wavelength throughout the fault zone.The reflection matrix approach is inspired from previous studies in ultrasound and optical imaging of complex media. First, ambient noise cross-correlations are used to retrieve the reflection matrix associated with a dense array of geophones. The body wave components of this matrix contains all the information available on the medium. Second, the presented approach does not require a detailed velocity model of the subsurface. A set of matrix operation is applied to compensate for the mismatch between the actual wave velocity model and its approximate model.In a first application, we use ambient noise records in the frequency band [10 20] Hz from a dense array in order image the San Jacinto Fault, California, at small scale with an horizontal resolution of 80 m. ZZ cross-correlations are computed and arranged as 2D matrix. By applying time delays, the response matrix is projected to depth, using a homogeneous velocity model. A focused reflection matrix is obtained, that contains the impulse response between virtual sources and receivers at depth. From this matrix, the image of the medium is built and the resolution of the image can be quantified.Variations between the considered model and the reality result in phase distortions, i.e aberrations, that have detrimental effects on the image of the medium.We develop an aberration correction process that allows to compensate for these distortions by introducing a novel operator, the distortion matrix. 3D images of the first 4 km of the crust are retrieved. These images reveal the backscattered intensity generated by the heterogeneities in the medium. The location and reflectivity of scatterers are retrieved with a resolution 8 times better than the one in free space. Differences in the scattering between the Northwest and the Southeast of the fault were reported with an intense localized damage zone in the Southeast.In a second application, we image the large scale structure of North Anatolian Fault using [0.1 0.5] Hz horizontal cross-correlations computed between 73 pairs of stations. A multi-layered velocity model is considered. A local correction of the phase distortions is performed. The scattering structure of the crust and the upper mantle is revealed. Differences in the Moho depth are reported, with a step below the northern branch. Strong scattering is observed in the region lying along the northern strand of the fault, coinciding with the limit of the lithospheric blocks. The scattering in the North extends to 60 km depth, suggesting a shear zone that penetrates in the upper mantle beneath the northern strand. The scattering also reveals the deep structure of the main geological blocks.In the last part of this thesis, we propose an approach that paves the route towards a 3D passive tomography of the body wave velocity. Finally, all the presented applications confirm the efficiency of the reflection matrix approach in revealing the structure of the subsurface. It provides new insights into the scattering distribution in the Earth. It can be applied to any scale, scattering regime, and frequency bandwith, if the spatial sampling of the geophones' array satisfies the Nyquist criterion
Garcia, Sebastian. "Implications d'un saut de rift et du fonctionnement d'une zone transformante sur les déformations du Nord de l'Islande. Approches structurale, sismotectonique et radiochronologique." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2003. http://tel.archives-ouvertes.fr/tel-00009796.
Повний текст джерелаMayolle, Sylvain. "Croissance des zones d’endommagement de faille : étude structurale en milieu carbonaté et modélisations analogiques." Thesis, Montpellier, 2021. http://www.theses.fr/2021MONTG019.
Повний текст джерелаThe study of faults in the upper crust generates interest in modeling their impact on fluid flow and the mechanical behavior of the earth's crust. Fault damage zones are important structures with multiple implications for resource management and earthquake studies. This thesis aims to characterize the distribution and growth of damage around faults and to study its impact on the Displacement - Damage thickness (D-T) scaling law. Two complementary approaches of field measurements and analog modeling of normal faults are developed to answer this question. This manuscript presents new results of fault damage mapping, D-T scaling in carbonate rocks, and the first analog modeling experiments of fault damage zones. The results show a heterogeneous and asymmetric distribution of damage around faults, mainly influenced by fault interactions during their growth (segmentation, conjugate faults). A D-T law specific to wall damage is established and shows a normal correlation between D and T for less than 100 m of fault displacement, and also confirms the existence of a damage thickness threshold after 100 m of displacement. To explain this law, we propose a damage zone growth model controlled by the interaction and coalescence of fault segments. Analog modeling experiments allowed the description of two new types of damage (graben damage and dip-change link damage), and show a failure mode transition during fault growth, from a segmented dilatational-shear mode to a localized compactional-shear mode. They also demonstrate that initiation of segmentation, segment activity selection, interaction and coalescence processes control the development of fault damage zones and the D-T law. We propose that the thickness of the faulted brittle layer is a main controlling parameter of segmentation, strain localization, and the fault damage thickness threshold observed
Rodriguez, Mathieu. "La limite de plaque Inde-Arabie : évolution structurale du Crétacé supérieur à l'actuel et aléa tsunami associé." Paris 6, 2013. http://www.theses.fr/2013PA066756.
Повний текст джерелаThe Owen Fracture Zone (OFZ) is a 800 km-long fault system that currently accommodates the dextral strike-slip motion between India and Arabia plates. It closely follows a small circle about a rotation pole determined with GPS and seismicity data, which is consistent with a pure strike-slip motion along the entire fracture zone. As shown by the high resolution multibeam bathymetric map with full coverage (OWEN-1 cruise), it is made up of a series of fault segments separated by releasing and restraining bends, including a major pull-apart basin at latitude 20°N and two stepover basins at its terminations, the Beautemps-Beaupré Basin to the south and the Dalrymple Trough to the north. The OFZ crosscuts the Owen-Murray Ridge, a series of prominent oceanic highs. Offsets of the Owen Ridge observed on the seafloor indicate a finite dextral displacement of 10-12 km along the OFZ. Considering a steady motion of 3 ±1 mm. Y-1 estimated independently from geodetic and geological data, this implies that the present-day trace of the OFZ has been active since at least 3 to 6 Ma. Consistently, the age of opening of the 20°N Basin and the Dalrymple trough is estimated at about 2-3 Ma ago by calibration with DSDP-ODP drillings, coevally with a regional unconformity over the Oman abyssal plain (the M-unconformity). The Owen-Murray Ridge is dissected by complex systems of submarine landslides, which may represent a source of tsunami hazard for the nearby Oman coast according to numerical models. Stratigraphic studies document a recurrence in the order of 105-106 yrs, indicating that such tsunamis are infrequent. The seismic dataset collected during the Owen-2 cruise provides the first identification of the Miocene and Paleogene traces of the plate boundary prior to the activation of the OFZ, and leads to a full revision of the geological history of the area. We highlight the composite age of the Owen Basin basement, made of Paleocene crust drilled on its eastern part, and composed of pre-Maastrichtian crust overlain by Upper Cretaceous ophiolites on its western side (at the edge of the Oman Margin). A major transform fault crossing the Owen Basin juxtaposed these two slivers of lithosphere of different ages. This transform system used to be associated with the Carlsberg spreading center during the Paleogene, which formed most of the Owen Basin basement. The inactivation of the transform system in Late Eocene-Early Oligocene times is marked by the uplift of marginal ridges along the Oman Margin and a regional angular unconformity. The transform system then shifted to a narrow structure located at the edge of the present-day Owen Ridge in Late Oligocene times, shortly before seafloor spreading began at the Sheba Ridge. This migration of the plate boundary involved the capture of a part of the Indian oceanic lithosphere accreted at the Carlsberg Ridge (in Paleocene-Eocene times) to the Arabian plate. The Owen Ridge uplifted much latter, in Late Miocene times (8. 2-8. 8 Ma), in response to a kinematic change of the Indian plate. This episode of deformation ultimately led to the inactivation of the Miocene plate boundary and the activation of the OFZ. A major environmental change is recorded over the Arabian Sea coasts in the Siwalik paleosol sequence, coevally with this episode of deformation. This environmental change was previously interpreted as the result of an intensification of the Indian Monsoon at ~8. 5 Ma recorded by a drastic increase in G. Bulloides abundance in the sedimentary cover of the Owen Ridge. In contrast, we propose that the uplift of the Owen Ridge 8-9 Ma ago induced better preservation of foraminifers. Furthermore, this episode of deformation could have also triggered continental uplift along the East Oman and the Dhofar margin, and at the Makran accretionary wedge, leading to a reorganization of the atmospheric circulation that could explain the coeval environmental change recorded in the Siwalik sequence in Pakistan
Conin, Marianne. "Evolution des propriétés physiques des sédiments et des zones de failles du front de déformation à la zone sismogène : cas de la marge de Nankai." Thesis, Aix-Marseille 3, 2011. http://www.theses.fr/2011AIX30027/document.
