Статті в журналах з теми "Strand displacement amplification"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Strand displacement amplification.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Strand displacement amplification".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Walker, G. T. "Empirical aspects of strand displacement amplification." Genome Research 3, no. 1 (August 1, 1993): 1–6. http://dx.doi.org/10.1101/gr.3.1.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Seckinger, D. "Strand displacement amplification and fluorescence polarization." Clinical Chemistry 42, no. 10 (October 1, 1996): 1720. http://dx.doi.org/10.1093/clinchem/42.10.1720.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Walker, G. Terrance, Melinda S. Fraiser, James L. Schram, Michael C. Little, James G. Nadeau, and Douglas P. Malinowski. "Strand displacement amplification—an isothermal,in vitroDNA amplification technique." Nucleic Acids Research 20, no. 7 (1992): 1691–96. http://dx.doi.org/10.1093/nar/20.7.1691.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mullor Ruiz, Ismael, Jean-Michel Arbona, Amitkumar Lad, Oscar Mendoza, Jean-Pierre Aimé, and Juan Elezgaray. "Connecting localized DNA strand displacement reactions." Nanoscale 7, no. 30 (2015): 12970–78. http://dx.doi.org/10.1039/c5nr02434j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shi, Chao, Qi Liu, Cuiping Ma, and Wenwan Zhong. "Exponential Strand-Displacement Amplification for Detection of MicroRNAs." Analytical Chemistry 86, no. 1 (December 18, 2013): 336–39. http://dx.doi.org/10.1021/ac4038043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Spargo, C. A., M. S. Fraiser, M. Van Cleve, D. J. Wright, C. M. Nycz, P. A. Spears, and G. T. Walker. "Detection ofM. tuberculosisDNA using Thermophilic Strand Displacement Amplification." Molecular and Cellular Probes 10, no. 4 (August 1996): 247–56. http://dx.doi.org/10.1006/mcpr.1996.0034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Joneja, Aric, and Xiaohua Huang. "Linear nicking endonuclease-mediated strand-displacement DNA amplification." Analytical Biochemistry 414, no. 1 (July 2011): 58–69. http://dx.doi.org/10.1016/j.ab.2011.02.025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hellyer, Tobin J., and James G. Nadeau. "Strand displacement amplification: a versatile tool for molecular diagnostics." Expert Review of Molecular Diagnostics 4, no. 2 (March 2004): 251–61. http://dx.doi.org/10.1586/14737159.4.2.251.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Li, Yubin, Sheng Liu, Zike Zhao, Yuner Zheng, and Zirui Wang. "Binding induced strand displacement amplification for homogeneous protein assay." Talanta 164 (March 2017): 196–200. http://dx.doi.org/10.1016/j.talanta.2016.11.047.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lee, Chang Yeol, Hansol Kim, Hyo Yong Kim, Ki Soo Park, and Hyun Gyu Park. "Fluorescent S1 nuclease assay utilizing exponential strand displacement amplification." Analyst 144, no. 10 (2019): 3364–68. http://dx.doi.org/10.1039/c9an00300b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Detter, John C., Jamie M. Jett, Susan M. Lucas, Eileen Dalin, Andre R. Arellano, Mei Wang, John R. Nelson, et al. "Isothermal Strand-Displacement Amplification Applications for High-Throughput Genomics." Genomics 80, no. 6 (December 2002): 691–98. http://dx.doi.org/10.1006/geno.2002.7020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Zhou, Yunlei, Bingchen Li, Minghui Wang, Jun Wang, Huanshun Yin, and Shiyun Ai. "Fluorometric determination of microRNA based on strand displacement amplification and rolling circle amplification." Microchimica Acta 184, no. 11 (August 30, 2017): 4359–65. http://dx.doi.org/10.1007/s00604-017-2450-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Wang, Hongzhi, Yu Wang, Su Liu, Jinghua Yu, Wei Xu, Yuna Guo, and Jiadong Huang. "Target–aptamer binding triggered quadratic recycling amplification for highly specific and ultrasensitive detection of antibiotics at the attomole level." Chemical Communications 51, no. 39 (2015): 8377–80. http://dx.doi.org/10.1039/c5cc01473e.

Повний текст джерела
Анотація:
A novel electrochemical aptasensor for ultrasensitive detection of antibiotics by combining polymerase-assisted target recycling amplification with strand displacement amplification with the help of polymerase and nicking endonuclease has been reported.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

He, Jing-Lin, Zai-Sheng Wu, Hui Zhou, Hong-Qi Wang, Jian-Hui Jiang, Guo-Li Shen, and Ru-Qin Yu. "Fluorescence Aptameric Sensor for Strand Displacement Amplification Detection of Cocaine." Analytical Chemistry 82, no. 4 (February 15, 2010): 1358–64. http://dx.doi.org/10.1021/ac902416u.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Ehses, Sylvia, Jörg Ackermann, and John S. McCaskill. "Optimization and design of oligonucleotide setup for strand displacement amplification." Journal of Biochemical and Biophysical Methods 63, no. 3 (June 2005): 170–86. http://dx.doi.org/10.1016/j.jbbm.2005.04.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Spears, Patricia A., C. Preston Linn, Dan L. Woodard, and G. Terrance Walker. "Simultaneous Strand Displacement Amplification and Fluorescence Polarization Detection ofChlamydia trachomatisDNA." Analytical Biochemistry 247, no. 1 (April 1997): 130–37. http://dx.doi.org/10.1006/abio.1997.2043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Lee, Hyobeen, Dong-Min Kim, and Dong-Eun Kim. "Label-free fluorometric detection of influenza viral RNA by strand displacement coupled with rolling circle amplification." Analyst 145, no. 24 (2020): 8002–7. http://dx.doi.org/10.1039/d0an01326a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Zou, Bingjie, Qinxin Song, Jianping Wang, Yunlong Liu, and Guohua Zhou. "Invasive reaction assisted strand-displacement signal amplification for sensitive DNA detection." Chem. Commun. 50, no. 89 (2014): 13722–24. http://dx.doi.org/10.1039/c4cc06079b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Zhang, Rufeng, Jie Zhang, Xiaonan Qu, Shasha Li, Yihan Zhao, Su Liu, Yu Wang, Jiadong Huang, and Jinghua Yu. "Efficient strand displacement amplification via stepwise movement of a bipedal DNA walker on an electrode surface for ultrasensitive detection of antibiotics." Analyst 145, no. 8 (2020): 2975–81. http://dx.doi.org/10.1039/d0an00139b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Raikar, S. V., C. Bryant, R. Braun, A. J. Conner, and M. C. Christey. "Whole genome amplification from plant cell colonies of somatic hybrids using strand displacement amplification." Plant Biotechnology Reports 1, no. 3 (July 12, 2007): 175–77. http://dx.doi.org/10.1007/s11816-007-0026-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Miao, Peng, Yiting Jiang, Tian Zhang, Yue Huang, and Yuguo Tang. "Electrochemical sensing of attomolar miRNA combining cascade strand displacement polymerization and reductant-mediated amplification." Chemical Communications 54, no. 53 (2018): 7366–69. http://dx.doi.org/10.1039/c8cc03698e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Yan, Yurong, Bo Shen, Hong Wang, Xue Sun, Wei Cheng, Hua Zhao, Huangxian Ju, and Shijia Ding. "A novel and versatile nanomachine for ultrasensitive and specific detection of microRNAs based on molecular beacon initiated strand displacement amplification coupled with catalytic hairpin assembly with DNAzyme formation." Analyst 140, no. 16 (2015): 5469–74. http://dx.doi.org/10.1039/c5an00920k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Dai, Wenhao, Haifeng Dong, Keke Guo, and Xueji Zhang. "Near-infrared triggered strand displacement amplification for MicroRNA quantitative detection in single living cells." Chemical Science 9, no. 7 (2018): 1753–59. http://dx.doi.org/10.1039/c7sc04243d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Chan, Edward L., Ken Brandt, Karen Olienus, Nick Antonishyn, and Greg B. Horsman. "Performance Characteristics of the Becton Dickinson ProbeTec System for Direct Detection ofChlamydia trachomatisandNeisseria gonorrhoeaein Male and Female Urine Specimens in Comparison With the Roche Cobas System." Archives of Pathology & Laboratory Medicine 124, no. 11 (November 1, 2000): 1649–52. http://dx.doi.org/10.5858/2000-124-1649-pcotbd.

Повний текст джерела
Анотація:
AbstractObjective.—The Becton Dickinson BDProbeTec ET System is a new semiautomated system using strand displacement amplification technology that simultaneously amplifies and detects Chlamydia trachomatis and Neisseria gonorrhoeae DNA. The strand displacement amplification products are hybridized with a fluorescent detector probe and are captured by a chemiluminescent assay in a microwell format. An amplification control is also included to monitor assay inhibition. This study evaluated the performance of the BDProbTec ET system in detecting C trachomatis and N gonorrhoeae in male and female urine specimens, calculated its ability to process large volumes of specimens, and determined the inhibition rate.Materials and Methods.—Eight hundred twenty-five male and 399 female urine specimens were tested for both C trachomatis and N gonorrhoeae with the BDProbeTec ET system, and results were compared with those of the Roche Amplicor Cobas system. All urine specimens were processed on both assays on the same day they were received, according to the manufacturers' instructions. Discrepant results were resolved by in-house polymerase chain reaction assays. Internal or amplification controls were also used in each specimen assay to monitor inhibition. The throughput of the BDProbTec ET system was further tested with 150 urine specimens on an 8-hour shift for 2 days.Results.—The overall sensitivity, specificity, positive predicative value, and negative predicative value for for detection of chlamydia were 95.3%, 99.3%, 95.9%, and 99.2% for strand displacement amplification and 95.9%, 98.3%, 90.6%, and 99.3% for the Roche Amplicor system. For detection of gonorrhea, these values were 100%, 99.7%, 88.2%, and 100% and 96.7%, 98.9%, 69%, and 99.9%, respectively. The overall inhibition rates for both strand displacement amplification and Roche Amplicor were less than 3.5%. The BDProbTec ET system was able to produce 150 results each for chlamydia and gonorrhea and the internal control within the 8-hour shift.Conclusions.—The performance characteristics of the BDProbeTec ET assay are similar to those of the Roche Amplicor polymerase chain reaction for detection of chlamydia and gonorrhea in male and female urine specimens. The system was able to produce 300 results in an 8-hour shift.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Ling, Yu, Xiao Fang Zhang, Xiao Hui Chen, Li Liu, Xiao Hu Wang, De Shou Wang, Nian Bing Li, and Hong Qun Luo. "A dual-cycling biosensor for target DNA detection based on the toehold-mediated strand displacement reaction and exonuclease III assisted amplification." New Journal of Chemistry 42, no. 6 (2018): 4714–18. http://dx.doi.org/10.1039/c7nj05191c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Hu, Pingyue, Xiu Wang, Long Wei, Rui Dai, Xin Yuan, Ke Huang, and Piaopiao Chen. "Selective recognition of CdTe QDs and strand displacement signal amplification-assisted label-free and homogeneous fluorescence assay of nucleic acid and protein." Journal of Materials Chemistry B 7, no. 31 (2019): 4778–83. http://dx.doi.org/10.1039/c9tb00753a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Zhang, Zhang, Min Mei, Juan Yao, Ting Ye, Jing Quan, and Jinbo Liu. "An off/on thrombin activated energy driven molecular machine for sensitive detection of human thrombin via non-enzymatic catalyst recycling amplification." Analyst 145, no. 21 (2020): 6868–74. http://dx.doi.org/10.1039/d0an01054e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Meng, Xiangdan, Wenhao Dai, Kai Zhang, Haifeng Dong, and Xueji Zhang. "Imaging multiple microRNAs in living cells using ATP self-powered strand-displacement cascade amplification." Chemical Science 9, no. 5 (2018): 1184–90. http://dx.doi.org/10.1039/c7sc04725h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Wu, Wanghua, Tao Zhang, Da Han, Hongliang Fan, Guizhi Zhu, Xiong Ding, Cuichen Wu, et al. "Aligner-mediated cleavage of nucleic acids and its application to isothermal exponential amplification." Chemical Science 9, no. 11 (2018): 3050–55. http://dx.doi.org/10.1039/c7sc05141g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Lee, Chang Yeol, Hyo Yong Kim, Soeun Kim, Ki Soo Park, and Hyun Gyu Park. "A simple and sensitive detection of small molecule–protein interactions based on terminal protection-mediated exponential strand displacement amplification." Analyst 143, no. 9 (2018): 2023–28. http://dx.doi.org/10.1039/c8an00099a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Dai, Rui, Pingyue Hu, Xiu Wang, Shixin Wang, Xinmei Song, Ke Huang, and Piaopiao Chen. "Visual/CVG-AFS/ICP-MS multi-mode and label-free detection of target nucleic acids based on a selective cation exchange reaction and enzyme-free strand displacement amplification." Analyst 144, no. 14 (2019): 4407–12. http://dx.doi.org/10.1039/c9an00642g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Yu, Lili, Hui Xu, Hou Chen, Liangjiu Bai, and Wenxiang Wang. "Exonuclease III assisted and label-free detection of mercury ion based on toehold strand displacement amplification strategy." Analytical Methods 8, no. 39 (2016): 7054–60. http://dx.doi.org/10.1039/c6ay02169g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Leonardo, Sandra, Anna Toldrà, and Mònica Campàs. "Biosensors Based on Isothermal DNA Amplification for Bacterial Detection in Food Safety and Environmental Monitoring." Sensors 21, no. 2 (January 16, 2021): 602. http://dx.doi.org/10.3390/s21020602.

Повний текст джерела
Анотація:
The easy and rapid spread of bacterial contamination and the risk it poses to human health makes evident the need for analytical methods alternative to conventional time-consuming laboratory-based techniques for bacterial detection. To tackle this demand, biosensors based on isothermal DNA amplification methods have emerged, which avoid the need for thermal cycling, thus facilitating their integration into small and low-cost devices for in situ monitoring. This review focuses on the breakthroughs made on biosensors based on isothermal amplification methods for the detection of bacteria in the field of food safety and environmental monitoring. Optical and electrochemical biosensors based on loop mediated isothermal amplification (LAMP), rolling circle amplification (RCA), recombinase polymerase amplification (RPA), helicase dependent amplification (HDA), strand displacement amplification (SDA), and isothermal strand displacement polymerisation (ISDPR) are described, and an overview of their current advantages and limitations is provided. Although further efforts are required to harness the potential of these emerging analytical techniques, the coalescence of the different isothermal amplification techniques with the wide variety of biosensing detection strategies provides multiple possibilities for the efficient detection of bacteria far beyond the laboratory bench.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Lee, Chang Yeol, Hyo Yong Kim, Jun Ki Ahn, Ki Soo Park, and Hyun Gyu Park. "Rapid and label-free strategy for the sensitive detection of Hg2+ based on target-triggered exponential strand displacement amplification." RSC Adv. 7, no. 74 (2017): 47143–47. http://dx.doi.org/10.1039/c7ra09226a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Wang, Lisha, Ying Han, Shuai Xiao, Sha Lv, Cong Wang, Nan Zhang, Zhengyong Wang, et al. "Reverse strand-displacement amplification strategy for rapid detection of p53 gene." Talanta 187 (September 2018): 365–69. http://dx.doi.org/10.1016/j.talanta.2018.05.035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Wu, Wei, Yiping Mao, Shiming Zhao, Xuewen Lu, Xingguo Liang, and Lingwen Zeng. "Strand displacement amplification for ultrasensitive detection of human pluripotent stem cells." Analytica Chimica Acta 881 (June 2015): 124–30. http://dx.doi.org/10.1016/j.aca.2015.04.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Yang, Dawei, Yuguo Tang, Zhenzhen Guo, Xifeng Chen, and Peng Miao. "Proximity aptasensor for protein detection based on an enzyme-free amplification strategy." Molecular BioSystems 13, no. 10 (2017): 1936–39. http://dx.doi.org/10.1039/c7mb00458c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Yan, Xiaoyu, Min Tang, Jianru Yang, Wei Diao, Hongmin Ma, Wenbin Cheng, Haiying Que, Tong Wang, and Yurong Yan. "A one-step fluorescent biosensing strategy for highly sensitive detection of HIV-related DNA based on strand displacement amplification and DNAzymes." RSC Advances 8, no. 55 (2018): 31710–16. http://dx.doi.org/10.1039/c8ra06480f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Nycz, Colleen M., Cheryl H. Dean, Perry D. Haaland, Catherine A. Spargo, and G. Terrance Walker. "Quantitative Reverse Transcription Strand Displacement Amplification: Quantitation of Nucleic Acids Using an Isothermal Amplification Technique." Analytical Biochemistry 259, no. 2 (June 1998): 226–34. http://dx.doi.org/10.1006/abio.1998.2641.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Wen, Zhi-Bin, Wen-Bin Liang, Ying Zhuo, Cheng-Yi Xiong, Ying-Ning Zheng, Ruo Yuan, and Ya-Qin Chai. "An efficient target–intermediate recycling amplification strategy for ultrasensitive fluorescence assay of intracellular lead ions." Chemical Communications 53, no. 54 (2017): 7525–28. http://dx.doi.org/10.1039/c7cc04104g.

Повний текст джерела
Анотація:
An ultrasensitive fluorescence assay for intracellular Pb2+ determination was proposed through target–intermediate recycling amplification based on metal-assisted DNAzyme catalysis and strand displacement reactions.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Song, Chunyuan, Yuzhou Sun, Jingjing Zhang, Tao Wang, Yingxin Wang, Ying Liu, and Lianhui Wang. "A target-mediated fuel-initiated molecular machine for high-sensitive fluorescence assay of the ZIKV gene via strand displacement reaction-based signal recovery and cycling amplification." Analyst 145, no. 16 (2020): 5475–81. http://dx.doi.org/10.1039/d0an00854k.

Повний текст джерела
Анотація:
A target-mediated fuel-initiated molecular machine was proposed for the high-sensitive fluorescence assay of the ZIKV gene via strand displacement reaction-based signal recovery and cycling amplification.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Chen, Yuqi, Yanyan Song, Fan Wu, Wenting Liu, Boshi Fu, Bingkun Feng, and Xiang Zhou. "A DNA logic gate based on strand displacement reaction and rolling circle amplification, responding to multiple low-abundance DNA fragment input signals, and its application in detecting miRNAs." Chemical Communications 51, no. 32 (2015): 6980–83. http://dx.doi.org/10.1039/c5cc01389e.

Повний текст джерела
Анотація:
A conveniently amplified DNA AND logic gate platform was designed for the highly sensitive detection of low-abundance DNA fragment inputs based on strand displacement reaction and rolling circle amplification strategy.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Meng, Leixia, Yanmei Li, Ruiying Yang, Xiaohua Zhang, Cuicui Du, and Jinhua Chen. "A sensitive photoelectrochemical assay of miRNA-155 based on a CdSe QDs//NPC-ZnO polyhedra photocurrent-direction switching system and target-triggered strand displacement amplification strategy." Chemical Communications 55, no. 15 (2019): 2182–85. http://dx.doi.org/10.1039/c8cc09411j.

Повний текст джерела
Анотація:
A new photoelectrochemical biosensor based on a CdSe QD//NPC-ZnO polyhedra photocurrent-direction switching system and a target-triggered strand displacement amplification strategy was developed for the detection of miRNA-155.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Wen, Zhi-Bin, Wen-Bin Liang, Ying Zhuo, Cheng-Yi Xiong, Ying-Ning Zheng, Ruo Yuan, and Ya-Qin Chai. "An ATP-fueled nucleic acid signal amplification strategy for highly sensitive microRNA detection." Chemical Communications 54, no. 77 (2018): 10897–900. http://dx.doi.org/10.1039/c8cc05525d.

Повний текст джерела
Анотація:
Herein, an adenosine triphosphate (ATP)-fueled nucleic acid signal amplification strategy based on toehold-mediated strand displacement (TMSD) and fluorescence resonance energy transfer (FRET) was proposed for highly sensitive detection of microRNA-21.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Li, Zhi-Mei, Zhao-Hua Zhong, Ru-Ping Liang, and Jian-Ding Qiu. "The colorimetric assay of DNA methyltransferase activity based on strand displacement amplification." Sensors and Actuators B: Chemical 238 (January 2017): 626–32. http://dx.doi.org/10.1016/j.snb.2016.07.087.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Jia, Huning, Ying Bu, Bingjie Zou, Jianping Wang, Shalen Kumar, Janet L. Pitman, Guohua Zhou, and Qinxin Song. "Signal amplification of microRNAs with modified strand displacement-based cycling probe technology." Analyst 141, no. 22 (2016): 6297–302. http://dx.doi.org/10.1039/c6an01024e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Tian, Tian, Heng Xiao, Xiaolian Zhang, Shuang Peng, Xiaoe Zhang, Shan Guo, Shaoru Wang, et al. "Simultaneously sensitive detection of multiple miRNAs based on a strand displacement amplification." Chem. Commun. 49, no. 1 (2013): 75–77. http://dx.doi.org/10.1039/c2cc36728a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Shi, Chao, Yujie Ge, Hongxi Gu, and Cuiping Ma. "Highly sensitive chemiluminescent point mutation detection by circular strand-displacement amplification reaction." Biosensors and Bioelectronics 26, no. 12 (August 2011): 4697–701. http://dx.doi.org/10.1016/j.bios.2011.05.017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Nadeau, James G., J. Bruce Pitner, C. Preston Linn, James L. Schram, Cheryl H. Dean, and Colleen M. Nycz. "Real-Time, Sequence-Specific Detection of Nucleic Acids during Strand Displacement Amplification." Analytical Biochemistry 276, no. 2 (December 1999): 177–87. http://dx.doi.org/10.1006/abio.1999.4350.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Xu, Huo, Yafeng Zhang, Shuxin Zhang, Mengze Sun, Weihong Li, Yifan Jiang, and Zai-Sheng Wu. "Ultrasensitive assay based on a combined cascade amplification by nicking-mediated rolling circle amplification and symmetric strand-displacement amplification." Analytica Chimica Acta 1047 (January 2019): 172–78. http://dx.doi.org/10.1016/j.aca.2018.10.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії