Добірка наукової літератури з теми "Stem cell heterogeneity"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Stem cell heterogeneity".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Stem cell heterogeneity"
de Souza, Natalie. "Taming stem cell heterogeneity." Nature Methods 9, no. 7 (June 28, 2012): 645. http://dx.doi.org/10.1038/nmeth.2094.
Повний текст джерелаJoly, Jean-Stéphane, and Vincent Tropepe. "Neural stem cell heterogeneity." Progress in Neurobiology 170 (November 2018): 1. http://dx.doi.org/10.1016/j.pneurobio.2018.09.005.
Повний текст джерелаAndersen, Marianne S., and Kim B. Jensen. "Stem cell heterogeneity revealed." Nature Cell Biology 18, no. 6 (May 27, 2016): 587–89. http://dx.doi.org/10.1038/ncb3368.
Повний текст джерелаKrieger, T., and B. D. Simons. "Dynamic stem cell heterogeneity." Development 142, no. 8 (April 7, 2015): 1396–406. http://dx.doi.org/10.1242/dev.101063.
Повний текст джерелаBayin, N. Sumru, Rajeev Sen, Sheng Si, Aram S. Modrek, Valerio Ortenzi, David Zagzag, Matija Snuderl, et al. "STEM-04DEFINING GLIOBLASTOMA STEM CELL HETEROGENEITY." Neuro-Oncology 17, suppl 5 (November 2015): v208.4—v209. http://dx.doi.org/10.1093/neuonc/nov234.04.
Повний текст джерелаEaves, Allen. "Stem cell heterogeneity (discussion)." Stem Cells 15, S2 (April 1997): 217–20. http://dx.doi.org/10.1002/stem.5530150829.
Повний текст джерелаAndreotti, Julia P., Walison N. Silva, Alinne C. Costa, Caroline C. Picoli, Flávia C. O. Bitencourt, Leda M. C. Coimbra-Campos, Rodrigo R. Resende, et al. "Neural stem cell niche heterogeneity." Seminars in Cell & Developmental Biology 95 (November 2019): 42–53. http://dx.doi.org/10.1016/j.semcdb.2019.01.005.
Повний текст джерелаYang, Seungbok, Yoonjae Cho, and Jiwon Jang. "Single cell heterogeneity in human pluripotent stem cells." BMB Reports 54, no. 10 (October 31, 2021): 505–15. http://dx.doi.org/10.5483/bmbrep.2021.54.10.094.
Повний текст джерелаMiller, Paul H., David J. H. F. Knapp, and Connie J. Eaves. "Heterogeneity in hematopoietic stem cell populations." Current Opinion in Hematology 20, no. 4 (July 2013): 257–64. http://dx.doi.org/10.1097/moh.0b013e328360aaf6.
Повний текст джерелаBonnet, Dominique. "Human Normal Haematopoetic Stem Cell Heterogeneity." Experimental Hematology 64 (August 2018): S25. http://dx.doi.org/10.1016/j.exphem.2018.06.010.
Повний текст джерелаДисертації з теми "Stem cell heterogeneity"
Carr, Jonathon M. "Heterogeneity within the stem cell compartment : impact on fate determination of human pluripotent stem cells." Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/20386/.
Повний текст джерелаBenavente, Diaz Maria. "Investigation of the molecular diversity defining muscle stem cell heterogeneity." Electronic Thesis or Diss., Sorbonne université, 2020. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2020SORUS072.pdf.
Повний текст джерелаAdult skeletal muscle has a remarkable regenerative capacity, being able to recover after repeated trauma. This property depends on the presence of muscle stem cells (MuSCs), which are mostly quiescent in homeostatic conditions, re-enter the cell cycle after injury and proliferate to give rise to committed myoblasts that will eventually fuse to restore the damaged fibres. Numerous studies have investigated the cell state transitions that MuSCs undergo from cell cycle entry to differentiation. Although several genetically modified reporter mice have been generated to study these events, detailed studies on the initiation of differentiation, which is generally defined by expression of the myogenic regulatory factor Myogenin, have been hampered by the lack of a reliable reporter mouse. Therefore, we developed a fluorescent reporter line where differentiating myogenic cells expressing Myogenin are marked by the expression of a tdTomato fluorescent protein. This novel knock-in mouse line allowed us to monitor the kinetics of Myogenin expression during cell differentiation in vitro, and perform preliminary experiments on the behaviour of myogenic cells in vivo by intravital imaging. Although all mouse MuSCs are characterised by the expression of the transcription factor Pax7 and they share several properties, some studies have reported differences in proliferation, engraftment ability, and sensitivity to disease of MuSCs from cranial and limb muscles. To investigate the gene regulatory networks that govern this functional heterogeneity, we have integrated single-cell transcriptomic analyses with cell biology approaches using mouse reporter lines to identify key regulators that confer distinct properties to high performing (extraocular muscles) and lower performing (limb, Tibialis anterior muscle) MuSCs in quiescence and activated states. We identified a delayed lineage progression of extraocular MuSCs in culture that was accompanied with the expression of distinct extracellular matrix remodelling factors and membrane receptors, and we validated the expression of some of these candidates at the protein level. Advanced computational analyses highlighted the dynamics underlying the maintenance of a stem-like progenitor population in extraocular MuSCs, controlled by a singular network of transcription factors acting as a co-regulating module. Taken together, these studies provide novel insights into the mechanisms underlying the differential properties of muscle stem cells in distinct anatomical locations
Boumahdi, Soufiane. "Identification of molecular mechanisms regulating cancer stem cell functions and tumor heterogeneity in skin squamous cell carcinoma." Doctoral thesis, Universite Libre de Bruxelles, 2017. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/250375.
Повний текст джерелаSkin squamous cell carcinoma (SCC) is the second most frequent skin cancer with more than a million new patients affected every year throughout the world. It is also the predominant cancer of the head, neck, oral cavity and esophagus, associated with a poor prognosis. Recent studies have identified cancer stem cells (CSCs) in skin SCC but the molecular mechanisms controlling their functions remain unclear. In a first study, we show that Sox2, a transcription factor (TF) associated with stemness, is expressed in a heterogeneous manner in the vast majority of benign and malignant skin tumors in mouse and human. Sox2 conditional deletion in the epidermis impairs tumor development showing that Sox2 plays a crucial role in tumor initiation. Using a Sox2-GFP knock-in mouse model, we show that Sox2-expressing tumor cells are greatly enriched in tumor-propagating cells, which further increase upon serial transplantations. Lineage ablation of Sox2-expressing cells in primary benign and malignant SCCs leads to tumor regression, consistent with the critical role of Sox2-expressing cells in tumor maintenance. Conditional Sox2 deletion in pre-existing skin papilloma and SCC leads to tumor regression, supporting the essential role of Sox2 in regulating cancer cells functions. Using transcriptional profiling and chromatin immunoprecipitation, we uncovered a gene network controlling many cancer hallmarks regulated by Sox2 in primary tumour cells in vivo.In a second study, by targeting the same oncogenic mutations to distinct skin compartments, we show that interfollicular epidermis (IFE)-derived SCCs are generally well-differentiated, while hair follicle stem cells (HFSCs)-derived SCCs frequently exhibit features of epithelial-mesenchymal transition (EMT). Using transcriptional and epigenetic profiling, we show that IFE and HF tumor-initiating cells harbor distinct chromatin landscapes and gene regulatory networks associated with tumorigenesis and EMT. These different chromatin landscapes correlate with the differential accessibility of key epithelial and EMT TFs binding sites in the cancer cell of origin. These findings demonstrate that cell type-specific chromatin and transcriptional states differentially prime tumours towards EMT.Altogether, these results highlight crucial mechanisms for the establishment of tumor heterogeneity which will be relevant for better prognostic assessment and the development of novel targeted therapies for cancer treatment.
Doctorat en Sciences biomédicales et pharmaceutiques (Médecine)
info:eu-repo/semantics/nonPublished
Sakamaki, Taro. "Hoxb5 defines the heterogeneity of self-renewal capacity in the hematopoietic stem cell compartment." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263564.
Повний текст джерелаTurón, Rodrigo Gemma. "A genome editing based approach to study tumor cell heterogeneity." Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/667524.
Повний текст джерелаEls tumors colorectals no són una entitat homogènia sinó que estan formats per una barreja de cèl·lules de fenotips variats, reminiscents dels tipus cel·lulars de l’epiteli intestinal sa. Estudis recents suggereixen que el creixement del càncer colorectal (CCR), igual que el de l’intestí normal, està mediat per una jerarquia amb origen en cèl·lules mare. Les cèl·lules mare del càncer, identificades per l’expressió del gen LGR5, es troben a l’àpex de la jerarquia i impulsen l’expansió del CCR i la metàstasis. Aquesta tesi se centra en caracteritzar la dinàmica d’expansió dels diferents compartiments tumorals i en identificar les cèl·lules que en mantenen el creixement. També hem intentat elucidar quina és la cèl·lula d’origen de la metàstasi. Per a realitzar aquest projecte primer hem desenvolupat nous models per estudiar la malaltia humana, combinant el cultiu d’organoids derivats de pacients i l’edició genòmica mitjançant CRISPR/Cas9. Això ens ha permès visualitzar diferents tipus cel·lulars tumorals in vivo usant LGR5, KRT20 i EMP1 com a marcadors de cèl·lula mare, cèl·lula diferenciada i cèl·lula invasiva, respectivament. Addicionalment, també hem establert un sistema per seguir la progènie de les poblacions mencionades. Hem descobert que tant el compartiment de cèl·lules mare com el diferenciat són capaços de donar lloc a una progènie que persisteix en el temps, suggerint que ambdós tipus cel·lulars contribueixen al creixement tumoral. A més a més, hem observat plasticitat entre els dos compartiments, cosa que indica que la jerarquia cel·lular es perd durant el desenvolupament del tumor. Finalment, mitjançant l’ús d’EMP1 com a marcador de cèl·lules invasives hem identificat un subgrup de cèl·lules diferenciades amb propietats migratòries i amb potencial per reclutar cèl·lules mieloides. La nostra hipòtesi és que la població EMP1+ és la que dissemina del tumor primari i inicia la metàstasi. En resum , les nostres dades suposen una nova visió en l’estudi del mode de creixement del càncer de colon d’estadis avançats en humà, i suggereixen que els trets de cèl·lula mare no són necessaris per creixement tumoral ni la disseminació metastàtica, contràriament al que es pensava inicialment, degut als estudis realitzats en adenoma de ratolí.
Luni, Camilla. "Development of cell culture technology for the expansion of homogeneous populations of human stem cells." Doctoral thesis, Università degli studi di Padova, 2009. http://hdl.handle.net/11577/3426474.
Повний текст джерелаE' stato prospettato l'impiego di cellule staminali per terapie volte al mantenimento, alla rigenerazione o alla sostituzione di tessuti malfunzionanti. Tuttavia non sono ancora state risolte alcune limitazioni legate principalmente alla scarsa disponibilità di cellule staminali e ai problemi di sicurezza clinica connessi alla qualità cellulare. L'ottimizzazione del processo di espansione cellulare è un sfida ingegneristica, oltre che biologica. Scopo di questa tesi è lo sviluppo di una tecnologia sperimentale e di un quadro razionale che consenta di comprendere e controllare l'espansione di cellule staminali in vitro, sia considerando le proprietà medie che la loro distribuzione nella popolazione cellulare prodotta. E' stata realizzata un'analisi razionale dei principali fenomeni coinvolti nella coltura cellulare, ponendo in evidenza le fonti di eterogeneità sia nei sistemi di coltura convenzionali che nei bioreattori mescolati. Da un punto di vista sperimentale, sono stati progettati e sviluppati due tipi di bioreattori fino a realizzarne dei prototipi. Il primo, un sistema di bioreattori di volume dell'ordine dei microlitri, è stato progettato basato su un meccanismo di termoconvezione; questo apparato sperimentale è particolarmente adatto per un'ottimizzazione multiparametrica delle condizioni di coltura. Il secondo, un bioreattore in sospensione multipozzetto con un volume operativo di 10 ml/pozzetto, è stato pensato e costruito per un'ottimizzazione di processo meno dettagliata o, alternativamente, per una produzione su piccola scala di cellule staminali; una versione più avanzata è stata sviluppata per effettuare colture di cellule staminali in condizioni di ipossia. Entrambi i dispositivi sono stati vantaggiosamente utilizzati per coltivare cellule staminali ematopoietiche, ricavate da cordone ombelicale umano, che sono poi state caratterizzate secondo i metodi di analisi biologica convenzionali. Per ottimizzare razionalmente il processo di espansione delle cellule staminali, è stato sviluppato un modello computazionale, basato su un bilancio di popolazione, che tiene conto della distribuzione di recettori e di complessi recettore-ligando nel campione cellulare. Il modello descrive ragionevolmente l'eterogeneità intrinseca, intra- e intergenerazionale, derivante dal processo di divisione cellulare. Questi risultati possono dare un riscontro positivo in fase di progettazione degli esperimenti e di definizione delle condizioni operative a cui effettuare colture in bioreattore, al fine di minimizzare l'eterogeneità estrinseca e intrinseca della popolazione cellulare e di effettuare un ulteriore avanzamento verso un processo di espansione di cellule staminali umane clinicamente sicuro ed affidabile.
Mejetta, Stefania 1984. "1)Jarid2 regulates mouse epidermal stem cell activation and differentiation ; 2)Tumor heterogeneity and metastasis-initiation in human squamous cell carcinoma." Doctoral thesis, Universitat Pompeu Fabra, 2013. http://hdl.handle.net/10803/283482.
Повний текст джерелаJarid2 es necesario para la localización genómica del complejo represor polycomb repressive complex-2 (PRC2) en células stem embrionarias. Sin embargo, la función de Jarid2 en las últimas fases del desarrollo embrionario y su papel en la función de los tejidos adultos no ha sido aún caracterizada en profundidad. En esta primera parte de mi tesis doctoral, mostramos que la deleción de Jarid2 en la piel de ratón no afecta al desarrollo de la epidermis, pero reduce la proliferación y potencia la diferenciación de las células progenitoras epidermales en neonatos. La piel de los ratones neonatos Jarid2-KO muestra niveles reducidos de la marca represora de la cromatina, H3K27me3, en genes necesarios para la diferenciación de las células progenitoras. En cambio, en piel adulta la depleción de Jarid2 no afecta la diferenciación de la epidermis, pero sí que resulta en una reducción del número de células stem activas de los folículos pilosos, lo que desemboca en el retraso del crecimiento de los folículos. Por lo tanto, nuestros resultados demuestran que Jarid2 es necesario para la activación y diferenciación de diferentes células stem del compartimento queratinocítico de la piel necesarios para mantener la homeostasis epidermal. Diversos tipos de tumores sólidos humanos y de ratón, incluyendo carcinomas de células escamosas (SCCs del inglés: Squamous Cell Carcinomas), contienen una población de células madre cancerosas (CSCs del inglés Cancer Stem Cells). Las CSCs se caracterizan porque pueden iniciar y propagar el tumor; sin embargo, se conoce muy poco sobre su capacidad de alcanzar órganos lejos del tumor primario y de formar metastasis. Las CSCs pueden ser muy heterogéneas tanto a nivel funcional como molecular, y se ha propuesto que podrían existir diferentes subclones sea para mantener el tumor primario, sea para formar metástasis. No obstante, no se conoce por ahora ni la identidad de estas poblaciones heterogéneas de CSCs, ni sus características a nivel funcional o molecular. Usando un nuevo sistema de xenoinjerto que hemos desarrollado en nuestro laboratorio para estudiar SCC de cabeza y cuello, hemos identificado una población que es capaz de retener el marcaje con el tiempo (LRC de inglés: Label-retaining Cells), dentro de la población total de CSSs, definidas como células dentro del tumor que muestran alta expression de CD44 y alta actividad de Aldh1. En contra de lo que esperábamos, las LRC del tumor tienen dificultad para iniciar tumores por sí solas y son más sensibles a tratamientos de quimioterapia cuando las comparamos con otras células más proliferativas. Por otra parte, las LRC del tumor se pueden definir con un transcriptoma único que ha sido relacionado anteriormente con hueso y pulmón, que son dos de los órganos donde los SCC forman metástasis preferentemente. Esto sugiere que podrían estar involucradas en la colonización de órganos alejados del SCC primario. Hemos identificado también moléculas de superficie, incluyendo CD36 y CD37, que se expresan exclusivamente en las LRC de tumor y que se pueden usar como marcadores para aislar y caracterizar las LRC de SCCs primarios humanos. Basándonos en estos marcadores, hemos podido demostrar que la presencia o no de esta población en el tumor primario predice la formación de metástasis en pacientes con SCC cutáneos. Además, diversos marcadores que hemos identificado como únicos en LRC de tumor, son diana de fármacos ya usados en la actualidad en ensayos clínicos para tratamiento de otras enfermedades. En la actualidad estamos probando si alguno de estos tratamientos puede ser efectivo para prevenir o reducir el potencial de formar metástasis en SCC.
Jacob, Eshtan Sarah. "Heterogeneity of the human embryonic stem cell compartment and its impact on the generation of otic progenitors." Thesis, University of Sheffield, 2014. http://etheses.whiterose.ac.uk/7613/.
Повний текст джерелаLedaki, Ioanna I. "Heterogeneity of tumour response to hypoxia : carbonic anhydrase IX induction defines a subpopulation of hypoxic cells with stem cell properties and drug resistance." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:757a8e79-b20d-496c-b69b-4d6a3b7b56e3.
Повний текст джерелаTarga, Laurie. "Contribution to the study of mesenchymal stromal / stem cells heterogeneity, focus on surface markers and senescence." Thesis, Université de Lorraine, 2019. https://docnum.univ-lorraine.fr/ulprive/DDOC_T_2019_0353_TARGA.pdf.
Повний текст джерелаMesenchymal Stromal / Stem Cells (MSC) hold great potential and are currently the most used in clinical trials with cell-based treatments. MSC quality and therapeutic effectiveness are influenced by in vitro expansion but also by other factors such as donor parameters. To ameliorate the success rate of MSC therapies, this study focused on MSC heterogeneity. To put together cell characterization and ways to act when facing cell heterogeneity, this work was oriented toward the study of surface markers that can be monitored on living cells, and can serve to sort them. The first objective was to describe initial MSC surface markers variability between and within different bone marrow MSC samples from donors of different ages. The second objective was to develop a sorting method to separate MSC according to CD146 expression and compare the sorted cells. The third objective was to widen MSC surface markers knowledge by focusing on senescent MSC. Surface markers of early passage and replicative senescent cells were compared with proteomics and flow cytometry. Flow cytometry results on MSC were shown to be submitted to strong fluctuations. However, some regularities were strong enough to stand out. A group of surface markers were found to be associated with donor age: CD146, CD71, CD105, CD44. CD146, CD140b and CD71 were also correlated with proliferation rate. CD146 expression had the particularity to be relatively stable in culture and turned out to be the most heterogeneously expressed when looking at cell population within the samples. Cultivated MSC from bone marrow coming from donor of different ages and at different culture steps were sorted successfully according to CD146 expression with immunomagnetic method. MSC behavior remained heterogeneous after sort but it could still be observed that most CD146high cells had more often better differentiation and migration capacities and were less senescent than their CD146low counterpart. Proteomics study showed that almost all surface proteins expression tended to decrease on replicative senescent MSC, except one marker that increased: CD157. MSC at different stages of culture until replicative senescence were then studied by flow cytometry. This study revealed strong fluctuation in marker expression between different passages, highlighting again the variability of MSC behavior and the difficulty to predict it. CD146, CD71, CD140b, CD157 and SSC deserve to be followed for MSC quality control
Книги з теми "Stem cell heterogeneity"
Turksen, Kursad, ed. Stem Cell Heterogeneity. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6550-2.
Повний текст джерелаBirbrair, Alexander, ed. Stem Cells Heterogeneity - Novel Concepts. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11096-3.
Повний текст джерелаBirbrair, Alexander, ed. Stem Cells Heterogeneity in Cancer. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14366-4.
Повний текст джерелаBirbrair, Alexander, ed. Stem Cells Heterogeneity in Different Organs. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24108-7.
Повний текст джерелаTurksen, Kursad. Stem Cell Heterogeneity: Methods and Protocols. Springer New York, 2016.
Знайти повний текст джерелаStem Cell Heterogeneity: Methods and Protocols. Humana, 2018.
Знайти повний текст джерелаTurksen, Kursad. Cell Biology and Translational Medicine, Volume 6 : Stem Cells: Their Heterogeneity, Niche and Regenerative Potential. Springer International Publishing AG, 2021.
Знайти повний текст джерелаTurksen, Kursad. Cell Biology and Translational Medicine, Volume 6 : Stem Cells: Their Heterogeneity, Niche and Regenerative Potential. Springer, 2020.
Знайти повний текст джерелаBirbrair, Alexander. Stem Cells Heterogeneity in Cancer. Springer, 2019.
Знайти повний текст джерелаBirbrair, Alexander. Stem Cells Heterogeneity in Cancer. Springer International Publishing AG, 2020.
Знайти повний текст джерелаЧастини книг з теми "Stem cell heterogeneity"
Jurecic, Roland. "Hematopoietic Stem Cell Heterogeneity." In Advances in Experimental Medicine and Biology, 195–211. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24108-7_10.
Повний текст джерелаAlessandra, Salvetti, and Leonardo Rossi. "Planarian Stem Cell Heterogeneity." In Advances in Experimental Medicine and Biology, 39–54. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11096-3_4.
Повний текст джерелаHayashi, Yohei, Kiyoshi Ohnuma, and Miho K. Furue. "Pluripotent Stem Cell Heterogeneity." In Advances in Experimental Medicine and Biology, 71–94. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11096-3_6.
Повний текст джерелаHatina, Jiri, Michaela Kripnerova, Katerina Houfkova, Martin Pesta, Jitka Kuncova, Jiri Sana, Ondrej Slaby, and René Rodríguez. "Sarcoma Stem Cell Heterogeneity." In Advances in Experimental Medicine and Biology, 95–118. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11096-3_7.
Повний текст джерелаAlvina, Fidelia B., Arvin M. Gouw, and Anne Le. "Cancer Stem Cell Metabolism." In The Heterogeneity of Cancer Metabolism, 161–72. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65768-0_12.
Повний текст джерелаPrabavathy, D., and Niveditha Ramadoss. "Heterogeneity of Small Cell Lung Cancer Stem Cells." In Stem Cells Heterogeneity in Cancer, 41–57. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14366-4_3.
Повний текст джерелаHatina, Jiri, Maximilian Boesch, Sieghart Sopper, Michaela Kripnerova, Dominik Wolf, Daniel Reimer, Christian Marth, and Alain G. Zeimet. "Ovarian Cancer Stem Cell Heterogeneity." In Stem Cells Heterogeneity in Cancer, 201–21. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14366-4_12.
Повний текст джерелаKripnerova, Michaela, Hamendra Singh Parmar, Martin Pesta, Michaela Kohoutova, Jitka Kuncova, Karel Drbal, Marie Rajtmajerova, and Jiri Hatina. "Urothelial Cancer Stem Cell Heterogeneity." In Stem Cells Heterogeneity in Cancer, 127–51. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14366-4_8.
Повний текст джерелаQian, Xu, Xiaobo Nie, Barbara Wollenberg, Holger Sudhoff, Andreas M. Kaufmann, and Andreas E. Albers. "Heterogeneity of Head and Neck Squamous Cell Carcinoma Stem Cells." In Stem Cells Heterogeneity in Cancer, 23–40. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14366-4_2.
Повний текст джерелаBadeaux, Mark A., and Dean G. Tang. "Prostate Cancer Cell Heterogeneity and Prostate Cancer Stem Cells." In Cancer Stem Cells, 183–91. Hoboken, NJ: John Wiley & Sons, 2014. http://dx.doi.org/10.1002/9781118356203.ch14.
Повний текст джерелаТези доповідей конференцій з теми "Stem cell heterogeneity"
Xian, W., S. Niroula, and F. Mckeon. "Airway Stem Cell Heterogeneity in Advanced Cystic Fibrosis." In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a6189.
Повний текст джерелаMckeon, F., W. Xian, S. Niroula, S. Wang, W. Rao, J. F. Engelhardt, K. R. Parekh, M. L. Metersky, and K. Goller. "Lung Stem Cell Heterogeneity in Advanced Cystic Fibrosis." In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a2665.
Повний текст джерелаHarris, Molly, Dong-mi Shin, Seungbum Choi, Benjamin Low, Emily Miller, Brad Rybinski, Roderick Bronson, and Kyuson Yun. "Abstract 3300: Cancer stem cell heterogeneity and cell-of-origin in medulloblastomas." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-3300.
Повний текст джерелаFu, Nai Yang, Anne Rios, Bhupinder Pal, Charity Law, Paul Jamieson, Francois Vaillant, Gordon K. Smyth, Matthew E. Ritchie, Geoffrey J. Lindeman, and Jane E. Visvader. "Abstract 5024: Unmasking heterogeneity within the adult mammary stem cell compartment." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-5024.
Повний текст джерелаMiyoshi, Norikatsu, Shiki Fujino, Masaru Sasaki, Takayuki Ogino, Hidekazu Takahashi, Mamoru Uemura, Chu Matsuda, Tsunekazu Mizushima, Hidetoshi Eguchi, and Yuichiro Doki. "Abstract 4962: Tumor heterogeneity driven by cancer stem cell expressing POU5F1." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-4962.
Повний текст джерелаAzizi, Ebrahim, Shamileh Fouladdel, Yadwinder S. Deol, Jonathan Bender, Sean McDermott, Hui Jiang, Mary Sehl, Shawn G. Clouthier, Sunitha Nagrath, and Max S. Wicha. "Abstract 1943: Exploring cancer stem cells heterogeneity via single cell multiplex gene expression analysis." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-1943.
Повний текст джерелаReya, Tannishtha. "Abstract IA13: Imaging stem cell signals in cancer heterogeneity and therapy resistance." In Abstracts: AACR Special Conference: Advances in Modeling Cancer in Mice: Technology, Biology, and Beyond; September 24-27, 2017; Orlando, Florida. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.mousemodels17-ia13.
Повний текст джерелаScurrah, Cherie’ R., Bob Chen, Nick Markham, Alan Simmons, Austin Southard-Smith, Mary Macedonia, Eunyoung Choi, et al. "Abstract PO-051: Tumor stem cells arising from a non-stem origin maintain a differentiated phenotype and modulate T cell activity." In Abstracts: AACR Virtual Special Conference on Tumor Heterogeneity: From Single Cells to Clinical Impact; September 17-18, 2020. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.tumhet2020-po-051.
Повний текст джерелаXiong, Ying, Dayvia A. Laws, and Amanda C. LaRue. "Abstract A77: Hematopoietic stem cell-derived adipocytes promote tumor progression." In Abstracts: AACR Special Conference on Cellular Heterogeneity in the Tumor Microenvironment; February 26 — March 1, 2014; San Diego, CA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.chtme14-a77.
Повний текст джерелаNeal, Molly E. Heft, Stephanie The, John Henry J. Owen, Clifford Chang, Mark E. P. Prince, Arvind Rao, and Steven B. Chinn. "Abstract PO-006: Single cell transcriptomic analysis of primary head and neck cancer stem cells." In Abstracts: AACR Virtual Special Conference on Tumor Heterogeneity: From Single Cells to Clinical Impact; September 17-18, 2020. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.tumhet2020-po-006.
Повний текст джерела