Повний текст джерелаThis study is focused on the upper limit of the seismogenic zone in the Kumano transect of the Nankai margin in relation with the construction of the wedge. The first step was to determine the stress orientations and amplitude within the wedge from borehole breakouts analysis. We show the striking presence of a trench normal extension zone behind the splay fault in a wedge dominated by a strike-slip stress regime. Locally an extensional stress regime is also observed in the slope sediment of the outer part of the wedge. In a second part of this work, we used porosity corrected from water bound to clay minerals to study the compaction state of the sediments and to quantify the amount of erosion in the slope sediments. Results also highlight the existence of past erosion related to the activity of the splay fault. In a third part, the observation of deformation style within sediments showed that erosion could explain the distribution of dilatant and compactive structures within the wedge. Finally, we show, based on mechanical modeling, that the splay fault slow slip rate over the last million year, and the presence of an extension zone landward of the splay fault, could both be explained by a pause in the accretion and a weak décollement beneath the outer wedge
TATAR, Mohammad. "Etude sismotectonique de deux zones de collision continentale : le zagros central et l'alborz (iran)." Université Joseph Fourier (Grenoble), 2001. http://www.theses.fr/2001GRE10083.
Повний текст джерелаDauch, Christian. "Decrochements et chevauchements dans une zone de plate-forme : l'exemple du massif de la gresigne (aquitaine nord-orientale)." Toulouse 3, 1988. http://www.theses.fr/1988TOU30081.
Повний текст джерелаMatonti, Christophe. "Exploration géophysique des processus de fracturation et de réactivation dans les carbonates à l'échelle métrique." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4744.
Повний текст джерелаThe aim of this work was to understand the relationships between deformations and diagenesis in carbonates. The relevant scale to study it may be the m to dkm scale which allows individualizing fracture, fault and matrix effects. This scale is under the seismic resolution, so few quantitative diagenetic and geophysical spatial data are available, mainly constrained to 1D borehole.Therefore, we selected 4 dkm scale outcrops displaying various heterogeneities and intensities of deformation and diagenesis. We developed a multidisciplinary/multiscale protocol including geophysics from cm to dkm scale along with structural diagenesis study and geochemical measurements on fractures cements. We found a strong scale effect between laboratory and outcrop Vp due to sedimentary, burial and structural heterogeneities that lead to different geostatistical patterns. Fractures have the strongest effect on Vp, being modulated by their cementation and can erase the initial facies acoustic signature. The fracture reactivation induce a 10% Vp directional anisotropy due to microscale changes in the fractures infillings characterized by multiple cementation, crushing and dissolution phases. In fault-zones the seismic anisotropy magnitude is amplified, leading to a strong directional rock shear weakening and a Vp decrease around the fault, caused by higher discontinuities aperture and brecciation. Geochemical data indicate that the Vp signature evolution is linked to different diagenetic fluids flow origins occurring during each deformation phase. This underlines the strong interplay between permeability evolution, structural diagenesis and geophysical signature in carbonates
Heider, Markus. "Politique monétaire optimale et faible inflation dans la zone euro." Bordeaux 4, 2000. http://www.theses.fr/2000BOR40037.
Повний текст джерелаTsopela, Alexandra. "Modélisation hydromécanique de la réactivation de faille par la méthode des éléments discrets." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAI046/document.
Повний текст джерелаFaults in the Earth crust are localized zones of deformation which can drive fluids over long distances. Estimating the permeability of fault zones and their hydro-mechanical properties is crucial in a wide range of fields of research and industrial applications. In the petroleum industry, and more specifically in exploration and production applications, the seal integrity of faults in low permeability formations (e.g. shale) needs to be evaluated for the detection of hydrocarbon traps. There already exist approaches able to sufficiently estimate the "side-sealing" capacity of a fault based on the clay or shale content of the layers (e.g. Shale Gouge Ratio). Nevertheless, the conditions under which the fault acts as a drain along its structure are still not properly constrained. In this context, the response of the fault is directly controlled by a number of factors that can be better approached from a geomechanics point of view. These factors include the stress field, the fluid pressure, the orientation of the fault-related structures and the material properties. Meso-scale field injection experiments were carried out inside a fault zone located in the Tournemire massif at the South of France during which the fluid pressure, the deformation, the seismicity and the flow rate were monitored. Based on the Tournemire experiments and field observations, a numerical study was performed exploring the evolution of the permeability and how it is related to the fault hydro-mechanical reactivation and potentially to the induced seismicity. Fault-related structures such as subsidiary faults or fractures that were targeted during the experiments together with the surrounding intact rock, were modeled using the Discrete Element method. Modeling of the experimental tests and the analysis of generic models used to perform parametric studies highlighted the primary role of the in-situ stress conditions. The combined effect of stress and orientation of the fault structures determine in the first place the nature of the reactivation according to the critically stressed fault concept reported in the literature. For given stress conditions and structural features, it was shown that depending on the fluid pressure level, the fault offers three different ranges of permeability: i) permeability that is equivalent to the formation's permeability, ii) 2 to 4 orders of magnitude higher and iii) more than 4 orders of magnitude higher. While for the two extreme cases the fault is characterized as hydro-mechanically inactive or active, the second case is mostly controlled by fluid channeling mechanisms promoted by heterogeneities at the scale of a single fracture or at the scale of the fracture network. Changes in the hydraulic properties are in some cases detected by the seismicity triggered during the injection under the assumption that the seismicity is the direct effect of fluid propagation, fluid pressure increase and effective stress drop.However, the mechanisms behind the injection induced seismicity are still poorly understood. Using experimental results from the Tournemire site, the role of the hydraulic diffusivity of the fault-related structures was explored on the recorded seismicity in the framework of a hydro-mechanical analysis. The results suggest that the induced microseismicity was possibly related to stress perturbations caused by a significant aseismic deformation rather than fluid propagation through hydraulically connected structures
Ghalayini, Ramadan. "Structural modelling of the complex Cenozoic zone of the Levant Basin offshore Lebanon." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066316/document.
Повний текст джерелаThe Levant Basin is located at the easternmost Mediterranean at the intersection of three major tectonic plates (Africa, Arabia, Eurasia and the smaller Anatolian microplate). The Levant Fracture System (Arabia-Africa plate boundary) borders the basin to its east and represents a 1000 km long left-lateral transform system linking rifting in the Red Sea with plate convergence along the Taurus Mountains (Arabia-Eurasia plate boundary). The Levant Basin is bordered to the north by the Cyprus Arc (Africa-Eurasia plate boundary). The interaction between these tectonic plates had important consequences on the evolution of the Levant Basin whereby its eastern boundary has been affected by deformation along the Levant Fracture System. This major plate boundary is associated with a restraining bend in Lebanon and has been active since the Late Miocene. Until recent days, the absence of seismic data in the central Levant Basin was an obstacle against characterizing the tectonic setting of the basin. In this area, the geometry, kinematics and the age of the tectonic structures are poorly understood. A focal question thus remains on how the Levant Basin was affected by this adjacent plate boundary. Therefore, what is the impact of the deformation along the Levant Fracture System since the Late Miocene on this basin and how can we assess it? Has the latter been affected by other tectonic regimes prior to the onset of transpression? If so, how would the existing structures influence the style of modern deformation? In this study, high quality 2D and 3D seismic reflection data (with two 4290 m3 3D seismic cubes and seven 830 km long 2D seismic lines) were interpreted allowing identification and timing of the structures in the Levant Basin offshore Lebanon. Several fault families, mapped along the margin, are remnants of a lasting and complex tectonic history since Mesozoic times. These include NNE-SSW striking thrust faults active during the early Tertiary and inactive since the Pliocene; NNE-SSW striking anticlines folded during the Late Miocene and overlying pre-existing structuresd; and ENE-WSW striking dextral strike-slip faults inherited from Mesozoic times and reactivated during the Late Miocene. Only the dextral strike-slip faults show evidence of current activity and are interpreted to be linked to transpression along the Levant Fracture System. They constitute the westward extension of the plate boundary, formed under a transpressif regime and a NW-SE compression. We have showed how this plate boundary has evolved through the Neogene with a decrease in the shortening component during the Pliocene.The identification of pre-existing structures along the eastern Levant margin shed the light on the deep structuration affecting this area, inherited from Mesozoic tectonic events. The impact of these structures was tested through analogue modeling. Results indicated a considerable impact of pre-existing structures on the development of the restraining bend, localizing deformation at the onset of transpression and responsible of segmenting the restraining bend along an ENE direction. These ENE-WSW faults are thus major and are most likely associated with the deformation affecting the Palmyra basin since the Mesozoic, which is thus extending westward to Lebanon. This study has shown the important role of a margin on a strike-slip plate boundary. Namely, the development of antithetic faults (local dextral strike-slip faults in a regional sinistral strike-slip plate boundary) known in other similar plate boundaries is associated with a deep crustal anisotropy localizing the subsequent deformation
Abily, Bénédicte. "Caractéristiques pétrographique, géochimique et structurale de la section crustale profonde de l'ophiolite d'Oman : Implications pour la genèse des magmas et le fonctionnement des chambres magmatiques à l'aplomb d'un centre d'expansion océanique." Phd thesis, Université Paul Sabatier - Toulouse III, 2011. http://tel.archives-ouvertes.fr/tel-00627553.
Повний текст джерелаQuebral, Ramon. "Tectonique du segment meridional de la faille philippine, mindanao oriental, philippines : passage d'une zone de collision a une zone de decrochement." Paris 6, 1994. http://www.theses.fr/1994PA066679.
Повний текст джерелаDuboeuf, Laure. "Injections de fluide dans une zone de faille (LSBB, Rustrel) : sismicité induite et déformation asismique." Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4002/document.
Повний текст джерелаBetter understanding how fluids pressure produce seismic or aseismic motion along faults is an important goal for seismic hazard assessment and for geological reservoir monitoring. Seismicity rate increase in fluid injection areas where some events may reach magnitude greater than 5. How fluids may induce and control seismicity? High-pressure fluid injections were performed in limestones, in the damaged zone of an inactive fault at 280m depth. These in-situ experiments allow to study the seismological and hydromechanical responses (recorded by 31 sensors) of different fracture types to a fluid perturbation. Only a few tests have generated seismicity even if ruptures are observed with a displacement sensor at the injection point. 215 earthquakes were detected and are characterized by high frequency content (0.6 to 3 KHz) and weak magnitude (-4.1 to -3.1). The relative and absolute locations (1.5m accuracy) indicate a lack of events in the vicinity of injection borehole. Comparing cumulated seismic moment with an equivalent deformation moment, more than 96% of the deformation is aseismic. Two distinct seismic behavior show that at least one part of the seismicity might be controlled by a stress transfer in the medium. Moreover, the joined interpretation geological, mechanical, hydrogeological and seismic data allow to build bloc motions at the injection point. Finally, our experiments showed that fluid injection mainly drives aseismic motion and the seismicity might be only an indirect effect related to stress transferred from the volume deformed by fluid pressurization
Bécel, Anne. "Structure sismique de la Faille Nord Anatolienne en Mer de Marmara." Paris, Institut de physique du globe, 2006. http://www.theses.fr/2006GLOB0008.
Повний текст джерелаMarine MCS reflection and offshore-onshore refraction seismicinvestigations during the SEISMARMARA-Leg1 Survey allow us to provide acrustal seismic imaging of the North Anatolian Fault in the Sea of Marmara. MCS profiles with advanced processing and refraction refractionmodeling of coincident OBS profiles provide a detailed imaging of thesedimentary record and fault activity and deep penetration into itsbasement. The complex architecture revealed for the supra-crustalstructure may be interpreted as a large negative flower structure atcrustal scale. A strain partitioning over several faults across the North Marmara Trough and its southern margins that may have changed activitywith time at places is observed as the predominant process. A reflectivelower crust and the Moho boundary are identified and constrained thanks tothe MCS profiles and wide-angle reflection-refraction observations fromland stations. A crustal thinning is found occurring under the NMT, sharpin the E-W direction and more progressively from the South. Anintra-crustal dipping reflector interpreted as being a detachmentsurmounted by tilted blocks of basement is imaged along the southwesternmargin of the NMT. The geometry of lower crustal upwarp together with thedetachment suggest a thinning by material omission with transportsouthwestwards. The microseismicity recording by a dense array of OBS andland stations is relocated and discussed with respect to the structuresimaged
Clauzon, Victor. "Caractérisation in situ multi-échelles des transferts de fluide en zone de faille en milieu carbonaté." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTG075.
Повний текст джерелаFault zone can strongly impact the fluid flows in underground reservoirs. However, their hydraulic impact is variable (conduct and/or barrier), poorly known and poorly quantified. In carbonated reservoirs, faults are numerous and the insufficient knowledge of their hydrodynamic properties leads to strong uncertainties in the oil and groundwater exploitation operations. To optimize these operations, this study aims to characterize the qualitative and quantitative hydrodynamic impact of the fault zone structures. The working approach is based on in situ investigations at the fault scale, via some hydraulic tests in a well field in fault zone. This study took place North of Montpellier, on Mesozoic carbonates (France), and more specifically in the Lez hydrosystem. The study’s first objective was to prospect for experiment site, composed of five boreholes in a fault zone meeting specific requirements. The most important requirement was to limit the probability of karst development in the fault zone, which can hide the hydrodynamics properties of the fault zone itself. Thus, in order to avoid the presence of karst, its distribution and its functioning have been studied during this prospecting phase at the reservoir scale. The NE-SW major faults of the Lez hydrosystem are strongly karstified. Additionally, these faults have a flow channel behavior, which is characterized by a strong pressure and mass transfer, which enables the hydraulic connection (or disconnection) between compartments, depending of the hydrologic context. At the end of this first study step, the Rieu Coullon dextral strike-slip secondary fault was selected for the boreholes implantation. This 500 m NW-SE fault was then characterized by an accurate geological multi-scales and multi-methods study (geological mapping, geophysics ERT, micro tectonic, etc.) to evaluate the fault dimensions and architecture. Finally, investigations in wells (such as logging and pumping) were carried out. The results of this study show that, in a hydrologic context characterized by a slight decrease of water table during the low-water period, the karstic hydraulic influence could not be avoided. The impermeable behavior of the Rieu Coullon fault was revealed but not quantified. Nevertheless, the investigations at the fault scale associated to the investigations at the regional scale show that (1), the karstic network has a hierarchical and tree-like structure where the major faults represent the main network, (2) the Rieu Coullon well field is located on a secondary karstic network (which is connected to the main one) with a transmissivity of 10-5 m2/s in low-water periods and, (3), the progressive decrease of the water table leads to a progressive aquifer compartmentalization (at all scales) and therefore to decreased productivity and transmissivity of the aquifer. The knowledge brought by this study can contribute to improve the management and protection of the groundwater resource in the Lez aquifer, and at larger scale, in low-porosity carbonated aquifers
OVER, SEMIR. "Analyse tectonique et etats de contraintes cenozoiques dans la zone centrale de la faille nord anatolienne (turquie)." Paris 11, 1996. http://www.theses.fr/1996PA112109.
Повний текст джерелаSoufi, Mohamed. "Étude des magmatismes leucogranitique et ongonitique du blond (haut-limousin-Massif Central français) : Relations avec une mise en place syntectonique du massif granitique." Nancy 1, 1988. http://www.theses.fr/1988NAN10012.
Повний текст джерелаDeShon, Heather R. "Seismogenic zone structure along the Middle America subduction zone, Costa Rica /." Diss., Digital Dissertations Database. Restricted to UC campuses, 2004. http://uclibs.org/PID/11984.
Повний текст джерелаJamois, Eric. "Interaction houle-structure en zone côtière." Aix-Marseille 2, 2005. http://theses.univ-amu.fr.lama.univ-amu.fr/2005AIX22083.pdf.
Повний текст джерелаFor the design of marine or coastal structures subject to nonlinear waves in deep to shallow water, it is crucial to take into account both wave/structure and wave/wave interactions on large fluid domains. In this purpose, a high-order Boussinesq-type model has been developed and used to investigate nonlinear wave interactions with piecewise rectangular bottom-mounted (surface piercing) structures. Several practical applications of the model involving highly nonlinear wave run-up on a rigid plate are presented. Both normal and oblique wave conditions are considered. A new physical phenomenon creating large wave amplification in front of reflective structures is also fully studied
Kaduri, Maor. "Interplay between creep/aseismic deformation, earthquakes and fluids in fault zones, with a special emphasis on the North Anatolian fault zone, Turkey." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAU040/document.
Повний текст джерелаAseismic fault creep in the upper crust is a key deformation process along tectonic plate boundaries. It contributes to the energy budget during the seismic cycle, delaying or triggering the occurrence of large earthquakes. One of the greatest challenges is to understand which parameters control the partition between seismic and aseismic deformation in active faults, such as lithology or stress-driven transformations at all scales and how this partition evolves with time. Geological observations along the North Anatolian Fault in Turkey combined with laboratory analyses and imaging techniques performed in the present study shed new light on these mechanisms of fault creep. Moreover, the relationship between finite strain and mass change was compared with geodesy data in order to understand the evolution of these creep mechanisms since the beginning of this fault displacement.A clear correlation is shown between shallow creep and near-surface fault gouge composition: seismic segments of the fault are mostly composed of massive limestone without clay gouges, whereas aseismic creeping segments comprising clay gouges result from a progressive change of volcanic rocks. Within these creeping zones, anastomosing cleavage develops during the first stage of deformation, leading to tectonic layering that forms a foliation, oblique at first and then sub-parallel to the fault. This foliation accommodates part of the aseismic creep by pressure solution. Consequently, the soluble minerals such as quartz and feldspars are dissolved, leading to the passive concentration of phyllosilicates in the gouges where alteration transformations by fluid flow produce low friction clay minerals. At the same time damage zones are fractured and fractures are sealed by carbonates. As a result, these mineralogical and structural transformations weaken the gouge and strengthen the damage zone leading to the change from diffuse to localized seismic-aseismic zones.Models integrating finite strain and mass change reveal two spatial scales of strain that correspond to the alternation of two types of shear bands, with cleavages oriented either oblique or sub-parallel to the fault zone. Various total strain values were estimated in order to calculate the aseismic part of the total 80 km displacement along the locked and creeping sections. The aseismic strain fraction of the total tectonic strain in the fault depends on the fault lithology and varies from 0.002% in seismic zones made of limestone and evolves with time in the creeping zones made of volcanic rocks from 59% in the early stages of fault development to 18% in the recent times
Bryne, Lars Elof. "Time dependent material properties of shotcrete for hard rock tunnelling." Doctoral thesis, KTH, Betongbyggnad, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-145678.
Повний текст джерелаQC 20140526
Bellou, Magalie. "Analyse sismotectonique de la zone sismique sud-islandaise." Paris 6, 2006. http://www.theses.fr/2006PA066443.
Повний текст джерелаIn southern Iceland, the South Iceland Seismic Zone (SISZ) is an E-W trending, left-lateral active transform zone at latitude 64°N. The SISZ is approximately 20-30 km wide and 70-80 km long. The last major seismic crisis recorded in the SISZ occurred in June 2000. A first major event occurred on June 17th, 2000 (Mw= 6. 5) and was followed by a second event on June 21st, 2000. The mass inversion aimed at to identifying the seismotectonic stress regimes that best account for the whole set of data. The inversion reveals consistent orientations, for both a primary strike-slip regime with NE-SW compression and NW-SE extension and a secondary strike-slip regime with NW-SE compression and NE-SW extension. A simple permutation, or switch, occurs between the extreme stress axes of these two regimes (maximum and minimum principal stresses), so that they should be considered as mechanically ‘opposite’. The study of the space and time evolution of the two stress regimes, at the regional scale of the SISZ, indicates that the corresponding earthquakes are highly intricate in space and time. This suggests that the secondary regime does not correspond to distinct regional seismotectonic mechanisms but mainly results from the effects of elastic rebound, stress drop and fluid migration. However, despite homogeneity revealed in the first approximation by the stress analysis of the whole SISZ, the study of stress tensors at a local scale around the faults reveals some interesting spatial variations. The results indicate a larger average deviation of the stress between 5 to 10 km, up to about 40 degrees instead of about 20 degrees at shallower depths. This difference in angular dispersion may be attributed to an effect of the higher fluid pore pressure beneath the depth of about 5 km. The three-dimensional structural analysis of the push-up structures reveals the amount of displacement along earthquake strike-slip faults and indicates similar values for each fault in a range of 1. 1-1. 6 m. The determinations of the magnitudes from co-seismic displacement evaluation demonstrate that in the past, the earthquakes may have reached magnitude equal to 7 or more in the SISZ. The proximity of the Icelandic Mantle Plume, marked by a positive thermal anomaly, certainly affected the rheology of the upper lithosphere and hence the structural development of the transform deformation zone. Simple shear probably prevails within a 20 km wide corridor, with a typical pattern of brittle deformation in the uppermost crust and a more pervasive deformation in the underlying, partly viscous layer. The block faulting at the surface is quite consistent with a Riedel type distribution. Both the fault distribution and the effective block dimensions are consistent with a simple structural evolution model
Lachaud, Cédric. "Etude du cycle sismique sur une expérience analogique de zone de faille : caractérisation de la déformation par suivi micro-sismique." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAU002/document.
Повний текст джерелаThe deformation observed along a seismic fault can be described as the succession of phases for which the fault accumulate stress imposed by the steady deformation of the surrounding regions, and phases of sudden sliding during which the stress is relaxed: the earthquakes. After the rupture, strengthening mechanisms are required to make possible the new accumulation of elastic stress. Therefore, the seismic cycle results in the steady competition between strengthening and damage. The aim of this study is to explore the role of cohesion-healing on the fault deformation dynamic, as well as to characterize the effect of slip rate on the seismicity. The experimental set-up designed by Weiss et al (2016) has been extended in this study to carry out a micro-seismic monitoring of the deformation. This experiment consists in the shear deformation of a fault created in a thin ice plate overlying a water column. Cohesion-healing mechanisms are achieved through freezing of the water along the fault. The damage mechanisms and the spatial and temporal distribution of the deformation can be characterized thanks to the detectable elastic waves emitted by the fracturing. Because of the plate geometry and underlying water column, we observed guided waves similar to the Lambs symmetric and antisymmetric modes.The largest fractures distribute according to a power law of the form $10^{-bm}$ that is similar to the one observed in seismology. At a constant sliding rate, we observe a large $b$ value, $simeq 3$, which is much larger than the value observed in the Earth's crust ($b=1$). This large $b$ value indicates that the deformation is mainly accommodated aseismically or by small, undetected, fractures. During Slide-Hold-Slide experiment that corresponds to a case for which the cohesion-healing is enhanced compared to the damage, we observe a decrease in the $b$-value likely due to a decrease in fault heterogeneity and an increase of the fault ability to store more elastic stress before the rupture, allowing the fractures to grow larger. An important part of the fractures are multiplets, swarms of fractures, which seem to be passive by-products of the imposed deformation. This behaviour is similar to the one observed for swarm seismicity triggered by slip transient: high $b$-value, no identified mainshock, and very little triggering. For small driving rate $Omega$, we observe an increase in torque drop amplitude with magnitude, $Delta Gamma sim M_0 sim 10^{1.2m}$, similar to the relation observed in seismology, $M_0 sim 10^{1.5m}$. Thus, the latter could be extended to small magnitudes observed in this study. A decrease of the seismic coupling is observed through the decrease in the number of fractures per unit of slip, and because in average a fracture behaves similarly at the different $Omega$ tested. Finally, for a given magnitude interval, we observe a decrease in torque drop amplitude with the increase in $Omega$. This could be explained by the observed decrease in seismic coupling or by a decrease in strengthening rate with $Omega$ that is not observed
Chami, Khazraji Soumia. "Étude de la zone Haltenbanken par la méthode de stratigraphie sismique." Paris 6, 1986. http://www.theses.fr/1986PA066456.
Повний текст джерелаLipke, Katrin, Frank Krüger, and Dirk Rößler. "Subduction zone structure along Sumatra from receiver functions." Universität Potsdam, 2008. http://opus.kobv.de/ubp/volltexte/2008/1826/.
Повний текст джерелаReceiver Funkttion stellen eine gut Methode zur Untersuchung von Seismotektonischen Strukturen unterhalb einer seismischen Station dar. In dieser Arbeit wenden wir die Methode auf Station auf oder nahe Sumatra an um Hinweise für ein detaillierteres Geschwindigkeitsmodell zu erhalten, welches die Lokalisierung von Erdbeben verbessern sollte. Wir ermitteln flache Moho-Tiefen (~21 km) in der Nähe des Trenchs und Tiefen um die 30 km in größeren Distanzen. Erste Hinweise für eine Einfallsrichtung des Slabs von ~60° konnten gefunden werden. Receiver Funktionen wurden für 20 Stationen für insgesamt 110 Erdbeben im Distanzbereich zwischen 30° und 95° berechnet. allerdings ist die Anzahl von Receiver Funktionen pro Station sehr variabel, da sie vom Installationszeitpunkt, dem Signal-Rausch-Verhältnis und der Zuverlässigkeit der Datenaufnahme an der Station abhängt.
Clark, Henry S. X. "Protein structure / function prediction within the twilight zone." Thesis, University of Essex, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.412342.
Повний текст джерелаCoussement, Christophe. "Structures transverses et extension intracontinentale : le rôle des zones de failles d'Assoua et Tanganyika-Rukwa-Malawi dans la cinématique néogène du système de Rift Est-africain." Brest, 1995. http://www.theses.fr/1995BRES2008.
Повний текст джерелаLe, Garzic Edouard. "Distribution multi-échelle de la fracturation dans les réservoirs cristallins : influence de l'héritage structural. Exemples des marges obliques proximales du golfe d'Aden et de Catalogne." Strasbourg, 2010. https://publication-theses.unistra.fr/public/theses_doctorat/2010/LE_GARZIC_Edouard_2010.pdf.
Повний текст джерелаDevelopment of basement fractured reservoirs “in and around igneous rocks” have been carried out in recent years. Analyses of field rock analogues are thus required for a better understanding of the scaling characteristics of fracture systems, which could guide both the interpretation of regional data, and its extrapolation to other different scales. Multi-scale mappings of extensional fracture systems in the crystalline basements of Yemen (panafrican) and Catalonia (hercynian) are described through statistical analyses of several geometrical parameters. The fractured reservoir analogue is defined with a dual porosity model in which tectonic and joint systems correspond to the basement reservoir “backbone” and “matrix” respectively. These two end-members reveal contrasting geometrical, reservoir, and scaling properties. In tectonic systems, multi-scale geometries are “self-similar”, the fracture network shows fractal behavior, and fault zones show hierarchical organization of geometrical parameters such as length, thickness, and spacing. In joint systems, the fracture network is scale dependent with negative exponential length distribution, and shows anti-clustered spacing. In addition, the role of structural inheritance in basement fracture systems has been investigated. Main results show that (i) size and orientation of inherited structures are major parameters which controlled competition between reactivation and neoformation and (ii) structural decoupling between layered crustal levels having heterogeneous structural inheritance (e. G. Basement versus sedimentary cover) is contrasting and could be effective without an intermediate decollement level
Acton, C. E. "Shear velocity structure of the India-Asia collision zone." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.595335.
Повний текст джерелаWang, Yalin. "Document analysis : table structure understanding and zone content classification /." Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/6079.
Повний текст джерелаMartin, Sebastian. "Subduction zone wave guides : deciphering slab structure using intraslab seismicity at the Chile-Peru subduction zone." Phd thesis, Universität Potsdam, 2005. http://opus.kobv.de/ubp/volltexte/2005/582/.
Повний текст джерелаSeismological data stem from intermediate depth events (depth range 70 km - 300 km) recorded in northern Chile near 21 Grad S during the collaborative research initiative " Deformation Processes in the Andes" (SFB 267). A subset of stations - all located within a slab-parallel transect close to 69 Grad W - show low-frequency first arrivals (2 Hz), sometimes followed by a second high-frequency phase.
We employ 2-dimensional finite-difference simulations of complete P-SV wave propagation to explore the parameter space of subduction zone wave guides and explain the observations. Key processes underlying the guided wave propagation are studied: Two distinct mechanisms of decoupling of trapped energy from the wave guide are analyzed - a prerequisite to observe the phases at stations located at large distances from the wave guide (up to 100 km). Variations of guided wave effects perpendicular to the strike of the subduction zone are investigated, such as the influence of phases traveling in the fast slab. Further, the merits and limits of guided wave analysis are assessed. Frequency spectra of the guided wave onsets prove to be a robust quantity that captures guided wave characteristics at subduction zones including higher mode excitation. They facilitate the inference of wave guide structure and source positioning: The peak frequency of the guided wave fundamental mode is associated with a certain combination of layer width and velocity contrast. The excitation strength of the guided wave fundamental mode and higher modes is associated with source position and orientation relative to the low-velocity layer.
The guided wave signals at the Chile-Peru subduction zone are caused by energy that leaks from the subduction zone wave guide. On the one hand, the bend shape of the slab allows for leakage at a depth of 100 km. On the other, equalization of velocities between the wave guide and the host rocks causes further energy leakage at the contact zone between continental and oceanic crust (70 km depth). Guided waves bearing information on deep slab structure can therefore be recorded at specific regions in the forearc. These regions are determined based on slab geometry, and their locations coincide with the observations.
A number of strong constraints on the structure of the Chile-Peru slab are inferred: The deep wave guide for intraslab events is formed by a layer of 2 km average width that remains seismically slow (7 percent velocity reduction compared to surrounding mantle). This low-velocity layer at the top of the Chile-Peru slab is imaged from a depth of 100 km down to at least 160 km. Intermediate depth events causing the observed phases are located inside the layer or directly beneath it in the slab mantle. The layer is interpreted as partially eclogized lower oceanic crust persisting to depth beyond the volcanic arc.
Subduktionszonen sind bis in große Tiefen von intensiver Erdbebentätigkeit geprägt. Die Erdbebenquellen befinden sich in der subduzierten Lithosphäre (Slab), ihr Wellenfeld wird deshalb stark von der internen Slab-Struktur beeinflusst. Eine Schicht mit reduzierter seismischer Geschwindigkeit im oberen Bereich der Platte kann als Wellenleiter für diese Signale fungieren. In der nur wenige Kilometer dicken Schicht entstehen sogenannte geführte Wellen, die in Teilen des Forearc beobachtet werden. Diese Phasen bergen wertvolle Informationen über die Struktur nahe der Slab-Oberfläche, wie zum Beispiel Dicke der Schichtung, Herdlokationen und vor allem Tiefe und Art mineralogischer Umsetzungen.
Die Beobachtungen stammen von mitteltiefen Beben (70 km - 300 km) im Untersuchungsgebiet in Nord-Chile und wurden im Rahmen des Sonderforschungsbereich 267 " Deformationsprozesse in den Anden" aufgezeichnet. Stationen in einem Streifen um 69 Grad W, der sich parallel zum Streichen der Subduktionszone erstreckt, zeigen niederfrequente Ersteinsätze, denen teilweise höherfrequente Phasen folgen.
Mit Hilfe eines 2-dimensionalen Finite-Differenzen-Algorithmus werden die P-SV Wellenausbreitung simuliert, und die Beobachtungen erklärt. Zentrale Fragestellungen zu Wellenleitern in Subduktionszonen werden untersucht: Es werden zwei Mechanismen, die das Auskoppeln seismischer Energie aus dem Wellenleiter ermöglichen beschrieben - eine Grundvoraussetzung für das Auftreten von geführten Wellen in großen Entfernungen vom Wellenleiter (bis zu 100 km). Des weiteren werden Stärken und Grenzen der Analyse von geführten Wellen erörtert.
Die Spektren der geführten Wellenzüge erweisen sich als robuste Messgröße, um die Charakteristika des Wellenleiters zu bestimmt. Struktur des Wellenleiters und Quellpositionen können so für festgelegte Quell-Empfänger-Geometrien abgeleitet werden. Die Peak-Frequenz der Grundmode wird durch eine Kombination aus Dicke der Schicht und Geschwindigkeitskontrast bestimmt. Die Stärke der Anregung der Grundmode und höherer Moden lässt auf die Lage und Orientierung der Erdbebenquelle relativ zur Schicht schließen. Geschwindigkeitskontrast, Schichtdicke und Quellposition sind von herausragender Bedeutung, um mineralogische Interpretationen des Wellenleiters zu überprüfen.
Aufbauend auf die Simulationen werden die Beobachtungen interpretiert und Auskunft über die Struktur der Chile-Peru Subduktionszone erhalten: Eine dünne Schicht an der Slab-Oberfläche (durchschnittlich 2 km dick) trägt geringere seismische Geschwindigkeiten als der umgebende Mantel und fungiert als Wellenleiter für intra-platten Ereignisse in Tiefen von 100 bis mindestens 160 km. Ereignisse, die geführte Wellen hervorrufen, liegen in dieser Schicht oder direkt darunter im subduzierten Mantel. Um zu den Stationen in der Forearc-Region zu gelangen, entkoppelt ein Teil der geführten Wellen in einer Tiefe von circa 100 km aus der Niedergeschwindigkeitsschicht. Die Krümmung des Slab erlaubt das Austreten der Wellen und nimmt auch Einfluss auf die Pulsformen.
Der Wellenleiter in der Chile-Peru Subduktionszone ergibt sich als unregelmäßige Schicht mit reduzierter seismischer Geschwindigkeit, in der geführte Wellen entstehen, in unterschiedlichen Tiefen wieder austreten, und an die freie Oberfläche gelangen. Die Beobachtungsgebiete befinden sich im Forearc und werden durch die Geometrie und Struktur der subduzierten Platte festgelegt.
Die nur wenige Kilometer dicke, seismisch langsame Schicht an der Oberfläche des Chile-Peru Slab legt nahe, dass die Unterkruste der subduzierten Platte bis in große Tiefen besteht und nicht vollständig eklogitisiert ist. Abgeleitete Schichtdicke, Geschwindigkeitskontrast
Chorover, Jon, Louis A. Derry, and William H. McDowell. "Concentration-Discharge Relations in the Critical Zone: Implications for Resolving Critical Zone Structure, Function, and Evolution." AMER GEOPHYSICAL UNION, 2017. http://hdl.handle.net/10150/626479.
Повний текст джерелаBestani, Lucie. "Géométrie et cinématique de l’avant-pays provençal : modélisation par coupes équilibrées dans une zone à tectonique polyphasée." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4313.
Повний текст джерелаThe structural architecture and evolution of the Pyrenean-Alpine foreland of Provence are controlled by deep-seated basement faults inherited from Gondwana rifting during Permo-Triassic time, by variations in the Mesozoic sedimentary pile thickness and by alternating compressive and extensive tectonic events that affected the area since the late Paleozoic. The construction of two balanced cross sections at regional scale (~150 km) shows that the structural style of the Provence foreland is dominated by thick-skinned tectonic in eastern Provence and thin-skinned tectonic in western Provence, associated with diapirism in each domain. Both domains are coupled at crustal scale and separated by an accommodation zone in the cover: the Middle Durance Fault, whose deep-seated part is inherited from the Paleozoic. The current structure of the Pyrenean-Alpine foreland of Provence mainly corresponds to the Pyrenean-Provence compression signature during Late Cretaceous to Eocene (>90%). The Alpine deformation proportion is minor (9%). The Oligocene extension phase between these two compressive periods has been quantified at 1.7%. The apatite fission track data suggests an exhumation stage around 80 Ma related to the Pyrenean compression. The main Pyrenean thrusts were synchronous, as indicated by the age and distribution of syntectonic sedimentary series
Toma, Violeta E. "On Meridional Structure and Dynamics of the Intertropical Convergence Zone." Thesis, Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7177.
Повний текст джерелаCollings, Rachel Elizabeth. "The Sumatra subduction zone : seismicity, velocity structure and seismic anisotropy." Thesis, University of Liverpool, 2012. http://livrepository.liverpool.ac.uk/7233/.
Повний текст джерелаTaylor, Rochelle Louise. "Acoustic velocity structure of the carboneras fault zone, SE Spain." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/acoustic-velocity-structure-of-the-carboneras-fault-zone-se-spain(63a8ae72-04e3-4ab8-bf38-dc215cabbeec).html.
Повний текст джерелаWu, Jiedi. "New Constraints on Fault-Zone Structure from Seismic Guided Waves." Diss., Virginia Tech, 2008. http://hdl.handle.net/10919/28873.
Повний текст джерелаPh. D.
Bernaudin, Maxime. "Rhéologie des failles lithosphériques : vers une compréhension géologique et mécanique de la zone de transition sismique-asismique." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT145/document.
Повний текст джерелаThese last twenty years, the development of dense and highly sensitive seismologic and geodetic networks permits the discovery of new geophysical signals named non-volcanic tremor (Obara 2002) and slow slip events (Dragert et al., 2001). The combination of non-volcanic tremor and transient slow slip is commonly observed at plate interface, between locked/seismogenic zone at low depths and stable/ductile creep zone at larger depths (Dragert et al., 2004). This association defines episodic tremor and slip, systematically highlighted by over-pressurized fluids and near failure shear stress conditions. In this thesis we propose to combine a microstructural analysis of exhumed rocks with a modeling approach in order to accurately reproduce and understand the physics of episodic tremor and slip.We focus on continental rocks from the East Tenda Shear Zone (Corsica, France), a kilometer-wide localized Alpine shear zone that record HP/LT deformation (10kb / 400-450°C, Gueydan et al., 2003). Such pressure-temperature conditions are consistent with the location of episodic tremor and slip in subduction zone. Microstructural and EBSD analyses on these rocks describe a pattern of strain localization in centimeter-scale shear zones guiding by a grain size-sensitive creep. Microfracturing of the strong phase (feldspar here) and the sealing of these microfractures act, respectively, as grain size decrease and grain size increase processes.Most of recent modeling approaches of episodic tremor and slip are based on the rate-and-state variable friction law, describing slow slip event and non-volcanic tremor as slow shear slip on a plane. In contrast with such models, we wish to model the entire rock volume, with a ductile grain size-sensitive rheology guided by our microstructural observations (e.g. microfracturing and sealing as grain size variation processes). We hypothesize that slow slip events may result from ductile strain localization and not transient slip on fractures. Fluid pumping during strain localization may trigger whole rock fracturing at near lithostatic conditions that can be the signature of non-volcanic tremor. The 1D numerical model presented here will allow us to validate these assumptions.We also can predict pore fluid pressure variation as a function of changes in porosity/permeability and strain rate-dependent fluid pumping following the Darcy’s flow law. The fluid-enhanced dynamic evolution of microstructure defines cycles of ductile strain localization related to the increase in pore fluid pressure. We show that slow slip events can be ductile processes related to transient strain localization, while non-volcanic tremor can correspond to fracturing of the whole rock at peak of pore fluid pressure. Our model shows that the availability of fluids and the efficiency of fluid pumping control the occurrence of episodic tremor and slip. We also well predict the temperature and depth ranges of episodic tremor and slip: 400-500°C and 30-50 km in subduction zones and ~500°C and 15-30 km in strike slip settings, consistent with natural examples.As simplistic as it is, our field-guided mechanical model well describe, at first order, the relation between high pore fluid pressure, grain size-sensitive rheology and episodic tremor and slip. Some efforts remain to be done like a real fit of geophysical data (GPS) or the introduction of the new mineralogical assemblage, such as mafic rocks to reproduce oceanic environment
Maréchal, Anaïs. "Tectonique active de la zone de collision Yakutat - Nord Amérique : apport du GPS et de la géomorphologie à l'étude de la partition de la déformation." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS282.
Повний текст джерелаIn SW Yukon – SE Alaska, the boundary between the Pacific and North America plates is characterized by a syntaxis at the transition between the Aleutian subduction to the W and the Fairweather – Queen Charlotte strike-slip faults to the SE. The relative motion is oblique to the main fault structures, and the area is marked by the Yakutat block collision. From the Chugach – Saint Elias mountains in the plate boundary zone (up to 6 000 m high) to the intraplate strike-slip faults, markers of the present-day deformation give information on its partition in the system.During my PhD, I first measure surface deformation using a dense GPS network, deployed up to 500 km inland the North America plate. After precise processing and corrections of transient effects in the area (postseismic and glacial isostatic rebound), a new residual velocity field is produced for the syntaxis area, from which I derive strain rates. Those data allow me to quantify the fault slip rates for Fairweather and southern Denali strike-slip faults, and to characterize a bi-modal deformation pattern: Along the plate boundary, the deformation is localized on large-scale structures (accretionary prism to the W, Fairweather to the E); In the syntaxis area, strain rates are the highest and the GPS data shows a diffuse intraplate deformation, similar to an indentor pattern. The Yakutat block seems to strongly drive the North America plate deformation.This indentor pattern induces strong lateral variations on the large intraplate faults: the Denali – Totschunda – Duke River system. In a second part, I realize a regional geomorphological study to characterize the role and slip rate of those faults. From very high-resolution Digital Elevation Models (~ 1 m), a detailed cartography is done. On the basis of fieldwork observations, I measure offsets of fluvial and glacial markers, which are sampled for dating. A dextral cumulative deformation is highlighted on the northern Denali Fault, where as all southern Denali is marked by vertical deformation. This study allows me to quantify new slip rates for the system Denali – Totschunda – Duke River, and to show the leading role of the Totschunda (~ 14 mm/a) and Duke River (~ 6 mm/a) faults, contrary to the Denali Fault (~ 1 mm/a) North of the syntaxis.The new tectonic model for the Yakutat collision provides an important case study for the understanding of indentor systems. The concomitance of a rigid-block deformation (to the West) and diffuse deformation (to the East), as well as the near-zero slip rate on the lithospheric-scale southern Denali Fault highlight the major control of boundary conditions and the structural heritage on the orogen deformation
Simon-Labric, Thibaud. "Evolution du refroidissement, de l'exhumation et de la topographie des arcs magmatiques actifs : exemple des North Cascades (USA) et de zone de faille Motagua (Guatemala)." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00591413.
Повний текст джерелаHecimovich, Mark M. L. "Wave Loads on a Submerged Intake Structure in the Surf Zone." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/23936.
Повний текст джерелаDing, Chong-Yu. "The structure of the central recirculation zone in enclosed swirling flow." Thesis, University of Ottawa (Canada), 1992. http://hdl.handle.net/10393/7722.
Повний текст джерелаEvain, Mikaël. "Structure sismique de la zone de subduction des Petites Antilles : implications sur les dimensions de la zone sismogène interplaque." Nice, 2011. http://www.theses.fr/2011NICE4119.
Повний текст джерелаThe Lesser Antilles is a case study of a very slow subduction (_2 cm/yr) of an old oceanic lithosphere (_84-100Ma). The region presents a relatively low seismic activity, especially along the interplate contact, and the seismic hazard associated with a possible mega-thrust earthquake is still poorly known. This PhD thesis is a first step toward assessing the ability of the Lesser Antilles subduction zone to produce such a large subduction event. To do so, it aims at constraining the downdip width of the interplate's seismogenic zone. The lack of coverage of permanent seismological stations is a major limitation in the exploration of the Lesser Antilles subduction zone. It is due to the presence of only small aligned islands at far distances from the potentially seismogenic interplate area. Several oceanographic cruises were therefore planned that notably allowed the repeated deployment of ocean bottom seismometers ; some of them being left for a few months of background seismicity recording. This thesis specifically focuses on two sets of wide-angle seismic data acquired offshore the Dominica and Martinique islands. From their analysis 3D and 2D tomographic models were produced respectively over the forearc region and across the whole subduction complex. These models constrain the plates' seismic structure as well as their geometry. They allow the discussion of how the imaged structures affect the subduction processes and give a first estimation of the downdip width of the seismogenic zone, defined as the segment of the interplate between the backstop and the upper plate's Moho. The joint interpretation of seismic models and earthquake localizations then refine this first assessment. Epicenter distribution shows indeed that seismicity concentrates beneath the rigid part of the forearc, where higher velocities are observed. The updip limit of the seimogenic zone would then lie deeper than the backstop's depth as seismicity locates it further arcward. At depth, interplate earthquakes observed between 35 and 45 km depth reveal the downdip limit of the seismogenic zone. The latter would reach a depth over 10 km deeper than the contact of the Moho and the interplate, suggesting it lies at the contact of the interplate with the mantle wedge. All together, these results imply a large downdip width of the seismogenic zone (_70 km) offshore the Dominica and Martinique islands. Further work is, however, needed in order to fully comprehend the ability of the Lesser Antilles subduction zone to produce a possible mega-thrust earthquake. This would necessitate the evaluation of seismic coupling at the interplate contact or the possible segmentation of the seismogenic zone due to, fro instance, the subduction of oceanic ridges
Guo, Dijiang. "Caractéristiques structurales de la zone de cisaillement de Wulong et de la minéralisation relative d'or dans le camp d'or de Wulong, Province du Sud-Est de Liaoning, Chine = [Structural characteristics of the Wulong shear zone and related gold mineralization in the Wulong Gold Camp, southeastern Liaoning Province, China] /." Thèse, Chicoutimi : Université du Québec à Chicoutimi, 2001. http://theses.uqac.ca.
Повний текст джерелаSha'ath, N. A. H. "The structure of the Majma'ah graben complex, central Arabia." Thesis, University of Bristol, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372040.
Повний текст джерелаFlores, David. "The EastSide Cafe| A liberated learning zone." Thesis, California State University, Long Beach, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=1526906.
Повний текст джерелаFollowing the 1994 uprising of the Zapatistas, an indigenous army in southern Mexico, a small community arts and education center was developed in East Los Angeles that believed another world was possible. This research seeks to examine the alternative nature and learning of the EastSide Café. Guided by Zapatismo, Chicana Feminism, and decolonial theory, seven EastSide Café members were asked to offer the details of how the EastSide Café promotes alternative learning. The findings present a simple culture of horizontality, but more importantly, a praxis of a liberated learning zone that shifts the consciousness of participants by showing that another world, another way, is possible.