Добірка наукової літератури з теми "STED lithography"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "STED lithography".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "STED lithography"

1

Lee, Won-Sup, Hyunmin Cho, and Won-Seok Chang. "Analytical Description of Digital Mask Based STED Lithography." Journal of the Korean Society for Precision Engineering 39, no. 11 (November 30, 2022): 863–68. http://dx.doi.org/10.7736/jkspe.022.072.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Klar, Thomas A., Richard Wollhofen, and Jaroslaw Jacak. "Sub-Abbe resolution: from STED microscopy to STED lithography." Physica Scripta T162 (September 1, 2014): 014049. http://dx.doi.org/10.1088/0031-8949/2014/t162/014049.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Klar, Thomas A., Richard Wollhofen, Johannes Kreutzer, Bianca Buchegger, Christine Eder, and Jaroslaw Jacak. "Sub-Diffraction STED Lithography using Orthogonally Functionalized Resins." Biophysical Journal 112, no. 3 (February 2017): 157a. http://dx.doi.org/10.1016/j.bpj.2016.11.864.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Puthukodan, Sujitha, Eljesa Murtezi, Jaroslaw Jacak, and Thomas A. Klar. "Localization STED (LocSTED) microscopy with 15 nm resolution." Nanophotonics 9, no. 4 (February 28, 2020): 783–92. http://dx.doi.org/10.1515/nanoph-2019-0398.

Повний текст джерела
Анотація:
AbstractWe present localization with stimulated emission depletion (LocSTED) microscopy, a combination of STED and single-molecule localization microscopy (SMLM). We use the simplest form of a STED microscope that is cost effective and synchronization free, comprising continuous wave (CW) lasers for both excitation and depletion. By utilizing the reversible blinking of fluorophores, single molecules of Alexa 555 are localized down to ~5 nm. Imaging fluorescently labeled proteins attached to nanoanchors structured by STED lithography shows that LocSTED microscopy can resolve molecules with a resolution of at least 15 nm, substantially improving the classical resolution of a CW STED microscope of about 60 nm. LocSTED microscopy also allows estimating the total number of proteins attached on a single nanoanchor.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Müller, Patrick, Rouven Müller, Larissa Hammer, Christopher Barner-Kowollik, Martin Wegener, and Eva Blasco. "STED-Inspired Laser Lithography Based on Photoswitchable Spirothiopyran Moieties." Chemistry of Materials 31, no. 6 (January 15, 2019): 1966–72. http://dx.doi.org/10.1021/acs.chemmater.8b04696.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Glubokov, D. A., V. V. Sychev, Alexey G. Vitukhnovsky, and A. E. Korol'kov. "Photonic crystal fibre-based light source for STED lithography." Quantum Electronics 43, no. 6 (June 30, 2013): 588–90. http://dx.doi.org/10.1070/qe2013v043n06abeh015059.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wiesbauer, Moritz, Richard Wollhofen, Borislav Vasic, Kurt Schilcher, Jaroslaw Jacak, and Thomas A. Klar. "Nano-Anchors with Single Protein Capacity Produced with STED Lithography." Nano Letters 13, no. 11 (October 16, 2013): 5672–78. http://dx.doi.org/10.1021/nl4033523.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wollhofen, Richard, Julia Katzmann, Calin Hrelescu, Jaroslaw Jacak, and Thomas A. Klar. "120 nm resolution and 55 nm structure size in STED-lithography." Optics Express 21, no. 9 (April 25, 2013): 10831. http://dx.doi.org/10.1364/oe.21.010831.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kaschke, Johannes, and Martin Wegener. "Gold triple-helix mid-infrared metamaterial by STED-inspired laser lithography." Optics Letters 40, no. 17 (August 20, 2015): 3986. http://dx.doi.org/10.1364/ol.40.003986.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Витухновский, А. Г., Р. Д. Звагельский, Д. А. Колымагин, А. В. Писаренко та Д. А. Чубич. "Двухволновая лазерная стереолитография для создания ИК сенсоров для поверхностно-усиленной спектроскопии-=SUP=-*-=/SUP=-". Журнал технической физики 126, № 1 (2019): 63. http://dx.doi.org/10.21883/os.2019.01.47055.271-18.

Повний текст джерела
Анотація:
AbstractThe results of applying two-photon femtosecond laser photopolymerization for fabrication of structures for sensitive IR sensors are reported. Two methods of sensor fabrication, a two-wave laser stereolithography and an electron-beam lithography, are compared. The possibility of applying the obtained structures for investigation of the effect of surface-enhanced IR absorption (SEIRA) with a STED-compatible oligomer pentaerythritol tetraacrylate (PETTA) as an analytical layer is demonstrated.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "STED lithography"

1

Müller, Patrick [Verfasser], and M. [Akademischer Betreuer] Wegener. "Molecular Photoswitches for STED-inspired Laser Lithography / Patrick Müller ; Betreuer: M. Wegener." Karlsruhe : KIT-Bibliothek, 2019. http://d-nb.info/1177147297/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kaschke, Johannes Michael [Verfasser], and M. [Akademischer Betreuer] Wegener. "Complex Helical Metamaterials fabricated via STED-inspired Laser Lithography / Johannes Michael Kaschke. Betreuer: M. Wegener." Karlsruhe : KIT-Bibliothek, 2015. http://d-nb.info/1080701001/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Müller, Rouven [Verfasser], and C. [Akademischer Betreuer] Barner-Kowollik. "Spatially resolved immobilization of metallopolymers – Spiropyrans for light sensitive metal complexes and STED-inspired laser lithography / Rouven Müller ; Betreuer: C. Barner-Kowollik." Karlsruhe : KIT-Bibliothek, 2019. http://d-nb.info/1197138900/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Colburn, Matthew Earl. "Step and flash imprint lithography : a low-pressure, room-temperature nanoimprint lithography /." Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3025205.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kim, Eun Jung. "Surface Microtopography Modulation of Biomaterials for Bone Tissue Engineering Applications." Cleveland State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=csu1273557062.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cheng, Zhe Annie. "Biological multi-functionalization and surface nanopatterning of biomaterials." Thesis, Bordeaux 1, 2013. http://www.theses.fr/2013BOR15202/document.

Повний текст джерела
Анотація:
Le but de la conception d’un biomatériau est de mimer les modèles qui puissent être représentatifs de la matrice extracellulaire (MEC) existant in vivo. Cet objectif peut être atteint en associant une combinaison de cellules et des facteurs biologiques à un biomatériau sur lequel ces cellules peuvent se développer pour reconstruire le tissu natif. Dans cet étude, nous avons crée des surfaces bioactives nanostructurées en combinant la nanolithographie et la fonctionnalisation de surface, en greffant un peptide RGD ou BMP-2 (bone morphogenetic protein 2). Nous avons étudié l’effet de cette nanodistribution sur le comportement des cellules souches mésenchymateuses en analysant leur adhésion et différentiation. Nous notons que la nanodistribution des peptides induit une bioactivité qui a un impact sur l’organisation du cytosquelette, la conformation des fibres de stresse de l’actin, la maturation des adhésions focales (AFs), et le commitment des cellules souches. En particulier, l’aire, la distribution, et la conformation des AFs sont affectes par la présence des nanopatterns. En plus, le RGD et le BMP-2 changent le comportement cellulaire par des voies et des mécanismes différents en variant l’organisation des cellules souches et la maturation de leurs AFs. La nanodistribution influence de façon évidente les cellules souches en modifiant leur comportement (adhésion et différenciation) ce qui a contribué et ce qui contribuera à améliorer la compréhension des interactions des cellules avec la MEC
The aim of biomaterials design is to create an artificial environment that mimics the in vivo extracellular matrix for optimized cell interactions. A precise synergy between the scaffolding material, bioactivity, and cell type must be maintained in an effective biomaterial. In this work, we present a technique of nanofabrication that creates chemically nanopatterned bioactive silicon surfaces for cell studies. Using nanoimprint lithography, RGD and mimetic BMP-2 peptides were covalently grafted onto silicon as nanodots of various dimensions, resulting in a nanodistribution of bioactivity. To study the effects of spatially distributed bioactivity on cell behavior, mesenchymal stem cells (MSCs) were cultured on these chemically modified surfaces, and their adhesion and differentiation were studied. MSCs are used in regenerative medicine due to their multipotent properties, and well-controlled biomaterial surface chemistries can be used to influence their fate. We observe that peptide nanodots induce differences in MSC behavior in terms of cytoskeletal organization, actin stress fiber arrangement, focal adhesion (FA) maturation, and MSC commitment in comparison with homogeneous control surfaces. In particular, FA area, distribution, and conformation were highly affected by the presence of peptide nanopatterns. Additionally, RGD and mimetic BMP-2 peptides influenced cellular behavior through different mechanisms that resulted in changes in cell spreading and FA maturation. These findings have remarkable implications that contribute to the understanding of cell-extracellular matrix interactions for clinical biomaterials applications
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cheng, Zhe. "Biological multi-functionalization and surface nanopatterning of biomaterials." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2013. http://tel.archives-ouvertes.fr/tel-01016695.

Повний текст джерела
Анотація:
The aim of biomaterials design is to create an artificial environment that mimics the in vivo extracellular matrix for optimized cell interactions. A precise synergy between the scaffolding material, bioactivity, and cell type must be maintained in an effective biomaterial. In this work, we present a technique of nanofabrication that creates chemically nanopatterned bioactive silicon surfaces for cell studies. Using nanoimprint lithography, RGD and mimetic BMP-2 peptides were covalently grafted onto silicon as nanodots of various dimensions, resulting in a nanodistribution of bioactivity. To study the effects of spatially distributed bioactivity on cell behavior, mesenchymal stem cells (MSCs) were cultured on these chemically modified surfaces, and their adhesion and differentiation were studied. MSCs are used in regenerative medicine due to their multipotent properties, and well-controlled biomaterial surface chemistries can be used to influence their fate. We observe that peptide nanodots induce differences in MSC behavior in terms of cytoskeletal organization, actin stress fiber arrangement, focal adhesion (FA) maturation, and MSC commitment in comparison with homogeneous control surfaces. In particular, FA area, distribution, and conformation were highly affected by the presence of peptide nanopatterns. Additionally, RGD and mimetic BMP-2 peptides influenced cellular behavior through different mechanisms that resulted in changes in cell spreading and FA maturation. These findings have remarkable implications that contribute to the understanding of cell-extracellular matrix interactions for clinical biomaterials applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Colburn, Matthew Earl 1974. "Step and flash imprint lithography : a low-pressure, room-temperature nanoimprint lithograph." 2001. http://hdl.handle.net/2152/10298.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jacobsson, Borje Michael. "Materials development for step and flash imprint lithography." Thesis, 2011. http://hdl.handle.net/2152/ETD-UT-2011-08-4239.

Повний текст джерела
Анотація:
The quest for smaller and faster integrated circuits (ICs) continues, but traditional photolithography, the patterning process used to fabricate them, is rapidly approaching its physical limits. Step and Flash Imprint Lithography (S-FIL®) is a low-cost patterning technique which has shown great potential for next generation semiconductor manufacturing. To date, all methods of imprint lithography have utilized a sacrificial resist to produce device features. Our goal has been to develop functional materials such as insulators that can be directly patterned by S-FIL and then remain as a part of the end product. Directly patternable dielectric (DPD) materials must meet multiple mechanical and physical requirements for application in microelectronic devices. In some cases these requirements are conflicting, which leads to material design challenges. Many different materials and curing methods have been evaluated. Thiol-ene based approaches to patterning hyperbranched materials incorporating Polyhedral Oligomeric Silsesquioxanes (POSS) have shown the greatest promise. Thiol-ene polymerization takes place by a free radical mechanism, but it has the advantage over acrylates of not being inhibited by the presence of oxygen. This greatly eases some engineering design challenges for the S-FIL process. A number of thiol-ene formulations have been prepared and their mechanical and electrical properties evaluated. SFIL-R has been introduced as an alternative technology to SFIL. SFIL-R offers improvements to SFIL in several ways, but requires a high silicon content, low viscosity, planarizing material. Photopolymerizable branched siloxanes were synthesized and evaluated to function as a planarizing topcoat for this technology. Both SFIL and SFIL-R require a clean separation of the template from the resist material. Fouling of templates is a major concern in imprint lithography and fluorinated materials are used to treat templates to lower their surface energy for better separation. It has been observed that the template treatment degrades over time and needs to be replaced for further imprinting. A fluorinated silazane was designed to repair the degraded areas. This material was evaluated and functions as designed.
text
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tsung-LunWen and 溫宗倫. "Fabrication of Seamless Roller Mold Using Curved Surface Beam Pen Lithography and Step-and-Rotate Lithography." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/64860854775135705951.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "STED lithography"

1

Fourkas, John T. "STED-Inspired Approaches to Resolution Enhancement." In Multiphoton Lithography, 111–31. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527682676.ch5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ahopelto, Jouni, and Tomi Haatainen. "Step and Stamp Imprint Lithography." In Alternative Lithography, 103–15. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9204-8_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bailey, T. C., M. Colburn, B. J. Choi, A. Grot, J. G. Ekerdt, S. V. Sreenivasan, and C. G. Willson. "Step and Flash Imprint Lithography." In Alternative Lithography, 117–37. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9204-8_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Liu, H. Z., Bing Heng Lu, Y. C. Ding, D. C. Li, Yi Ping Tang, and T. Jin. "A Measurement System for Step Imprint Lithography." In Key Engineering Materials, 107–12. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-977-6.107.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yang, Liangliang, Yunfei Zhou, Haihong Pan, and Wei Teng. "Realization of the Synchronization Mechanism of Step and Scan Projection Lithography." In Intelligent Robotics and Applications, 151–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-88518-4_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cheng, Z. A., O. F. Zouani, K. Glinel, A. M. Jonas, and M. C. Durrieu. "Bioactive Nanoimprint Lithography: A Study of Human Mesenchymal Stem Cell Behavior and Fate." In IFMBE Proceedings, 1817–20. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-00846-2_448.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lee, Jae Jong, Seung Woo Lee, Hyun Taek Cho, Gee Hong Kim, and Kee Bong Choi. "Single-Step UV Nanoimprinting Lithography with Multi-Head Imprinting System and Its Applications." In Experimental Mechanics in Nano and Biotechnology, 441–44. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-415-4.441.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ishikawa, Eiichi, Susumu Fukatsu, Kentaro Onabe, Yasuhiro Shiraki, and Ryoichi Ito. "Ultrafine AlGaAs/GaAs Quantum-Well Wire Fabrication by Combining Electron Beam Lithography and Two-Step Wet Chemical Etching." In Science and Technology of Mesoscopic Structures, 373–78. Tokyo: Springer Japan, 1992. http://dx.doi.org/10.1007/978-4-431-66922-7_39.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

"8. STED lithography and protein nanoanchors." In Optically Induced Nanostructures, 303–24. De Gruyter, 2015. http://dx.doi.org/10.1515/9783110354324-019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cabezas, Maria D., Daniel J. Eichelsdoerfer, Keith A. Brown, Milan Mrksich, and Chad A. Mirkin. "Combinatorial Screening of Mesenchymal Stem Cell Adhesion and Differentiation Using Polymer Pen Lithography." In Methods in Cell Biology, 261–76. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-12-416742-1.00013-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "STED lithography"

1

Fischer, J., T. J. A. Wolf, A. N. Unterreiner, and M. Wegener. "Depletion Mechanisms in STED-inspired Lithography." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/cleo_si.2012.cm4l.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jacak, Jaroslaw, Richard Wollhofen, and Thomas A. Klar. "Nanoscopic structuring with STED lithography (Conference Presentation)." In Nanophotonics, edited by David L. Andrews, Jean-Michel Nunzi, and Andreas Ostendorf. SPIE, 2016. http://dx.doi.org/10.1117/12.2227682.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mueller, Patrick, Larissa Hammer, Rouven Mueller, Eva Blasco, Christopher Barner-Kowollik, and Martin Wegener. "STED-inspired Laser Lithography Based on Spirothiopyran Chromophores." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleo_si.2018.sm4o.5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zvagelsky, R. D., D. A. Chubich, D. A. Kolymagin, A. V. Pisarenko, and A. G. Vitukhnovsky. "Fabrication of templates for metallic nanoantennas by STED-DLW lithography." In XVI INTERNATIONAL CONFERENCE ON LUMINESCENCE AND LASER PHYSICS DEVOTED TO THE 100TH ANNIVERSARY OF IRKUTSK STATE UNIVERSITY. Author(s), 2019. http://dx.doi.org/10.1063/1.5089847.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Klar, T. A., R. Wollhofen, and J. Jacak. "120 nm resolution and 55nm line width achieved in visible light STED-lithography." In 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC. IEEE, 2013. http://dx.doi.org/10.1109/cleoe-iqec.2013.6801550.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Liu, Yijie, and Zhen Zhang. "A Larger Range Compliant Nano-Manipulator Supporting Electron Beam Lithography." In ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-69770.

Повний текст джерела
Анотація:
Abstract Electron beam lithography (EBL) is an important lithographic process of scanning a focused electron beam to direct write a custom pattern with nanometric accuracy. Due to the very limited e-beam field of the focused election beam, a motion stage is needed to move the sample to the e-beam field for processing large patterns. In order to eliminate the stitching error induced by the existing “step and scan” process, we in this paper propose a large range compliant nano-manipulator so that the manipulator and the election beam can be moved in a simultaneous manner. We also present an optimization design for the geometric parameters of the compliant manipulator under the vacuum environment.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jen, Wei-Lun, Frank Palmieri, Brook Chao, Michael Lin, Jianjun Hao, Jordan Owens, Ken Sotoodeh, Robin Cheung, and C. Grant Willson. "Multilevel step and flash imprint lithography for direct patterning of dielectrics." In Advanced Lithography, edited by Michael J. Lercel. SPIE, 2007. http://dx.doi.org/10.1117/12.711602.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Vorburger, T. V., A. Hilton, R. G. Dixson, N. G. Orji, J. A. Powell, A. J. Trunek, P. G. Neudeck, and P. B. Abel. "Calibration of 1-nm SiC step height standards." In SPIE Advanced Lithography, edited by Christopher J. Raymond. SPIE, 2010. http://dx.doi.org/10.1117/12.849176.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Brooks, Cynthia, Gerard M. Schmid, Mike Miller, Steve Johnson, Niyaz Khusnatdinov, Dwayne LaBrake, Douglas J. Resnick, and S. V. Sreenivasan. "Step and flash imprint lithography for manufacturing patterned media." In SPIE Advanced Lithography, edited by Frank M. Schellenberg and Bruno M. La Fontaine. SPIE, 2009. http://dx.doi.org/10.1117/12.815016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lin, Michael W., Daniel J. Hellebusch, Kai Wu, Eui Kyoon Kim, Kuan Lu, Li Tao, Kenneth M. Liechti, et al. "Interfacial adhesion studies for step and flash imprint lithography." In SPIE Advanced Lithography, edited by Frank M. Schellenberg. SPIE, 2008. http://dx.doi.org/10.1117/12.772797.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії