Добірка наукової літератури з теми "Strong comparison principle"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Strong comparison principle".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Strong comparison principle"

1

Lucia, M., and S. Prashanth. "Strong comparison principle for solutions of quasilinear equations." Proceedings of the American Mathematical Society 132, no. 4 (2003): 1005–11. http://dx.doi.org/10.1090/s0002-9939-03-07285-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Roselli, Paolo, and Berardino Sciunzi. "A strong comparison principle for the $p$-Laplacian." Proceedings of the American Mathematical Society 135, no. 10 (2007): 3217–25. http://dx.doi.org/10.1090/s0002-9939-07-08847-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Boyadzhiev, Georgi, and Nikolai Kutev. "Strong Maximum Principle for Viscosity Solutions of Fully Nonlinear Cooperative Elliptic Systems." Mathematics 9, no. 22 (2021): 2985. http://dx.doi.org/10.3390/math9222985.

Повний текст джерела
Анотація:
In this paper, we consider the validity of the strong maximum principle for weakly coupled, degenerate and cooperative elliptic systems in a bounded domain. In particular, we are interested in the viscosity solutions of elliptic systems with fully nonlinear degenerated principal symbol. Applying the method of viscosity solutions, introduced by Crandall, Ishii and Lions in 1992, we prove the validity of strong interior and boundary maximum principle for semi-continuous viscosity sub- and super-solutions of such nonlinear systems. For the first time in the literature, the strong maximum principle is considered for viscosity solutions to nonlinear elliptic systems. As a consequence of the strong interior maximum principle, we derive comparison principle for viscosity sub- and super-solutions in case when on of them is a classical one. The main novelty of this work is the reduction of the smoothness of the solution. In the literature the strong maximum principle is proved for classical C2 or generalized C1 solutions, while we prove it for semi-continuous ones.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Prashanth, S. "Strong Comparison Principle for Radial Solutions of Quasi-Linear Equations." Journal of Mathematical Analysis and Applications 258, no. 1 (2001): 366–70. http://dx.doi.org/10.1006/jmaa.2000.7515.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gigli, Nicola, and Chiara Rigoni. "A Note About the Strong Maximum Principle on RCD Spaces." Canadian Mathematical Bulletin 62, no. 02 (2019): 259–66. http://dx.doi.org/10.4153/cmb-2018-022-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Xing, Yang. "A strong comparison principle of plurisubharmonic functions with finite pluricomplex energy." Michigan Mathematical Journal 56, no. 3 (2008): 563–81. http://dx.doi.org/10.1307/mmj/1231770360.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Capogna, Luca, and Xiaodan Zhou. "Strong comparison principle for $p$-harmonic functions in Carnot-Caratheodory spaces." Proceedings of the American Mathematical Society 146, no. 10 (2018): 4265–74. http://dx.doi.org/10.1090/proc/14113.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jarohs, Sven. "Strong Comparison Principle for the Fractional p-Laplacian and Applications to Starshaped Rings." Advanced Nonlinear Studies 18, no. 4 (2018): 691–704. http://dx.doi.org/10.1515/ans-2017-6039.

Повний текст джерела
Анотація:
AbstractIn the following, we show the strong comparison principle for the fractional p-Laplacian, i.e. we analyze\quad\left\{\begin{aligned} \displaystyle(-\Delta)^{s}_{p}v+q(x)\lvert v\rvert% ^{p-2}v&\displaystyle\geq 0&&\displaystyle\phantom{}\text{in ${D}$},\\ \displaystyle(-\Delta)^{s}_{p}w+q(x)\lvert w\rvert^{p-2}w&\displaystyle\leq 0&% &\displaystyle\phantom{}\text{in ${D}$},\\ \displaystyle v&\displaystyle\geq w&&\displaystyle\phantom{}\text{in ${\mathbb% {R}^{N}}$},\end{aligned}\right.where {s\in(0,1)}, {p>1}, {D\subset\mathbb{R}^{N}} is an open set, and {q\in L^{\infty}(\mathbb{R}^{N})} is a nonnegative function. Under suitable conditions on s, p and some regularity assumptions on v, w, we show that either {v\equiv w} in {\mathbb{R}^{N}} or {v>w} in D. Moreover, we apply this result to analyze the geometry of nonnegative solutions in starshaped rings and in the half space.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Benedikt, Jiří, Petr Girg, Lukáš Kotrla, and Peter Takáč. "The strong comparison principle in parabolic problems with thep-Laplacian in a domain." Applied Mathematics Letters 98 (December 2019): 365–73. http://dx.doi.org/10.1016/j.aml.2019.06.035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Попова, Анна. "ON THE REGULATION AND CONTENT OF A LEGAL FRAMEWORK FOR HUMAN INTERACTION WITH ARTIFICIAL INTELLIGENCE, ROBOTS AND OBJECTS OF ROBOTICS." Rule-of-law state: theory and practice 16, no. 4-1 (2020): 64–75. http://dx.doi.org/10.33184/pravgos-2020.4.7.

Повний текст джерела
Анотація:
Due to the emergence of technological solutions that allow creating systems based on strong artificial intelligence (AI), and the high probability of developing super-strong AI in the near future, special презумпцию невиновности человека attention has recently been paid to the legal problems of regulating the interaction of humans and society with new intelligent agents. The purpose of the research is to analyze modern legal principles of interaction between humans and artificial intelligence, neural networks and intelligent robots, which are the necessary basis for forming modern legislation in this area in Russia and foreign countries. Methods: empirical methods of comparison, description, interpretation; theoretical methods of formal and dialectical logic are used. Special scientific methods are used: comparative-legal, legal-dogmatic. Results: the study allows us to determine a number of relevant legal principles of human interaction with AI as well as with robots and other objects of robotics, based on a comparative legal analysis of the current legislation. They are the principle of humanism; the principle of justice; the prohibition of discrimination when using AI, robots and objects of robotics; the presumption of human innocence; the principle of human innocence; the principle of respect for human dignity; the principle of confidentiality; the principle of disclosure of information on the development, production and use of robots and artificial intelligence; the principle of autonomy of will when using systems equipped with AI; the principle of the presumption of consent; the principle of informed consent to the use (impact) of systems equipped with AI.
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!