Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: String landscape.

Статті в журналах з теми "String landscape"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "String landscape".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Douglas, Michael R. "The String Theory Landscape." Universe 5, no. 7 (July 20, 2019): 176. http://dx.doi.org/10.3390/universe5070176.

Повний текст джерела
Анотація:
String/M theory is formulated in 10 and 11 space-time dimensions; in order to describe our universe, we must postulate that six or seven of the spatial dimensions form a small compact manifold. In 1985, Candelas et al. showed that by taking the extra dimensions to be a Calabi–Yau manifold, one could obtain the grand unified theories which had previously been postulated as extensions of the Standard Model of particle physics. Over the years since, many more such compactifications were found. In the early 2000s, progress in nonperturbative string theory enabled computing the approximate effective potential for many compactifications, and it was found that they have metastable local minima with small cosmological constant. Thus, string/M theory appears to have many vacuum configurations which could describe our universe. By combining results on these vacua with a measure factor derived using the theory of eternal inflation, one gets a theoretical framework which realizes earlier ideas about the multiverse, including the anthropic solution to the cosmological constant problem. We review these arguments and some of the criticisms, with their implications for the prediction of low energy supersymmetry and hidden matter sectors, as well as recent work on a variation on eternal inflation theory motivated by computational complexity considerations.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Schellekens, A. N. "The string theory landscape." International Journal of Modern Physics A 30, no. 03 (January 30, 2015): 1530016. http://dx.doi.org/10.1142/s0217751x15300161.

Повний текст джерела
Анотація:
Perhaps the most important way string theory has affected the perspective of particle physics phenomenology is through the "string theory landscape". We discuss the evidence supporting its existence, describe the regions of the landscape that have been explored, and examine what the string theory landscape might imply for most Standard Model problems.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bousso, Raphael, and Joseph Polchinski. "The String Theory Landscape." Scientific American Sp 15, no. 3 (January 2006): 40–49. http://dx.doi.org/10.1038/scientificamerican0206-40sp.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gomis, Jaume, David Mateos, and Fernando Marchesano. "An open string landscape." Journal of High Energy Physics 2005, no. 11 (November 15, 2005): 021. http://dx.doi.org/10.1088/1126-6708/2005/11/021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bousso, Raphael, and Joseph Polchinski. "The String Theory Landscape." Scientific American 291, no. 3 (September 2004): 78–87. http://dx.doi.org/10.1038/scientificamerican0904-78.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Quevedo, Fernando. "The string-theory landscape." Physics World 16, no. 11 (November 2003): 21–22. http://dx.doi.org/10.1088/2058-7058/16/11/30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhai, Han-Yu, Jia-Yin Shen, and Xun Xue. "Effective quintessence from string landscape." Acta Physica Sinica 68, no. 13 (2019): 139501. http://dx.doi.org/10.7498/aps.68.20190282.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bena, Iosif, and Mariana Graña. "String cosmology and the landscape." Comptes Rendus Physique 18, no. 3-4 (March 2017): 200–206. http://dx.doi.org/10.1016/j.crhy.2017.04.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Frazer, Jonathan, and Andrew R. Liddle. "Exploring a string-like landscape." Journal of Cosmology and Astroparticle Physics 2011, no. 02 (February 23, 2011): 026. http://dx.doi.org/10.1088/1475-7516/2011/02/026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

He, Yang-Hui. "Machine-learning the string landscape." Physics Letters B 774 (November 2017): 564–68. http://dx.doi.org/10.1016/j.physletb.2017.10.024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Burgess, Clifford P., Richard Easther, Anupam Mazumdar, David F. Mota, and Tuomas Multamäki. "Multiple inflation, cosmic string networks and the string landscape." Journal of High Energy Physics 2005, no. 05 (May 26, 2005): 067. http://dx.doi.org/10.1088/1126-6708/2005/05/067.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

KUMAR, JASON. "A REVIEW OF DISTRIBUTIONS ON THE STRING LANDSCAPE." International Journal of Modern Physics A 21, no. 17 (July 10, 2006): 3441–72. http://dx.doi.org/10.1142/s0217751x06033027.

Повний текст джерела
Анотація:
We review some basic flux vacua counting techniques and results, focusing on the distributions of properties over different regions of the landscape of string vacua and assessing the phenomenological implications. The topics we discuss include: an overview of how moduli are stabilized and how vacua are counted; the applicability of effective field theory; the uses of and differences between probabilistic and statistical analysis (and the relation to the anthropic principle); the distribution of various parameters on the landscape, including cosmological constant, gauge group rank, and supersymmetry-breaking scale; "friendly landscapes;" open string moduli; the (in)finiteness of the number of phenomenologically viable vacua; etc. At all points, we attempt to connect this study to the phenomenology of vacua which are experimentally viable.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Banks, Tom, Michael Dine, and Elie Gorbatov. "Is there a string theory landscape?" Journal of High Energy Physics 2004, no. 08 (September 1, 2004): 058. http://dx.doi.org/10.1088/1126-6708/2004/08/058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Kumar, Alok, Subir Mukhopadhyay, and Koushik Ray. "Forbidden territories in the string landscape." Journal of High Energy Physics 2007, no. 12 (December 10, 2007): 032. http://dx.doi.org/10.1088/1126-6708/2007/12/032.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Towe, Joseph. "Geometric reduction of the string landscape." Journal of Physics: Conference Series 462 (December 31, 2013): 012056. http://dx.doi.org/10.1088/1742-6596/462/1/012056.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Stadler, Peter F., and Günter P. Wagner. "Algebraic Theory of Recombination Spaces." Evolutionary Computation 5, no. 3 (September 1997): 241–75. http://dx.doi.org/10.1162/evco.1997.5.3.241.

Повний текст джерела
Анотація:
A new mathematical representation is proposed for the configuration space structure induced by recombination, which we call “P-structure.” It consists of a mapping of pairs of objects to the power set of all objects in the search space. The mapping assigns to each pair of parental “genotypes” the set of all recombinant genotypes obtainable from the parental ones. It is shown that this construction allows a Fourier decomposition of fitness landscapes into a superposition of “elementary landscapes.” This decomposition is analogous to the Fourier decomposition of fitness landscapes on mutation spaces. The elementary landscapes are obtained as eigenfunctions of a Laplacian operator defined for P-structures. For binary string recombination, the elementary landscapes are exactly the p-spin functions (Walsh functions), that is, the same as the elementary landscapes of the string point mutation spaces (i.e., the hypercube). This supports the notion of a strong homomorphism between string mutation and recombination spaces. However, the effective nearest neighbor correlations on these elementary landscapes differ between mutation and recombination and among different recombination operators. On average, the nearest neighbor correlation is higher for one-point recombination than for uniform recombination. For one-point recombination, the correlations are higher for elementary landscapes with fewer interacting sites as well as for sites that have closer linkage, confirming the qualitative predictions of the Schema Theorem. We conclude that the algebraic approach to fitness landscape analysis can be extended to recombination spaces and provides an effective way to analyze the relative hardness of a landscape for a given recombination operator.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Dasgupta, Keshav, Maxim Emelin, Mir Mehedi Faruk, and Radu Tatar. "de Sitter vacua in the string landscape." Nuclear Physics B 969 (August 2021): 115463. http://dx.doi.org/10.1016/j.nuclphysb.2021.115463.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

CLAVELLI, L., and GARY R. GOLDSTEIN. "AN ALTERNATIVE STRING LANDSCAPE COSMOLOGY: ELIMINATING BIZARRENESS." International Journal of Modern Physics A 28, no. 29 (November 20, 2013): 1350148. http://dx.doi.org/10.1142/s0217751x13501480.

Повний текст джерела
Анотація:
In what has become a standard eternal inflation picture of the string landscape there are many problematic consequences and a difficulty defining probabilities for the occurrence of each type of universe. One feature in particular that might be philosophically disconcerting is the infinite cloning of each individual and each civilization in infinite numbers of separated regions of the multiverse. Even if this is not ruled out due to causal separation one should ask whether the infinite cloning is a universal prediction of string landscape models or whether there are scenarios in which it is avoided. If a viable alternative cosmology can be constructed one might search for predictions that might allow one to discriminate experimentally between the models. We present one such scenario although, in doing so, we are forced to give up several popular presuppositions including the absence of a preferred frame and the homogeneity of matter in the universe. The model also has several ancillary advantages. We also consider the future lifetime of the current universe before becoming a light trapping region.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Athanasopoulos, P. "Discrete symmetries in the heterotic-string landscape." Journal of Physics: Conference Series 631 (July 30, 2015): 012083. http://dx.doi.org/10.1088/1742-6596/631/1/012083.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

YAMAUCHI, DAISUKE, MISAO SASAKI, TAKAHIRO TANAKA, ATSUSHI NARUKO, and ANDREI LINDE. "OPEN INFLATION IN STRING LANDSCAPE: TENSOR-TYPE PERTURBATION." International Journal of Modern Physics: Conference Series 01 (January 2011): 209–14. http://dx.doi.org/10.1142/s2010194511000298.

Повний текст джерела
Анотація:
The open inflationary scenario is attracting a renewed interest in the context of string landscape. Since there are a large number of metastable de Sitter vacua in string landscape, tunneling transitions to lower metastable vacua through the bubble nucleation occur quite naturally, which leads to a natural realization of open inflation. Recently, it was argued anthropically that string landscape would lead to an estimate of the density parameter in the range 0.998 ~ 0.9996. Although the deviation of Ω0 from unity, the effect of this small deviation on the CMB anisotropies might be significant. If their estimate of the value of Ω0 is correct, although yet there is no consensus about the problem of the probability measure, we might be able to discriminate the string landscape scenario from others. The effect of this small deviation on the large angle CMB anisotropies may be significant for large angle mode in tensor-type perturbation. We found that the wall fluctuation mode gives significant contribution even in string landscape and the square amplitude is determined only by the Hubble inside the bubble for large range of the potential parameters.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

LÜST, DIETER. "STRING CORRECTIONS TO QCD." International Journal of Modern Physics A 25, no. 25 (October 10, 2010): 4741–55. http://dx.doi.org/10.1142/s0217751x10050718.

Повний текст джерела
Анотація:
In this paper we are considering coorections to strong interactions which are due to colored string Regge excitations. In case of a low string scale within the TeV region these higher spin excitations of quarks and gluons will lead to spectacular, universal dijet signatures at the LHC, which are true for a large class of models in the string landscape.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Argurio, Riccardo, Matteo Bertolini, Sebastián Franco, Eduardo García-Valdecasas, Shani Meynet, Antoine Pasternak, and Valdo Tatitscheff. "The Octagon and the non-supersymmetric string landscape." Physics Letters B 815 (April 2021): 136153. http://dx.doi.org/10.1016/j.physletb.2021.136153.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Bouhmadi-López, Mariam, and Paulo Vargas Moniz. "Quantization of parameters and the string landscape problem." Journal of Cosmology and Astroparticle Physics 2007, no. 05 (May 9, 2007): 005. http://dx.doi.org/10.1088/1475-7516/2007/05/005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Dienes, Keith R. "Probing the string landscape: Implications, applications, and altercations." International Journal of Modern Physics A 30, no. 03 (January 30, 2015): 1530017. http://dx.doi.org/10.1142/s0217751x15300173.

Повний текст джерела
Анотація:
In keeping with the "Perspectives" theme of this volume, this Chapter provides a personal perspective on the string landscape. Along the way, the perspectives of many other physicists are discussed as well. No attempt is made to provide a thorough and balanced review of the field, and indeed there is a slight emphasis on my own contributions to this field, as these contributions have been critical to forming my perspective. This Chapter is adapted from a Colloquium which I have delivered at a number of institutions worldwide, and I have attempted to retain the informal and non-technical spirit and style of this Colloquium presentation as much as possible.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

March-Russell, John, and Francesco Riva. "Signals of inflation in a friendly string landscape." Journal of High Energy Physics 2006, no. 07 (July 20, 2006): 033. http://dx.doi.org/10.1088/1126-6708/2006/07/033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Friedmann, Tamar, and Richard P. Stanley. "The string landscape: On formulas for counting vacua." Nuclear Physics B 869, no. 1 (April 2013): 74–88. http://dx.doi.org/10.1016/j.nuclphysb.2012.11.019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Baer, Howard, Vernon Barger, Dakotah Martinez, and Shadman Salam. "Weak Scale Supersymmetry Emergent from the String Landscape." Entropy 26, no. 3 (March 21, 2024): 275. http://dx.doi.org/10.3390/e26030275.

Повний текст джерела
Анотація:
Superstring flux compactifications can stabilize all moduli while leading to an enormous number of vacua solutions, each leading to different 4−d laws of physics. While the string landscape provides at present the only plausible explanation for the size of the cosmological constant, it may also predict the form of weak scale supersymmetry which is expected to emerge. Rather general arguments suggest a power-law draw to large soft terms, but these are subject to an anthropic selection of a not-too-large value for the weak scale. The combined selection allows one to compute relative probabilities for the emergence of supersymmetric models from the landscape. Models with weak scale naturalness appear most likely to emerge since they have the largest parameter space on the landscape. For finetuned models such as high-scale SUSY or split SUSY, the required weak scale finetuning shrinks their parameter space to tiny volumes, making them much less likely to appear compared to natural models. Probability distributions for sparticle and Higgs masses from natural models show a preference for Higgs mass mh∼125 GeV, with sparticles typically beyond the present LHC limits, in accord with data. From these considerations, we briefly describe how natural SUSY is expected to be revealed at future LHC upgrades. This article is a contribution to the Special Edition of the journal Entropy, honoring Paul Frampton on his 80th birthday.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

PLAGA, R. "EMPIRICAL CONSTRAINTS ON VACUUM DECAY IN THE STRINGY LANDSCAPE." International Journal of Modern Physics A 22, no. 14n15 (June 20, 2007): 2661–72. http://dx.doi.org/10.1142/s0217751x07036737.

Повний текст джерела
Анотація:
It is generally considered as self evident that the lifetime of our vacuum in the landscape of string theory cannot be much shorter than the current age of the universe. Here I show why this lower limit is invalid. A certain type of "parallel universes" is a necessary consequence of the string-landscape dynamics and might well allow us to "survive" vacuum decay. As a consequence our stringy vacuum's lifetime is empirically unconstrained and could be very short. Based on this counterintuitive insight I propose a novel type of laboratory experiment that searches for an apparent violation of the quantum-mechanical Born rule by gravitational effects on vacuum decay. If the lifetime of our vacuum should turn out to be shorter than 6 ×10-13 seconds such an experiment is sufficiently sensitive to determine its value with state-of-the-art equipment.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Lüst, Dieter. "Seeing through the string landscape—a string hunter's companion in particle physics and cosmology." Journal of High Energy Physics 2009, no. 03 (March 30, 2009): 149. http://dx.doi.org/10.1088/1126-6708/2009/03/149.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Day, Joel D., Vijay Ganesh, Nathan Grewal, and Florin Manea. "On the Expressive Power of String Constraints." Proceedings of the ACM on Programming Languages 7, POPL (January 9, 2023): 278–308. http://dx.doi.org/10.1145/3571203.

Повний текст джерела
Анотація:
We investigate properties of strings which are expressible by canonical types of string constraints. Specifically, we consider a landscape of 20 logical theories, whose syntax is built around combinations of four common elements of string constraints: language membership (e.g. for regular languages), concatenation, equality between string terms, and equality between string-lengths. For a variable x and formula f from a given theory, we consider the set of values for which x may be substituted as part of a satisfying assignment, or in other words, the property f expresses through x. Since we consider string-based logics, this set is a formal language. We firstly consider the relative expressive power of different combinations of string constraints by comparing the classes of languages expressible in the corresponding theories, and are able to establish a mostly complete picture in this regard. Secondly, we consider the question of deciding whether the language or property expressed by a variable/formula in one theory can be expressed in another theory. We establish several negative results which are relevant to preprocessing and normalisation of string constraints in practice. Some of our results have strong connections to important open problems regarding word equations and the theory of string solving.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Nilles, Hans Peter, and Patrick K. S. Vaudrevange. "Geography of fields in extra dimensions: String theory lessons for particle physics." Modern Physics Letters A 30, no. 10 (March 25, 2015): 1530008. http://dx.doi.org/10.1142/s0217732315300086.

Повний текст джерела
Анотація:
String theoretical ideas might be relevant for particle physics model building. Ideally one would hope to find a unified theory of all fundamental interactions. There are only a few consistent string theories in D = 10 or 11 spacetime dimensions, but a huge landscape in D = 4. We have to explore this landscape to identify models that describe the known phenomena of particle physics. Properties of compactified six spatial dimensions are crucial in that respect. We postulate some useful rules to investigate this landscape and construct realistic models. We identify common properties of the successful models and formulate lessons for further model building.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Ferreira, Fernando F., José F. Fontanari, and Peter F. Stadler. "Landscape statistics of the low-autocorrelation binary string problem." Journal of Physics A: Mathematical and General 33, no. 48 (November 24, 2000): 8635–47. http://dx.doi.org/10.1088/0305-4470/33/48/304.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Conlon, Joseph P. "The string theory landscape: a tale of two hydras." Contemporary Physics 47, no. 2 (March 2006): 119–29. http://dx.doi.org/10.1080/00107510600674154.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Buchel, Alex, and Damián A. Galante. "Cascading gauge theory on dS4 and String Theory landscape." Nuclear Physics B 883 (June 2014): 107–48. http://dx.doi.org/10.1016/j.nuclphysb.2014.03.022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Schellekens, A. N. "The emperor's last clothes? Overlooking the string theory landscape." Reports on Progress in Physics 71, no. 7 (June 13, 2008): 072201. http://dx.doi.org/10.1088/0034-4885/71/7/072201.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Kallosh, Renata. "De Sitter vacua and the landscape of string theory." Journal of Physics: Conference Series 24 (January 1, 2005): 87–110. http://dx.doi.org/10.1088/1742-6596/24/1/011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Guleryuz, Omer. "(Super)universal attractors and the de Sitter vacua in string landscape." Journal of Cosmology and Astroparticle Physics 2023, no. 05 (May 1, 2023): 039. http://dx.doi.org/10.1088/1475-7516/2023/05/039.

Повний текст джерела
Анотація:
Abstract In this work, we present an effective field theory for string inflation with spontaneously broken supersymmetry without generating any supersymmetric anti-de Sitter vacua. In that regard, we analyze the nilpotent superfields that effectively capture the physics of anti-D3 branes, and obtain the underlying pattern of universal attractors with a single parameter. Accordingly, we reveal a novel uplifting method by adding the same parameter as a complex contribution parallel to the decomposition of a superfield. Following that, we obtain an almost vanishing cosmological constant in a region where the inflationary attractors unify. Finally, we show that the introduction of nilpotent superfields drastically extends the string landscape for the de Sitter (swampland) conjecture, and the (super)universal attractors are in the string landscape in that respect.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Stoffle, Richard, Richard Arnold, and Kathleen Van Vlack. "Landscape Is Alive: Nuwuvi Pilgrimage and Power Places in Nevada." Land 11, no. 8 (July 31, 2022): 1208. http://dx.doi.org/10.3390/land11081208.

Повний текст джерела
Анотація:
Cultural landscapes are defined at Creation, according to the beliefs of the Nuwuvi (Paiute) and Newe (Shoshone peoples). After Creation, the Native people came to understand the purpose of living landscapes and special places within them. During this time, some places that were designated as essential parts of landscapes at Creation had been inscribed by Native people with peckings and paintings and honored with offerings. Special spiritual places within the landscape were networked like the pearls on a string to produce the foundation of pilgrimage trails. This is an analysis of one such valley landscape in southern Nevada, USA and a pilgrimage trail extending between the Pahranagat Valley and the Corn Creek oasis at the foot of the Paiute Origin place called Nuvagantu (Spring Mountains). Tribal representatives from 18 consulting tribes participated in a special environmental impact assessment to explain this landscape, its components, and potential impacts that could derive from it being removed from a wildlife refuge to become a part of a military land and air use area.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

HE, YANG-HUI. "AN ALGORITHMIC APPROACH TO STRING PHENOMENOLOGY." Modern Physics Letters A 25, no. 02 (January 20, 2010): 79–90. http://dx.doi.org/10.1142/s0217732310032731.

Повний текст джерела
Анотація:
We review the recent programme undertaken to construct, systematically and algorithmically, large classes of heterotic vacua, as well as the search for the MSSM therein. Specifically, we outline the monad construction of vector bundles over complete intersection Calabi–Yau threefolds, their classification, stability, equivariant cohomology and subsequent relevance to string phenomenology. It is hoped that this top–down algorithmic approach will isolate special corners in the heterotic landscape.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Kobakhidze, A., and L. Mersini-Houghton. "Birth of the universe from the landscape of string theory." European Physical Journal C 49, no. 3 (November 29, 2006): 869–73. http://dx.doi.org/10.1140/epjc/s10052-006-0155-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

HUANG, QING-GUO, and S. H. HENRY TYE. "THE COSMOLOGICAL CONSTANT PROBLEM AND INFLATION IN THE STRING LANDSCAPE." International Journal of Modern Physics A 24, no. 10 (April 20, 2009): 1925–62. http://dx.doi.org/10.1142/s0217751x0904316x.

Повний текст джерела
Анотація:
An earlier paper points out that a quantum treatment of the string landscape is necessary. It suggests that the wave function of the universe is mobile in the landscape until the universe reaches a meta-stable site with its cosmological constant Λ0 smaller than the critical value Λc, where Λc is estimated to be exponentially small compared to the Planck scale. Since this site has an exponentially long lifetime, it may well be today's universe. We investigate specific scenarios based on this quantum diffusion property of the cosmic landscape and find a plausible scenario for the early universe. In the last fast tunneling to the Λ0(<Λc) site in this scenario, all energies are stored in the nucleation bubble walls, which are released to radiation only after bubble collisions and thermalization. So the Λ0 site is chosen even if Λ0 plus radiation is larger than Λc, as long as the radiation does not destabilize the Λ0 vacuum. A consequence is that inflation must happen before this last fast tunneling, so the inflationary scenario that emerges naturally is extended brane inflation, where the brane motion includes a combination of rolling, fast tunnelings, slow-roll, hopping and percolation in the landscape. We point out that, in the brane world, radiation during nucleosynthesis are mostly on the standard model branes (brane radiation, as opposed to radiation in the bulk). This distinction may lead to interesting dynamics. We consider this paper as a road map for future investigations.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Ooguri, Hirosi, and Cumrun Vafa. "On the geometry of the string landscape and the swampland." Nuclear Physics B 766, no. 1-3 (March 2007): 21–33. http://dx.doi.org/10.1016/j.nuclphysb.2006.10.033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Elizalde, E., A. N. Makarenko, S. Nojiri, V. V. Obukhov та S. D. Odintsov. "Multiple ΛCDM cosmology with string landscape features and future singularities". Astrophysics and Space Science 344, № 2 (4 січня 2013): 479–88. http://dx.doi.org/10.1007/s10509-012-1339-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Trivedi, Sandip P. "De Sitter universes and the emerging landscape in string theory." Pramana 63, no. 4 (October 2004): 777–83. http://dx.doi.org/10.1007/bf02705199.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

LI, TIANJUN, JAMES A. MAXIN, DIMITRI V. NANOPOULOS, and JOEL W. WALKER. "THE ${\mathcal F}$-LANDSCAPE: DYNAMICALLY DETERMINING THE MULTIVERSE." International Journal of Modern Physics A 27, no. 22 (August 30, 2012): 1250121. http://dx.doi.org/10.1142/s0217751x12501217.

Повний текст джерела
Анотація:
We evolve our Multiverse Blueprints to characterize our local neighborhood of the String Landscape and the Multiverse of plausible string, M- and F-theory vacua. Building upon the tripodal foundations of (i) the Flipped SU(5) Grand Unified Theory (GUT), (ii) extra TeV-Scale vector-like multiplets derived out of F-theory, and (iii) the dynamics of No-Scale supergravity, together dubbed No-Scale [Formula: see text], we demonstrate the existence of a continuous family of solutions which might adeptly describe the dynamics of distinctive universes. This Multiverse landscape of [Formula: see text] solutions, which we shall refer to as the [Formula: see text]-Landscape, accommodates a subset of universes compatible with the presently known experimental uncertainties of our own universe. We show that by secondarily minimizing the minimum of the scalar Higgs potential of each solution within the [Formula: see text]-Landscape, a continuous hypervolume of distinct minimum minimorum can be engineered which comprise a regional dominion of universes, with our own universe cast as the bellwether. We conjecture that an experimental signal at the LHC of the No-Scale [Formula: see text] framework's applicability to our own universe might sensibly be extrapolated as corroborating evidence for the role of string, M- and F-theory as a master theory of the Multiverse, with No-Scale supergravity as a crucial and pervasive reinforcing structure.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

CHAN, CHUAN-TSUNG, HIROTAKA IRIE, and CHI-HSIEN YEH. "STOKES PHENOMENA AND QUANTUM INTEGRABILITY IN NON-CRITICAL STRING/M THEORY." International Journal of Modern Physics: Conference Series 21 (January 2013): 147–48. http://dx.doi.org/10.1142/s2010194513009549.

Повний текст джерела
Анотація:
Non-critical string/M theory is a solvable model which has been studied to reveal various non-perturbative aspects of string theory with providing new key concepts to the next developments of string theory. Here we show some recent progress in study of Stokes phenomenon in non-critical string theory of the multi-cut two-matrix models. In particular, we argue that it is Stokes phenomenon which allows us to know concepts of non-perturbative completion with analytic study of string-theory landscape from the first principle.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

MOORE, DOUGLAS, JARED GREENWALD, and GERALD CLEAVER. "GAUGE MODELS IN D DIMENSIONS." Modern Physics Letters A 28, no. 15 (May 20, 2013): 1350055. http://dx.doi.org/10.1142/s0217732313500557.

Повний текст джерела
Анотація:
Utilizing the gauge framework, software under development at Baylor University, we explicitly construct all layer 1 weakly coupled free fermionic heterotic string (WCFFHS) gauge models up to order 32 in four to ten large spacetime dimensions. These gauge models are well suited to large scale systematic surveys and, while they offer little phenomenologically, are useful for understanding the structure of the WCFFHS region of the string landscape. Herein, we present the gauge groups statistics for this swath of the landscape for both supersymmetric and non-supersymmetric models.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Khoury, Justin, and Onkar Parrikar. "Search optimization, funnel topography, and dynamical criticality on the string landscape." Journal of Cosmology and Astroparticle Physics 2019, no. 12 (December 4, 2019): 014. http://dx.doi.org/10.1088/1475-7516/2019/12/014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Arkani-Hamed, Nima, Luboš Motl, Alberto Nicolis, and Cumrun Vafa. "The string landscape, black holes and gravity as the weakest force." Journal of High Energy Physics 2007, no. 06 (June 15, 2007): 060. http://dx.doi.org/10.1088/1126-6708/2007/06/060.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Chialva, Diego, Ulf H. Danielsson, Niklas Johansson, Magdalena Larfors, and Marcel Vonk. "Deforming, revolving and resolving—new paths in the string theory landscape." Journal of High Energy Physics 2008, no. 02 (February 6, 2008): 016. http://dx.doi.org/10.1088/1126-6708/2008/02/016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії