Добірка наукової літератури з теми "Strong-matter coupling"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Strong-matter coupling".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Strong-matter coupling"

1

Castellanos, Gabriel W., Shunsuke Murai, T. V. Raziman, Shaojun Wang, Mohammad Ramezani, Alberto G. Curto, and Jaime Gómez Rivas. "Strong light-matter coupling in dielectric metasurfaces." EPJ Web of Conferences 238 (2020): 05004. http://dx.doi.org/10.1051/epjconf/202023805004.

Повний текст джерела
Анотація:
We demonstrate the strong coupling between excitons in organic molecules and all-dielectric metasurfaces formed by arrays of silicon nanoparticles supporting Mie surface lattice resonances (MSLRs). Compared to Mie resonances in individual nanoparticles, MSLRs have extended mode volumes and much larger quality factors, which enables to achieve collective strong coupling with very large coupling strengths and Rabi energies. Moreover, due to the electric and magnetic character of the MSLR given by the Mie resonance, we show that the hybridization of the exciton with the MSLR results in exciton-polaritons that inherit this character as well. Our results demonstrate the potential of all-dielectric metasurfaces as novel platform to investigate and manipulate exciton-polaritons in low-loss polaritonic devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lange, Christoph, Emiliano Cancellieri, Dmitry Panna, David M. Whittaker, Mark Steger, David W. Snoke, Loren N. Pfeiffer, Kenneth W. West, and Alex Hayat. "Ultrafast control of strong light–matter coupling." New Journal of Physics 20, no. 1 (January 22, 2018): 013032. http://dx.doi.org/10.1088/1367-2630/aa9fd0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhang, Lijian, Fuchun Xi, Jie Xu, Qinbai Qian, Peng Gou, and Zhenghua An. "Strong light-matter coupling in plasmonic microcavities." Optics Communications 331 (November 2014): 128–32. http://dx.doi.org/10.1016/j.optcom.2014.05.066.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Garcia-Vidal, Francisco J., Cristiano Ciuti, and Thomas W. Ebbesen. "Manipulating matter by strong coupling to vacuum fields." Science 373, no. 6551 (July 8, 2021): eabd0336. http://dx.doi.org/10.1126/science.abd0336.

Повний текст джерела
Анотація:
Over the past decade, there has been a surge of interest in the ability of hybrid light-matter states to control the properties of matter and chemical reactivity. Such hybrid states can be generated by simply placing a material in the spatially confined electromagnetic field of an optical resonator, such as that provided by two parallel mirrors. This occurs even in the dark because it is electromagnetic fluctuations of the cavity (the vacuum field) that strongly couple with the material. Experimental and theoretical studies have shown that the mere presence of these hybrid states can enhance properties such as transport, magnetism, and superconductivity and modify (bio)chemical reactivity. This emerging field is highly multidisciplinary, and much of its potential has yet to be explored.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Miura, K., T. Z. Nakano, and A. Ohnishi. "Quarkyonic Matter in Lattice QCD at Strong Coupling." Progress of Theoretical Physics 122, no. 4 (October 1, 2009): 1045–54. http://dx.doi.org/10.1143/ptp.122.1045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gómez-Santos, G., and T. Stauber. "Graphene plasmons and retardation: Strong light-matter coupling." EPL (Europhysics Letters) 99, no. 2 (July 1, 2012): 27006. http://dx.doi.org/10.1209/0295-5075/99/27006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Berghuis, Anton Matthijs, Alexei Halpin, Quynh Le‐Van, Mohammad Ramezani, Shaojun Wang, Shunsuke Murai, and Jaime Gómez Rivas. "Strong Light‐Matter Coupling: Enhanced Delayed Fluorescence in Tetracene Crystals by Strong Light‐Matter Coupling (Adv. Funct. Mater. 36/2019)." Advanced Functional Materials 29, no. 36 (September 2019): 1970249. http://dx.doi.org/10.1002/adfm.201970249.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Takele, Wassie Mersha, Lukasz Piatkowski, Frank Wackenhut, Sylwester Gawinkowski, Alfred J. Meixner, and Jacek Waluk. "Scouting for strong light–matter coupling signatures in Raman spectra." Physical Chemistry Chemical Physics 23, no. 31 (2021): 16837–46. http://dx.doi.org/10.1039/d1cp01863a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Farias, Ricardo L. S., Varese S. Timóteo, Sidney S. Avancini, Marcus B. Pinto, and Gastão I. Krein. "Exploring Hot Quark Matter in Strong Magnetic Fields." International Journal of Modern Physics: Conference Series 45 (January 2017): 1760043. http://dx.doi.org/10.1142/s2010194517600436.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Askenazi, B., A. Vasanelli, A. Delteil, Y. Todorov, L. C. Andreani, G. Beaudoin, I. Sagnes, and C. Sirtori. "Ultra-strong light–matter coupling for designer Reststrahlen band." New Journal of Physics 16, no. 4 (April 30, 2014): 043029. http://dx.doi.org/10.1088/1367-2630/16/4/043029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Strong-matter coupling"

1

Johne, Robert. "Strong light matter coupling in semiconductor nanostructures. Nonlinear effects and applications." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2009. http://tel.archives-ouvertes.fr/tel-00725283.

Повний текст джерела
Анотація:
Les excitons-polaritons sont des particules mixtes de lumière et de matière. Ils peuvent être le futur des applications optoélectoniques, en vertu de leur réponse optique non-linéaire qui est extrêment forte. Cette thèse est consacrée aux effets non-linéaires et aux applications variées des excitons-polaritons dans les nanostructures à base de semi-conducteurs. Les microcavités planaires et les polaritons 2D sont étudiés dans les premiers chapitres, alors que le dernier chapitre est consacré à l'étude du système de boites quantiques en cavité (polaritons 0D). L'oscillateur paramétrique et la bi stabilité sont le sujet de la première partie de la thèse. Une approche mathématique intermédiaire entre les approches semi-classiques et purement cohérente est présentée. L'impact des fluctuations proches du seuil de bi stabilité est étudié. La deuxième partie est consacrée à la présentation de différentes applications basées sur les propriétés des polaritons. Un laser à polaritons basé sur une cavité de ZnO est modélisé et les résultats soulignent les avantages de l'utilisation de ce matériau pour la réalisation de ce type d'application à température ambiante. La structure de spin particulière des polaritons est par la suite utilisée pour proposer deux nouvelles applications. La première est un analogue optique du transistor de spin pour les électrons, appelé transistor Datta et Das. La deuxième propose d'utiliser le comportement chaotique d'une jonction Josephson polaritonique afin d'implémenter un système de crytage chaotique d'un signal. Le dernier chapitre est consacré aux polaritons 0D. Nous montrons comment la réalisation du régime de couplage fort permet de réaliser une source de photons intriqués basée sur le déclin du bi exciton dans une boite quantique en résolvant un certain nombre de difficultés par rapport au système constitué d'une boite quantique simple.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sapienza, Luca. "Electrically driven semiconductor devices operating in the light-matter strong coupling regime." Paris 7, 2007. http://www.theses.fr/2007PA077088.

Повний текст джерела
Анотація:
Cette thèse porte sur l'étude du couplage fort lumière-matière pour les transitions intersousbandes. En plaçant une série de puits quantiques dopés dans une microcavité planaire à semiconducteur, les interactions entre excitations intersousbandes et modes photoniques de cavité peuvent être étudiés. Si la fréquence de Rabi, liée à la force du couplage entre photons de cavité et excitations intersousbandes, est supérieure à leur élargissement en fréquence, le régime de couplage fort est atteint. Dans ce régime, les états propres du système sont des superpositions linéaires d'excitations photoniques et électroniques, appelés polaritons de cavité. Dans ce travail, nous démontrons l'implémentation du régime de couplage fort lumière-matière dans un dispositif électrique à semiconducteur. La structure que nous avons réalisée est composée par une structure à cascade quantique en AI0,45Ga0,55As/GaAs contenant un gaz bi-dimensionel d'électrons dans l'état fondamental. Elle est insérée dans une microcavité planaire, basée sur un mode plasmonique et dans laquelle un courant peut être injecté. Le système a été caractérisé d'abord en réflectivité, démontrant que le régime de couplage fort lumière-matière est atteint. Ensuite, des mesures photovoltaïques et d'électro-luminescence ont été effectuées. Les résultats obtenus soulignent l'importance du transport électronique et de l'injection électrique pour les propriétés du système en couplage fort. La possibilité de sonder électriquement des phénomènes de cavité a été démontrée, ainsi que la réalisation du premier dispositif sous pompage électrique, fonctionnant dans le régime de couplage fort lumière-matière en émission
This thesis is focused on the study of the light-matter strong coupling regime for intersubband transitions. A System composed of doped multi-quantum wells inserted in a semiconductor planar microcavity allows the study of the interaction between intersubband excitations and photon cavity modes. If the vacuum Rabi frequency, quantifying the coupling between a cavity photon and an intersubband excitation, exceeds their frequency broadenings, what is referred to as strong coupling regime is achieved. In this regime, the eigenstates of the System are linear superpositions of light and matter excitations and are called cavity polaritons. In this thesis the implementation of the light-matter strong coupling regime in an electrically driven semiconductor device is presented. The structure we have designed is composed of a AI0,45Ga0, 55As/GaAs quantum cascade structure containing a bi-dimensional electron gas in the ground state, inserted in a planar microcavity, based on a plasmon mode, suitable for electrical injection. The System has been first characterized in reflectivity, showing its suitability for the achievement of the light-matter strong coupling regime. Then, photovoltaic and electro-luminescence measurements have been performed. The results obtained have put into evidence the importance of the electrical transport and injection in the properties of the System in strong coupling regime. The possibility of an electrical probe of cavity dynamics has been demonstrated, as well as the realization of the first electrically injected semiconductor device, working in the light-matter strong coupling regime in emission
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sivalertporn, Kanchana. "Strong light-matter coupling in microcavity-embedded semiconductor quantum wells and quantum dots." Thesis, Cardiff University, 2013. http://orca.cf.ac.uk/49358/.

Повний текст джерела
Анотація:
This thesis presents a theoretical investigation of exciton polaritons in strongly-coupled exciton-photon microcavity systems. Two different systems, a coupled quantum well (CQW) embedded in a planar microcavity and a quantum dot (QD) inside a micropillar cavity, are studied using suitable theoretical models. The exciton-polariton states are calculated and their optical properties are investigated in detail, showing a good agreement with experimental observations. For a CQW structure, the excitonic states in the presence of the electric field applied in the growth direction are calculated by solving the Schrodinger equation in real space. The field dependence of exciton transition energy, binding energy, oscillator strength, lifetime and absorption is studied. The exciton ground state experiences a crossover from direct to indirect state at low electric field. A single state-basis calculation in which only the electron and hole ground states are taken into account is also made and compared with the full accurate calculation model. The polariton effect in a microcavity-embedded CQW is investigated based on the semiclassical theory. The light-matter interaction is treated by solving coupled material and Maxwell's equations. The reflectivity and absorption spectra are calculated for different detunings using the scattering matrix method. When a cavity mode is tuned to an exciton mode (zero detuning), an anticrossing of two polariton modes is observed, showing that the system is in the strong coupling regime. In addition, the fractions of direct exciton, indirect exciton and cavity modes contributed to the polariton states are calculated using the microscopic theory. The resulting polariton state with comparable contributions ofall three components called dipolariton is observed. Finally, the dynamics of the strongly-coupled exciton-cavity system in the QD-micropillar system is studied using the four wave mixing (FWM) theory applied to the Jaynes-Cummings model. Spectrally resolved and time-resolved FWM signals are calculated for different temperatures. Temperature plays the role of the parameter controlling the detuning. The beat periods of the first and second rungs of the JC ladder are also investigated, showing that the second rung has a sqaure- shorter period compared to the beat period of the first rung. To reveal the coherent coupling between two distant QDs, the FWM signals are Fourier-transformed into a two-dimensional frequency domain. It is found that the off-diagonal components in these 2D spectra are nonzero, demonstrating the coherent coupling between isolated QDs. In addition, the phase correction is developed. This procedure is neccessary for a comparison with the experiment which has random phases for different detunings. A quantitative agreement between the prediction and measurement is achieved and demonstrated.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tischler, Jonathan Randall 1977. "Solid state cavity QED : practical applications of strong coupling of light and matter." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/40549.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.
Includes bibliographical references (p. 126-133).
J-aggregates of cyanine dyes are the excitonic materials of choice for realizing polariton devices that operate in strong coupling at room temperature. Since the earliest days of cavity QED, there has been a major desire to construct solid state optical devices that operate in the limit where strong light-matter interactions dominate the dynamics. Such devices have been successfully constructed, but their operation is usually limited to cryogenic temperatures, because of the small binding energies for the ,excitonic materials typically used. It has been demonstrated that when J-aggregates are used as the excitonic material, it is possible to achieve strong coupling in solid state even at room temperature. J-aggregates are a unique choice of materials because their central feature, a very large optical transitional dipole, is itself the result of strong coupling amongst monomeric dye elements. The strong coupling amongst dye molecules produces a well-defined cooperative optical transition possessing oscillator strength derived from all of the aggregated monomers that is capable of interacting strongly with the cavity confined electromagnetic field even at room temperature. There are different materials and methods for assembling J-aggregates which are capable of producing strong coupling. This thesis argues in favor of a particular dye and method of assembly which are then thoroughly characterized. With this dye and assembly technique, the first demonstration of electrically pumped polariton emission is reported as is the largest optical absorption coefficient for a solid thin film at room temperature not contained in a full microcavity.
(cont.) This combination is then used to demonstrate strong coupling at room temperature, as characterized by a light-matter coupling strength, Rabi-splitting, that significantly exceeds the dephasing processes competing against the coherence of the interaction. Finally, prospects of this approach for realizing a polariton laser at room temperature are considered, and improved microcavity architectures are demonstrated as a path towards its realization.
by Jonathan Randall Tischler.
Ph.D.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Halbhuber, Maike [Verfasser], and Dominique [Akademischer Betreuer] Bougeard. "Subcycle dynamics of deep-strong light-matter coupling / Maike Halbhuber ; Betreuer: Dominique Bougeard." Regensburg : Universitätsbibliothek Regensburg, 2021. http://d-nb.info/1233008870/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Vigneron, Pierre-Baptiste. "Mid-Infrared Detectors and THz Devices Operating in the Strong Light-Matter Coupling Regime." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS082/document.

Повний текст джерела
Анотація:
Les polaritons inter-sous-bandes, observés pour la première fois il y a une quinzaine d’années, sont des quasi-particules dont de nombreuses propriétés restent encore à découvrir. La recherche dans ce domaine se focalise actuellement sur la réalisation de condensats de Bose-Einstein. Une telle découverte pourrait révolutionner l’optoélectronique du moyen infra-rouge jusqu’au THz ouvrant la voie à l’instauration de nouveaux concepts de sources lumineuses,de détecteurs ou de systèmes logiques en couplage fort. Dans cette quête, le choix de la cavité résonnante est critique. Dans ce manuscrit nous proposons d’utiliser des cavités métal-isolant-métal (M-I-M) avec un réseau dispersif sur le métal supérieur. Ce type de cavité,conservant un confinement élevé entre les deux plans métalliques, offre de nombreuses possibilités d’ajustement de la résonance de cavité : via la géométrie de la cavité ( épaisseur de la cavité, période et recouvrement du réseau) ainsi que par le couplage de la lumière avec la cavité (vecteur d’onde incident). Les cavités M-I-M dispersives ouvrent donc un nouveau champ d’exploration des polaritons inter-sous-bande. Dans un premier temps nous avons introduit ces cavités dans le domaine du THz afin d’étudier les phénomènes de relaxation polariton-polariton. Un système expérimental dédié à cette exploration a été conçu pour mesurer la réflectivité des polaritons THz avec une fine résolution en angle. Dans une second temps, des capteurs moyen infrarouge en couplage fort avec une cavité M-I-M dispersive ont été conçus, fabriqués et mesurés dans le but d’explorer la génération de photo-courant à partir de polaritons et d’utiliser le couplage fort pour dissocier l’ énergie de détection de l’énergie d’activation. Cette seconde étude s’inscrit dans l’objectif de pompage électrique des polaritons ISB. Parallèlement à l’étude des polaritons, nous avons également participé au développement de techniques(interféromètre Gires-Tournois et revêtement anti-réflection) pour compresser les impulsions optiques de lasers à cascade quantique THz
After fifteen years of intersubband polaritons development some of the peculiar properties of these quasi-particles are still unexplored. A deeper comprehension of the polaritons is needed to access their fundamental properties and assess their applicative potential as efficient emitters or detectors in the mid-infrared and THz.In this manuscript we used Metal-Insulator-Metal (MI-M) cavities with a top metal periodic grating as a platform to deepen the understanding of ISB polaritons.The advantages of M-I-M are twofold : first they confine the TM00 mode, second the dispersion of the cavity -over a large set of in-plane wave-vectors- offers various experimental configurations to observe the polaritons in both reflection and photo-current. We reexamined the properties of ISB polaritons in the mid-infrared and in the THz using these resonators. In the first part, we explore the implementation of dispersive M-I-M cavities with THz intersubband transitions. In the THz domain, the scattering mechanisms of the THz ISB polaritons need to be understood. The dispersive cavity is a major asset to study these mechanisms because it provides more degrees of freedom to the system. For this purpose, we fabricated a new experimental set-up to measure the polariton dispersion at liquid Helium temperature. After the characterization of the polaritons in reflectivity, a pump-probe experiment was performed on the polaritonic devices. The second part of this manuscript presents the implementation of M-I-M dispersive cavities with abound-to-quasi-bound quantum well infrared photo detector designed to detect in strong coupling. Beyond electrical probing of the polaritons, the strong coupling can disentangle the frequency of detection from the thermal activation energy and reduce the dark current at a given frequency. In parallel to the exploration of THz polaritons, we developed two techniques (Gires-Tournois Interferometer and Anti-reflection coating) in order to shorten the pulses of THz quantum cascade lasers with metal-metal waveguides
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lundt, Nils [Verfasser], Christian [Gutachter] Schneider, Bert [Gutachter] Hecht, and Tobias [Gutachter] Brixner. "Strong light-matter coupling with 2D materials / Nils Lundt ; Gutachter: Christian Schneider, Bert Hecht, Tobias Brixner." Würzburg : Universität Würzburg, 2019. http://d-nb.info/1195444974/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chervy, Thibault. "Strong coupling regime of cavity quantum electrodynamics and its consequences on molecules and materials." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAF033/document.

Повний текст джерела
Анотація:
Cette thèse présente une étude exploratoire de plusieurs aspects du couplage fort lumière-matière dans des matériaux moléculaires. Différentes propriétés héritées d’un tel couplage sont démontrées, ouvrant de nombreuses possibilités d’applications, allant du transfert d’énergie à la génération de signaux optiques non-linéaires et à l’élaboration de réseaux polaritoniques chiraux. Au travers des thématiques abordées, l’idée d’un couplage lumière-matière entrant en compétition avec les différentes fréquences de dissipation des molécules se révèle être cruciale. Ainsi, la prédominance du couplage cohérent au champ électromagnétique apparaît comme un moyen de modifier les propriétés quantiques des états moléculaires, ouvrant la voie à une nouvelle chimie des matériaux en cavité
This thesis presents an exploratory study of several aspects of strong light-matter coupling in molecular materials. Different properties inherited from such a coupling are demonstrated, opening the way to numerous applications, ranging from energy transfer to the generation of non-linear optical signals and to the development of chiral polaritonic networks. Through the topics covered, the idea of a light-matter coupling strength competing with the different frequencies of relaxation of the molecules proves to be crucial. Thus, the predominance of the coherent coupling to the electromagnetic field appears as a new mean of modifying the quantum properties of molecular systems, opening the way to a new chemistry of materials in optical cavities
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Castanie, Aurore. "Surface plasmon hybridization in the strong coupling regime in gain structures." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2013. http://tel.archives-ouvertes.fr/tel-00913379.

Повний текст джерела
Анотація:
Surface plasmon polaritons are non radiative modes which exist at the interface between a dielectric and a metal. They can confine light at sub-wavelength scales. However, their propagation is restricted by the intrinsic losses of the metal which imply a rapid absorption of the mode. The aim of this thesis is the study of the coupling of surface plasmons in metallo-dielectric planar structures. Obtaining the properties of the modes implies the extension of the solutions to the complex plane of propagation constants. The method used consists in determining the poles of the scattering matrix by means of Cauchy's integrals. The first solution to solve the problem of propagation of the surface plasmons consists in coupling these modes to one another. In a symmetric medium, when the thickness of the metallic film becomes thin enough, the coupling between the plasmon modes which exist on each side becomes possible. One of the coupled modes which is created, the so-called long range surface plasmon, has a bigger propagation length than the usual plasmon whereas the other coupled mode, named short range surface plasmon, has a smaller propagation length. We present a configuration which allows the excitation of the long range surface plasmon without the short range mode with a metallic layer deposited on a perfect electric conductor substrate. This excitation can be done in air and allows applications, such as the detection and the characterisation of molecules. Then, we present the coupling between dielectric waveguides, and, in particular, the coupled-mode theory in the case of the transverse magnetic polarisation. We consider also the case of PT symmetric structure. The last part of this work presents the demonstration of the strong coupling regime between a surface plasmon and a guided mode. We demonstrate an increase of the propagation length of the hybrid surface plasmon, which still has the confinement of a surface mode. A linear gain is added in the different layers of the structure. When the gain is added in the layer between both coupled modes allows an enhancement of the propagation lengths of the modes, and more precisely of the hybrid surface plasmon mode, which can propagate at the millimeter scale.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Akhileswaran, Aji Anappara. "Light-matter interaction in intersubband microcavities." Doctoral thesis, Scuola Normale Superiore, 2008. http://hdl.handle.net/11384/85841.

Повний текст джерела
Анотація:
The research work presented in this thesis is focused on the study of the optoelectronic coupling between the intersubband excitation in a two-dimensional electron gas (2DEG) and the resonant photonic mode of a planar semiconductor microcavity, in which the 2DEGs are embedded. When a generic electronic excitation interacts resonantly with a discrete cavity mode, a strong-coupling regime arises if the interaction strength of the electron-photon system (vacuum-field Rabi energy) is larger than the damping rates. This condition has been demonstrated in diverse research fields: from atomic physics to organic/semiconductor excitons coupled to a planar microcavity, to superconductor qubits coupled to microwave transmission lines. In semiconductor physics, the strong coupling results in the formation of quasi-particles termed cavity polaritons, which are the linear superposition of light and matter excitations. In 2003, the strong coupling of intersubband transitions in doped quantum wells with confined photons, and the corresponding formation of `intersubband cavity polaritons', were experimentally observed up to room temperature. In contrast to other strongly coupled systems, intersubband microcavities are more appealing due to the unique possibility of externally controlling light-matter interaction. The manipulation of polariton coupling hinges on the principle that the intensity of intersubband absorption in the active region can be controlled either through the carrier density modulation or by altering the oscillator strength of the transition. Owing to the large oscillator strength and relatively low-energy of the transition, in intersubband microcavities the vacuum-field Rabi splitting can be a significant fraction of the intersubband transition energy. Such a regime of light-matter interaction was predicted theoretically and termed as the `ultrastrong coupling regime'. The investigation of the optoelectronic coupling is here conducted in two different directions: (i) exploring suitable means for the external manipulation of intersubband cavity polaritons, (ii) realizing the conditions for observing the ultrastrong coupling regime of light-matter interaction. The devices employed in the investigation are multiple quantum well active structures embedded in intersubband microcavities - based either on dielectric mirrors or on plasmon mode resonators. The results presented in this thesis contain various experimental realizations of the external control of polariton coupling in a solid-state device, with unprecedented modulation depth and speed. Moreover the first experimental observation of the ultrastrong coupling of light-matter interaction is also reported. These are fundamental steps towards the generation of the photon pairs from vacuum fluctuations in a quantum electrodynamical scheme analogous to the well known dynamic Casimir effect, which is yet to be realized experimentally.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Strong-matter coupling"

1

Auffèves, Alexia, Dario Gerace, Maxime Richard, Stefano Portolan, Marcelo França Santos, Leong Chuan Kwek, and Christian Miniatura. Strong Light-Matter Coupling. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/8758.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pascual​, Javier Galego. Polaritonic Chemistry: Manipulating Molecular Structure Through Strong Light–Matter Coupling. Springer, 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pascual​, Javier Galego. Polaritonic Chemistry: Manipulating Molecular Structure Through Strong Light-Matter Coupling. Springer International Publishing AG, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kavokin, Alexey V., Jeremy J. Baumberg, Guillaume Malpuech, and Fabrice P. Laussy. Microcavities. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198782995.001.0001.

Повний текст джерела
Анотація:
Both rich fundamental physics of microcavities and their intriguing potential applications are addressed in this book, oriented to undergraduate and postgraduate students as well as to physicists and engineers. We describe the essential steps of development of the physics of microcavities in their chronological order. We show how different types of structures combining optical and electronic confinement have come into play and were used to realize first weak and later strong light–matter coupling regimes. We discuss photonic crystals, microspheres, pillars and other types of artificial optical cavities with embedded semiconductor quantum wells, wires and dots. We present the most striking experimental findings of the recent two decades in the optics of semiconductor quantum structures. We address the fundamental physics and applications of superposition light-matter quasiparticles: exciton-polaritons and describe the most essential phenomena of modern Polaritonics: Physics of the Liquid Light. The book is intended as a working manual for advanced or graduate students and new researchers in the field.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Strong-matter coupling"

1

Kalt, Heinz, and Claus F. Klingshirn. "Oscillator Model of Strong Light-Matter Coupling." In Graduate Texts in Physics, 81–100. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24152-0_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Alpeggiani, Filippo, S. D’Agostino, and L. C. Andreani. "Surface Plasmons and Strong Light-Matter Coupling in Metallic Nanoshells." In NATO Science for Peace and Security Series B: Physics and Biophysics, 479. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9133-5_35.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jackson Kimball, Derek F., Leanne D. Duffy, and David J. E. Marsh. "Ultralight Bosonic Dark Matter Theory." In The Search for Ultralight Bosonic Dark Matter, 31–72. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95852-7_2.

Повний текст джерела
Анотація:
AbstractThe basic theoretical concepts motivating the hypothesis that dark matter may consist of ultralight spin-0 or spin-1 bosons are explored. The origin of bosons with masses ≪ 1 eV from spontaneous and explicit symmetry breaking is illustrated with examples. The origins and characteristics of nongravitational couplings or “portals” between ultralight bosons and Standard Model particles and fields are considered, with particular attention paid to the cases of the axion-photon and axion-fermion interactions. Theoretical motivations for the existence of ultralight bosons, besides as an explanation of dark matter, are examined, with particular focus on the Peccei-Quinn solution to the strong CP problem (resulting in the QCD axion) and a dynamical solution to the hierarchy problem (the “relaxion” hypothesis, based on a particular axion-Higgs coupling in the early universe). Mechanisms for non-thermal production of ultralight bosonic dark matter are examined.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Baldo, M., J. Dukelsky, F. Gulminelli, U. Lombardo, and P. Schuck. "Deuteron Formation in Expanding Nuclear Matter from a Strong Coupling BCS Approach." In Advances in Nuclear Dynamics 2, 159–66. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9086-3_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Spector, Aaron D. "Light-Shining-Through-Walls Experiments." In The Search for Ultralight Bosonic Dark Matter, 255–79. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95852-7_9.

Повний текст джерела
Анотація:
AbstractThe light-shining-through-walls (LSW) method of searching for ultralight bosonic dark matter (UBDM) uses lasers and strong dipole magnets to probe the coupling between photons and UBDM in the presence of a magnetic field. Since these experiments take place entirely in the laboratory, they offer a unique opportunity to perform a model independent measurement of this interaction. This involves shining a high-power laser through a magnetic field toward a wall which blocks the light. The interaction between the laser and the magnetic field generates a beam of UBDM that passes through the wall. Beyond the wall is another region of strong magnetic field that reconverts the UBDM back to photons that can then be measured by a single photon detection system. The sensitivity of these kinds of experiments can be improved further by implementing optical cavities before and after the wall to amplify the power of the light propagating through the magnetic fields. This chapter gives an introduction to LSW experiments and discusses a number of interesting challenges associated with the technique.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Geraci, Andrew A., and Yun Chang Shin. "Laboratory Searches for Exotic Spin-Dependent Interactions." In The Search for Ultralight Bosonic Dark Matter, 219–53. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-030-95852-7_8.

Повний текст джерела
Анотація:
AbstractThe possible existence of exotic spin-dependent interactions with ranges from the subatomic scale to astrophysical scales has been of great theoretical interest for the last few decades. Typically, these exotic interactions are mediated by ultralight bosons with very weak coupling strength. If they indeed exist, such long-range interactions would indicate new physics beyond the Standard Model. A wide variety of experimental tests have been made to search for novel long-range spin-dependent interactions. Most experimental searches have focused on monopole-dipole or dipole-dipole interactions that could be induced by the exchange of ultralight bosons such as axions or axionlike particles. These ultralight bosons could also provide an answer to some of the most challenging problems in modern particle physics and astronomy: for example, the strong-CP problem in quantum chromodynamics (QCD), where C represents the charge conjugate symmetry and P represents the parity symmetry, and the explanation of dark matter and dark energy. In this chapter, we discuss the theoretical motivations as well as experimental searches for exotic spin-dependent interactions mediated by ultralight bosons in recent decades. We also introduce ongoing experimental efforts, such as Axion Resonant InterAction DetectioN Experiment (ARIADNE) and the QUest for AXion (QUAX)-gsgp experiment. The high sensitivities of these tests will allow vast expansion of the discovery potential for exotic spin-dependent interactions.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gao, Jian-Hua, Zuo-Tang Liang, Qun Wang, and Xin-Nian Wang. "Global Polarization Effect and Spin-Orbit Coupling in Strong Interaction." In Strongly Interacting Matter under Rotation, 195–246. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71427-7_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lieb, Elliott H., and Lawrence E. Thomas. "Exact Ground State Energy of the Strong-Coupling Polaron." In Condensed Matter Physics and Exactly Soluble Models, 311–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-06390-3_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Haroche, Serge, and Jean-Michel Raimond. "Cavity QED in Atomic Physics." In Strong Light-Matter Coupling, 1–35. WORLD SCIENTIFIC, 2014. http://dx.doi.org/10.1142/9789814460354_0001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Andreani, Lucio Claudio. "Exciton-Polaritons in Bulk Semiconductors and in Confined Electron and Photon Systems." In Strong Light-Matter Coupling, 37–82. WORLD SCIENTIFIC, 2014. http://dx.doi.org/10.1142/9789814460354_0002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Strong-matter coupling"

1

Kéna-Cohen, Stéphane. "Manipulating Light and Matter using Strong Light-Matter Coupling." In Frontiers in Optics. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/fio.2019.ftu5f.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shegai, Timur. "TMDC nanophotonics for strong light-matter coupling." In Metamaterials, Metadevices, and Metasystems 2020, edited by Nader Engheta, Mikhail A. Noginov, and Nikolay I. Zheludev. SPIE, 2020. http://dx.doi.org/10.1117/12.2571188.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ruggenthaler, Michael. "Novel effects in strong light-matter coupling." In Metamaterials, Metadevices, and Metasystems 2021, edited by Nader Engheta, Mikhail A. Noginov, and Nikolay I. Zheludev. SPIE, 2021. http://dx.doi.org/10.1117/12.2593707.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Shegai, Timur. "TMDC nanophotonics for strong light matter coupling." In Metamaterials, Metadevices, and Metasystems 2021, edited by Nader Engheta, Mikhail A. Noginov, and Nikolay I. Zheludev. SPIE, 2021. http://dx.doi.org/10.1117/12.2595440.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Liu, Xiaoze, Tal Galfsky, Fengnian Xia, Erh-chen Lin, Yi-Hsien Lee, Ashwin Ramasubramaniam, Stéphane Kéna-Cohen, and Vinod M. Menon. "Strong light-matter coupling in atomic monolayers." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/cleo_qels.2014.fth5a.5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lange, Christoph, Emiliano Cancellieri, Lee A. Rozema, Rockson Chang, Shreyas Potnis, Aephraim M. Steinberg, Mark Steger, et al. "Ultrafast Modulation of Strong Light-Matter Coupling." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/cleo_qels.2015.fm1b.4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Felbacq, Didier, and Emmanuel Rousseau. "Strong light-matter coupling in a quantum metasurface." In Active Photonic Platforms X, edited by Ganapathi S. Subramania and Stavroula Foteinopoulou. SPIE, 2018. http://dx.doi.org/10.1117/12.2320277.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Schneebeli, Lukas, Mackillo Kira, and Stephan W. Koch. "Photon Correlations in Systems with Strong Light-Matter Coupling." In International Quantum Electronics Conference. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/iqec.2009.ima2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dietze, Daniel, Alexander Benz, Gottfried Strasser, Karl Unterrainer, and Juraj Darmo. "Strong Terahertz Light-Matter Coupling Between Metamaterials and Intersubband Transitions." In Quantum Electronics and Laser Science Conference. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/qels.2012.qtu3f.4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mornhinweg, Joshua, Maike Halbhuber, Viola Zeller, Cristiano Ciuti, Dominique Bougeard, Rupert Huber, and Christoph Lange. "Extremely Non-Adiabatic Switching of Deep-Strong Light-Matter Coupling." In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/up.2020.w3b.2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії