Статті в журналах з теми "STATIC VAR SYSTEM"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: STATIC VAR SYSTEM.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "STATIC VAR SYSTEM".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Osborn, D. L. "Factors for planning a static VAR system." Electric Power Systems Research 17, no. 1 (July 1989): 5–12. http://dx.doi.org/10.1016/0378-7796(89)90053-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wang, Hui Yu, Yong Zhang, and Jian Zhang. "Study on Real-Time Control of Power System Stability." Applied Mechanics and Materials 511-512 (February 2014): 1137–40. http://dx.doi.org/10.4028/www.scientific.net/amm.511-512.1137.

Повний текст джерела
Анотація:
This paper presents the design method Delays affect static var compensator WAN additional damping controller, containing static var compensator new power system, for example, through a controlled modal analysis to select Static Analysis conventional additional damping drawing's power compensator WAN input signal is calculated using the residue method to get its parameters, and then analyzed using delay-dependent stability criterion of conventional reactive power compensator damping controller contains additional stationary Delay power system stability, finalized the SVC gain additional damping controller based on delay stability analysis, the results show Delay Considered static var compensator additional damping controller not only can improve the damping characteristics of the system, but also has a certain time lag robustness.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Padiyar, K. R., and R. K. Varma. "Damping torque analysis of static VAR system controllers." IEEE Transactions on Power Systems 6, no. 2 (May 1991): 458–65. http://dx.doi.org/10.1109/59.76687.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Karthik, B., Jerald Praveen Arokkia, S. Sreejith, and S. Rangarajan Shriram. "Three Phase Power Flow Incorporating Static Var Compensator." Applied Mechanics and Materials 573 (June 2014): 747–56. http://dx.doi.org/10.4028/www.scientific.net/amm.573.747.

Повний текст джерела
Анотація:
Application of Flexible AC Transmission Systems (FACTS) devices in a power system is a promising and more efficient way for the transfer and control of bulk amount of power. One of the problems encountered in power-systems operation is the generation of unbalanced voltages and currents in the presence of long transmission lines with few or no transpositions. This includes possible unbalances arising in source and load conditions, or indeed any items of plant such as shunt and series reactors. To improve or investigate these unbalance effects in any detail, a 3-phase load-flow solution that allows representation of all possible unbalances as they exist in the power-systems network without making any assumptions is essential. This paper deals with the three phase power flow incorporating Static Var Compensator (SVC). Here SVC is modeled using variable reactance modeling technique and incorporated into the single phase and three phase load flow. Newton Raphson power flow algorithm is adopted here. The performance of SVC to control the power flow and regulating voltage in the network is discussed. The performance analysis is carried out for 4 case studies namely single phase power flow, single phase power flow with SVC, three phase power flow and three phase power flow with SVC. The change in power flow and losses due to the unbalanced load condition in the three phases in illustrated. The studies are carried out in a standard 5 bus test system. Keywords: Three Phase Power flow, Static Var Compensator, Unbalanced system, Negative sequence components, Zero sequence components.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chen, JinBo, and WenYu Hu. "MATLAB Simulation Research on Static Var Compensator." E3S Web of Conferences 256 (2021): 01022. http://dx.doi.org/10.1051/e3sconf/202125601022.

Повний текст джерела
Анотація:
TCR-TSC static reactive power compensator (SVC) is the most widely used in the field of power system reactive power compensation. This type of reactive power compensator can not only compensate the reactive power required in the power system, but also handle the over-compensation problem well. This paper will establish a MATLAB simulation model to simulate the TCR-TSC SVC, focusing on the dynamic reactive power compensation characteristics of the TCR-TSC SVC in suppressing voltage fluctuations. The simulation results show that the TCR-TSC SVC has a better dynamic reactive power compensation effect.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Matsuno, Katuhiko, Takashi Nagasawa, Hiroshi Ohtsuki, Shuichi Ohnishi, Fujio Ishiguro, and Masatoshi Takeda. "Power System Stability Enhancement by Static Var System using Selfcommutated Inverters." IEEJ Transactions on Power and Energy 112, no. 1 (1992): 57–66. http://dx.doi.org/10.1541/ieejpes1990.112.1_57.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jain, Sandesh. "Voltage Control of Transmission System Using Static Var Compensator." International Journal of Science and Engineering Applications 1, no. 2 (December 1, 2013): 107–9. http://dx.doi.org/10.7753/ijsea0102.1004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kemerer, R. S., and L. E. Berkebile. "Directly connected static VAr compensation in distribution system applications." IEEE Transactions on Industry Applications 35, no. 1 (1999): 176–82. http://dx.doi.org/10.1109/28.740862.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kumar, Narendra, Shilpa Gupta, and Nisha Singh. "Restraining SSR with CDRPF-signal supported static var system." Sustainable Energy, Grids and Networks 16 (December 2018): 136–44. http://dx.doi.org/10.1016/j.segan.2018.07.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nasir, S. C. Mohd, M. H. Mansor, I. Musirin, M. M. Othman, T. M. Kuan, K. Kamil, and M. N. Abdullah. "Multistage artificial immune system for static VAR compensator planning." Indonesian Journal of Electrical Engineering and Computer Science 14, no. 1 (April 1, 2019): 346. http://dx.doi.org/10.11591/ijeecs.v14.i1.pp346-352.

Повний текст джерела
Анотація:
Interconnected network of transmission and distribution lines lead to losses in the system and weakening the voltage stability in the system. Installing Static VAR Compensator (SVC) in power system has known to improve the system by minimizing the total loss and improve the voltage profile of the system. This paper presents the application of Multistage Artificial Immune System (MAIS) technique to determine optimal size of SVC. The performance of this technique is tested on the IEEE 14-Bus Reliability Test System (RTS). The optimization results show that the proposed Multistage Artificial Immune System (MAIS) technique gives better solution of SVC compensator planning problem compared to single stage Artificial Immune System (AIS) in terms of lower total system loss and improved minimum voltage magnitude.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Padiyar, K. R., and R. K. Varma. "Static VAR system auxiliary controllers for damping torsional oscillations." International Journal of Electrical Power & Energy Systems 12, no. 4 (October 1990): 271–86. http://dx.doi.org/10.1016/0142-0615(90)90044-c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Onah, A. J., E. E. Ezema, and I. D. Egwuatu. "An R-L Static Var Compensator (SVC)." European Journal of Engineering Research and Science 5, no. 12 (December 14, 2020): 46–51. http://dx.doi.org/10.24018/ejers.2020.5.12.2253.

Повний текст джерела
Анотація:
Traditional static var compensators (SVCs) employ shunt reactors and capacitors. These standard reactive power shunt elements are controlled to produce rapid and variable reactive power. Power electronic devices like the thyristor etc. are used to switch them in or out of the network to which they are connected in response to system conditions. There are two basic types, namely the thyristor-controlled reactor (TCR), and the thyristor-switched capacitor (TSC). In this paper we wish to investigate a compensator where the reactor or capacitor is replaced by a series connected resistor and reactor (R-L). The performance equations are derived and applied to produce the compensator characteristics for each of the configurations. Their performances are compared, and the contrasts between them displayed. All three configurations are made to achieve unity power factor in a system.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Onah, A. J., E. E. Ezema, and I. D. Egwuatu. "An R-L Static Var Compensator (SVC)." European Journal of Engineering and Technology Research 5, no. 12 (December 14, 2020): 46–51. http://dx.doi.org/10.24018/ejeng.2020.5.12.2253.

Повний текст джерела
Анотація:
Traditional static var compensators (SVCs) employ shunt reactors and capacitors. These standard reactive power shunt elements are controlled to produce rapid and variable reactive power. Power electronic devices like the thyristor etc. are used to switch them in or out of the network to which they are connected in response to system conditions. There are two basic types, namely the thyristor-controlled reactor (TCR), and the thyristor-switched capacitor (TSC). In this paper we wish to investigate a compensator where the reactor or capacitor is replaced by a series connected resistor and reactor (R-L). The performance equations are derived and applied to produce the compensator characteristics for each of the configurations. Their performances are compared, and the contrasts between them displayed. All three configurations are made to achieve unity power factor in a system.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Ćalasan, Martin, Tatjana Konjić, Katarina Kecojević, and Lazar Nikitović. "Optimal Allocation of Static Var Compensators in Electric Power Systems." Energies 13, no. 12 (June 21, 2020): 3219. http://dx.doi.org/10.3390/en13123219.

Повний текст джерела
Анотація:
In the current age, power systems contain many modern elements, one example being Flexible AC Transmission System (FACTS) devices, which play an important role in enhancing the static and dynamic performance of the systems. However, due to the high costs of FACTS devices, the location, type, and value of the reactive power of these devices must be optimized to maximize their resulting benefits. In this paper, the problem of optimal power flow for the minimization of power losses is considered for a power system with or without a FACTS controller, such as a Static Var Compensator (SVC) device The impact of location and SVC reactive power values on power system losses are considered in power systems with and without the presence of wind power. Furthermore, constant and variable load are considered. The mentioned investigation is realized on both IEEE 9 and IEEE 30 test bus systems. Optimal SVC allocation are performed in program GAMS using CONOPT solver. For constant load data, the obtained results of an optimal SVC allocation and the minimal value of power losses are compared with known solutions from the literature. It is shown that the CONOPT solver is useful for finding the optimal location of SVC devices in a power system with or without the presence of wind energy. The comparison of results obtained using CONOPT solver and four metaheuristic method for minimization of power system losses are also investigated and presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Guan, Zheng Qiang, and Jun Peng. "Static Var Compensator Technology and its Progress." Advanced Materials Research 179-180 (January 2011): 1374–79. http://dx.doi.org/10.4028/www.scientific.net/amr.179-180.1374.

Повний текст джерела
Анотація:
This paper introduced the fundamental types of Static Var Compensator (SVC) device and its typical circuit structures, analyzed the principles of SVC (TCR type), the typical structures of the main circuits and the corresponding control system, and the main functions of SVC devices. At last, the latest applications of domestic SVC devices in the field of electricity distribution network and the electricity transmission network are introduced.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

KUMAR, NARENDRA, and M. P. DAVE. "STATIC VAR SYSTEM AUXILIARY CONTROLLERS FOR TRANSIENT STABILITY IMPROVEMENT OF POWER SYSTEMS." Electric Machines & Power Systems 24, no. 2 (March 1996): 171–87. http://dx.doi.org/10.1080/07313569608955666.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Sh. Aziz, Mothanna, and Ahmed G. Abdullah. "Hybrid control strategies of SVC for reactive power compensation." Indonesian Journal of Electrical Engineering and Computer Science 19, no. 2 (August 1, 2020): 563. http://dx.doi.org/10.11591/ijeecs.v19.i2.pp563-571.

Повний текст джерела
Анотація:
<span>This article shows a prospective utilizations of flexible AC transmission system (FACTS) controls, like the static VAR compensator (SVC). One of the major motives for setting up an SVC is to recover dynamic voltage controller and thus increase system load aptitude. Static VAR compensator system proposed in this work consists of thyristor switched capacitor and thyristor controlled reactor sets, this style of SVC modelled using MATLAB simulink toolbox. A hybrid genetic algorithm with PI and fuzzy logic controls that used to control and expand the grid performance of the power system. The model results reveal that the Static Var Compensation contribute a decent result in upholding bus voltage after the power network is in an active and steady moment, besides it has a capability of the constancy control. It can totally work as a significant plan of reactive power recompense in power networks. </span>
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Matsuno, Katuhiko, Takashi Nagasawa, Hiroshi Ohtsuki, Shuichi Ohnishi, Fujio Ishiguro, and Masatoshi Takeda. "Power system stability enhancement by static var system using self-commutated inverters." Electrical Engineering in Japan 112, no. 6 (1992): 33–46. http://dx.doi.org/10.1002/eej.4391120604.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Li, Ji, and Xue Song Zhou. "Linear Feedback Control Research on Hopf Bifurcation in Wind Power System." Advanced Materials Research 512-515 (May 2012): 728–31. http://dx.doi.org/10.4028/www.scientific.net/amr.512-515.728.

Повний текст джерела
Анотація:
Hopf bifurcation frequently results in periodical oscillation instability in the nonlinear system. For Hopf bifurcation at equilibrium point in the wind power system, Hopf bifurcation point of the wind power system with static var compensator is calculated based on the continuation method. The analysis shows that the increase of reactive power will lead to Hopf bifurcation, static var compensation can delay Hopf bifurcation and improve voltage stability region via reactive power compensation, in order to eliminate Hopf bifurcation, a unified and simple linear feedback control method is adopted. The results indicate that the method put forward in the research is effective to eliminate Hopf bifurcation in the wind power system
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Hammad, A. E. "Analysis of Power System Stability Enhancement by Static var Compensators." IEEE Power Engineering Review PER-6, no. 11 (November 1986): 49–50. http://dx.doi.org/10.1109/mper.1986.5527494.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Cheng, Chin‐Hsing, and Yuan‐Yin Hsu. "Self‐tuning static VAR controllers for a multimachine power system." Journal of the Chinese Institute of Engineers 13, no. 4 (June 1990): 425–32. http://dx.doi.org/10.1080/02533839.1990.9677273.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Jen-Hung Chen, Wei-Jen Lee, and Mo-Shing Chen. "Using a static VAr compensator to balance a distribution system." IEEE Transactions on Industry Applications 35, no. 2 (1999): 298–304. http://dx.doi.org/10.1109/28.753620.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

MURTY, A. S. R., P. V. BALASUBRAMANYAM, and S. PARAMESWARAN. "PERFORMANCE EVALUATION OF STATIC VAR COMPENSATED SYSTEM WITH AUXILIARY CONTROLS." Electric Machines & Power Systems 19, no. 3 (May 1991): 251–70. http://dx.doi.org/10.1080/07313569108909522.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Hubbi, Walid, and Takashi Hiyama. "Placement of static VAR compensators to minimize power system losses." Electric Power Systems Research 47, no. 2 (October 1998): 95–99. http://dx.doi.org/10.1016/s0378-7796(98)00051-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Zhou, E. Z. "Application of static VAr compensators to increase power system damping." IEEE Transactions on Power Systems 8, no. 2 (May 1993): 655–61. http://dx.doi.org/10.1109/59.260815.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Hammad, A. E. "Analysis of Power System Stability Enhancement by Static VAR Compensators." IEEE Transactions on Power Systems 1, no. 4 (1986): 222–27. http://dx.doi.org/10.1109/tpwrs.1986.4335049.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Padiyar, K. R., and R. K. Varma. "Static VAR system auxiliary controllers for improvement of dynamic stability." International Journal of Electrical Power & Energy Systems 12, no. 4 (October 1990): 287–97. http://dx.doi.org/10.1016/0142-0615(90)90045-d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

K. Edan, Mohammed. "Harmonics Distribution in Electrical Power System Containing Static Var Compensator." Engineering and Technology Journal 27, no. 3 (February 1, 2009): 559–72. http://dx.doi.org/10.30684/etj.27.3.11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Hu, Shao Gang, Da Yong Gao, Shu Han Wang, Lian Zhi Wu, Hong Sheng Li, Jia Yong Chen, and Bo Cai. "Simulation Study on Three-Phase Three-Wire System Low Voltage SVG in PSCAD." Advanced Materials Research 1049-1050 (October 2014): 703–7. http://dx.doi.org/10.4028/www.scientific.net/amr.1049-1050.703.

Повний текст джерела
Анотація:
Among the current 3G SVCs, the one with the highest compensating capacity is the static var generator, which is featured by smooth and continuous bipolar reactive power, quick responding and small loss, and widely applied in petrochemical, metallurgy, wind power and power transmission and distribution, etc, working out power quality problems. As demand for static var compensators in market grows, LV SVG comes to the stage. Compared with HV and MV SVGs, although LV SVG is simple in structure, it has stricter requirements on compensating capacity and stability, which requires R&D to consider more technical details in product design.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Li, Jun Ming, Tao Niu, Hong Xiao Si, Song Shan Hui, Yu Tian Zhou, and Shu Han Wang. "Research on Static Var Compensator Control System Based on SIMATIC - TDC." Advanced Materials Research 1049-1050 (October 2014): 783–86. http://dx.doi.org/10.4028/www.scientific.net/amr.1049-1050.783.

Повний текст джерела
Анотація:
This paper proposes a new static var compensator control system with SIMATIC-TDC as the master controller and DSP as the auxiliary controller. Siemens TDC is a high-end controller with excellent data processing capacity, which can satisfy the current reactive compensation control algorithm to finish open loop and close loop control. Meanwhile, the programming configuration software is also fully featured, and widely applied in smelting, chemical and power industries. However, the auxiliary controller consisting of DSP and CPLD can quickly finish precise processing of signals (such as high-frequency sampling and signal frequency spectrum analysis). The static var compensation control system consisting of the master controller and the auxiliary controller has now been applied in many projects, achieving sound compensation effect.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Dharmawardena, Hasala, and Ganesh Kumar Venayagamoorthy. "Distributed Volt-Var Curve Optimization Using a Cellular Computational Network Representation of an Electric Power Distribution System." Energies 15, no. 12 (June 18, 2022): 4438. http://dx.doi.org/10.3390/en15124438.

Повний текст джерела
Анотація:
Voltage control in modern electric power distribution systems has become challenging due to the increasing penetration of distributed energy resources (DER). The current state-of-the-art voltage control is based on static/pre-determined DER volt-var curves. Static volt-var curves do not provide sufficient flexibility to address the temporal and spatial aspects of the voltage control problem in a power system with a large number of DER. This paper presents a simple, scalable, and robust distributed optimization framework (DOF) for optimizing voltage control. The proposed framework allows for data-driven distributed voltage optimization in a power distribution system. This method enhances voltage control by optimizing volt-var curve parameters of inverters in a distributed manner based on a cellular computational network (CCN) representation of the power distribution system. The cellular optimization approach enables the system-wide optimization. The cells to be optimized may be prioritized and two methods namely, graph and impact-based methods, are studied. The impact-based method requires extra initial computational efforts but thereafter provides better computational throughput than the graph-based method. The DOF is illustrated on a modified standard distribution test case with several DERs. The results from the test case demonstrate that the DOF based volt-var optimization results in consistently better performance than the state-of-the-art volt-var control.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Hardi, Surya, V. Marpaung, I. Nisja Hariadi, Rohana, and I. Nisja. "Mitigation of voltage sags in distribution line system using static VAR compensator and static synchronous compensator." Journal of Physics: Conference Series 2193, no. 1 (February 1, 2022): 012040. http://dx.doi.org/10.1088/1742-6596/2193/1/012040.

Повний текст джерела
Анотація:
Abstract Voltage sag is one of the power quality disturbances most frequently by customers because it can cause economic loss for the customers especially industries and commercial customers. The main source of voltage sags are faults in transmission and distribution beside two others namely motor large starting and transformer energizing, both the voltage sags have less effect on the equipment. Voltage sags can cause degradation performance of the equipment, and it depends on the magnitude and the duration. The voltage sags that occur in the power system can be compensated with installed Static VAR compensator (SVC) and Static synchronous compensator (STATCOM) in the distribution system bus. The purpose of the study is to compare both types of the device used to mitigate voltage sags in simulation using Alternative transient program (ATP) software. The voltage sag results from the short circuit faults. The method proposes the installation of the two compensator devices alternatively at one of the IEEE thirteen busses systems. The result shows the STATCOM is better than the SVC to handle mitigation of voltage sags compared with the SVC.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Hamouda, R. M., M. R. Iravani, and R. Hackam. "Coordinated Static Var Compensators and Power System Stabilizers for Damping Power System Oscillations." IEEE Power Engineering Review PER-7, no. 11 (November 1987): 50. http://dx.doi.org/10.1109/mper.1987.5526914.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Hamouda, R. M., M. R. Iravani, and R. Hackam. "Coordinated Static VAR Compensators and Power System Stabilizers for Damping Power System Oscillations." IEEE Transactions on Power Systems 2, no. 4 (1987): 1059–67. http://dx.doi.org/10.1109/tpwrs.1987.4335301.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Djagarov, Nikolay, Zhivko Grozdev, and Milen Bonev. "Improvement the work effectivenes of static var compensators by using of two-input adaptive controllers." Scientific Journal of Riga Technical University. Power and Electrical Engineering 25, no. 25 (January 1, 2009): 97–102. http://dx.doi.org/10.2478/v10144-009-0021-3.

Повний текст джерела
Анотація:
Improvement the work effectivenes of static var compensators by using of two-input adaptive controllersIn the paper is suggested a two-input adaptive controller for control of static var compensator (SVC). The controlling system of adaptive controller is identifying in real time of the basis for estimated parameters and variables of identification model and after that controlling signal is created for the compensator. As result of this controlling is improving vastly damping of power system like all performances as in transient processes as in steady state mode are improved.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Purwoharjono, Purwoharjono Purwoharjono. "Penerapan Metode Gravitational Search Algorithm Menggunakan Static VAR Compensator." Jurnal Sistem dan Teknologi Informasi (JustIN) 10, no. 1 (January 31, 2022): 175. http://dx.doi.org/10.26418/justin.v10i1.50575.

Повний текст джерела
Анотація:
Penerapan metode Gravitational Search Algorithm (GSA) ini bertujuan memperbaiki profil tegangan tenaga listrik menggunakan Static VAR Compensator (SVC). Penelitian ini dibandingkan hasil simulasi sebelum pemasangan SVC menggunakan metode Newton Raphson (NR) dan sesudah pemasangan SVC menggunakan metode GSA. Lokasi implementasi penelitian ini adalah system kelistrikan Jawa-Bali 500 kV. Hasil simulasi sesudah pemasangan SVC menggunakan metode GSA ini lebih baik dibandingkan dengan hasil simulasi sebelum pemasangan SVC menggunakan metode NR. Hasil simulasi sesudah pemasangan SVC menggunakan metode GSA ini juga, dapat memperbaiki profil tegangan pada system Jawa-Bali 500 kV.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Shrivastava, Manish, Vinay Prakash, Vishal Kaushik, and Vivek Kumar Upadhyay. "Transient Stability Improvement of IEEE 9-Bus System Using Static Var Compensator." International Journal of Research in Engineering, Science and Management 4, no. 4 (April 26, 2021): 98–102. http://dx.doi.org/10.47607/ijresm.2021.663.

Повний текст джерела
Анотація:
With increase in power demand over the last few decades, there has been a great expansion in power generation & transmission. But due to various disturbances, improper loading and environmental conditions the power systems are working near their stability limits which have become a power-transfer limiting factor. This in turn poses a threat to the stability of the system. Transient stability has been considered as one of the most important stability for a power system. In this paper Static VAR Compensator (SVC) has been discussed for reactive power control and hence improvement of transient stability and voltage profile. This paper incorporates IEEE-9 BUS test system with SVC controller using MATLAB Simulation.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Phyu, Myat Lay, and Dr Hnin Wai Hlaing. "Voltage Stability Enhancement for Power Transmission System using Static VAR Compensator." International Journal of Science and Engineering Applications 8, no. 12 (December 1, 2019): 498–502. http://dx.doi.org/10.7753/ijsea0812.1001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Pourbeik, P., A. Bostrom, and B. Ray. "Modeling and Application Studies for a Modern Static VAr System Installation." IEEE Transactions on Power Delivery 21, no. 1 (January 2006): 368–77. http://dx.doi.org/10.1109/tpwrd.2005.852382.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

MACHOWSKI, J., and D. NELLES. "A STATIC VAR COMPENSATOR CONTROL STRATEGY TO MAXIMIZE POWER SYSTEM DAMPING." Electric Machines & Power Systems 24, no. 5 (July 1996): 477–95. http://dx.doi.org/10.1080/07313569608955688.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Hogg, B. W., A. R. Mahran, A. M. Serag, and S. M. Sharaf. "Co-Ordinated Controller for a Static VAR Compensator/Synchronous Generator System." IFAC Proceedings Volumes 25, no. 1 (March 1992): 335–40. http://dx.doi.org/10.1016/s1474-6670(17)50476-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

El-Saady, G., M. Z. El-Sadek, and M. Abo-El-Saud. "Fuzzy adaptive model reference approach-based power system static VAR stabilizer." Electric Power Systems Research 45, no. 1 (April 1998): 1–11. http://dx.doi.org/10.1016/s0378-7796(97)01195-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

El-Sadek, M., G. EI-Saady, and M. Abo-El-Saud. "AN ARTIFICIAL NEURAL NETWORK BASED POWER SYSTEM 1 STATIC VAR REGULATOR." International Conference on Aerospace Sciences and Aviation Technology 7, ASAT CONFERENCE (May 1, 1997): 1–13. http://dx.doi.org/10.21608/asat.1997.25439.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Wang, H. F., and F. J. Swift. "Capability of the static VAr compensator in damping power system oscillations." IEE Proceedings - Generation, Transmission and Distribution 143, no. 4 (1996): 353. http://dx.doi.org/10.1049/ip-gtd:19960297.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Kecojević, Katarina, Ognjen Lukačević, and Martin Ćalasan. "Impact of Static Var Compensator (SVC) Devices on Power System Losses." B&H Electrical Engineering 13, no. 1 (December 1, 2019): 50–55. http://dx.doi.org/10.2478/bhee-2019-0006.

Повний текст джерела
Анотація:
Abstract The aim of this paper is to investigate the effect of the location of the SVC installation on the amount of power losses in the power system. The IEEE modified system with 3 wind turbines and 24 nodes was used as the test system. For the purpose of discovering the optimal location of the SVC device, GAMS programme was used. Comparing the results for losses before and after setting SVC to the optimum position in order to minimize losses, it was concluded that the position and power of the SVC device greatly influence the amount of losses in the system.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Xu, Weijun. "Grid-connected inductor design of static var generator for photovoltaic system." Journal of Physics: Conference Series 2450, no. 1 (March 1, 2023): 012008. http://dx.doi.org/10.1088/1742-6596/2450/1/012008.

Повний текст джерела
Анотація:
Abstract With the access of high-proportion photovoltaic power stations and the development of high permeability power electronic power systems, the problem of distributed photovoltaic access voltage over-limit and power factor is becoming more and more prominent, and the static var generator (SVG) is an important equipment to solve this kind of problem. As a key component of the static var generator, the connecting inductor has the functions of storing energy, bidirectional feeding, adjusting the phase of the output current, and suppressing the high-order harmonic current. It not only affects the dynamic and static response of the device but also restricts the output power, power factor, and DC side voltage of the SVG. At present, the parameter selection of SVG connection inductance is from the perspective of harmonic characteristics and economy, and there is no actual theoretical calculation basis. From the perspective of SVG output capacity and modulation ratio, the upper limit of the value of the connection inductance is derived. Combined with the traditional lower limit of the inductance when the harmonic suppression condition is satisfied, a design method of SVG connection inductance is given. Finally, the simulation results show that the connection inductance value designed by this method is correct and reasonable.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Rao, B. Venkateswara, G. V. Nagesh Kumar, R. V. S. Lakshmi Kumari, and M. Vinay Kumar. "Improvement of Power System Security under Network Contingency with Static VAR Compensator." Advanced Materials Research 403-408 (November 2011): 2073–78. http://dx.doi.org/10.4028/www.scientific.net/amr.403-408.2073.

Повний текст джерела
Анотація:
SVC is incorporated in Newton Raphson method in which Power Flow Solution is a solution of the network under normal operation as well as network contingency, the model of SVC i.e. SVC Susceptance Model is discussed. Newton Raphson Power flow method has been developed for the steady behavior of large complex power systems, it allows the study of power flow under abnormal conditions as well as normal conditions. It is shown that how the system power losses are decreased after incorporating the SVC in this model. It is also shown that how the SVC is useful in network contingency. The results are generated for 5-Bus system.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Su, Qingyu, Fei Dong, and Xueqiang Shen. "Improved Adaptive Backstepping Sliding Mode Control of Static Var Compensator." Energies 11, no. 10 (October 14, 2018): 2750. http://dx.doi.org/10.3390/en11102750.

Повний текст джерела
Анотація:
The stability of a single machine infinite bus system with a static var compensator is proposed by an improved adaptive backstepping algorithm, which includes error compensation, sliding mode control and a κ -class function. First, storage functions of the control system are constructed based on modified adaptive backstepping sliding mode control and Lyapunov methods. Then, adaptive backstepping method is used to obtain nonlinear controller and parameter adaptation rate for static var compensator system. The results of simulation show that the improved adaptive backstepping sliding mode variable control based on error compensation is effective. Finally, we get a conclusion that the improved method differs from the traditional adaptive backstepping method. The improved adaptive backstepping sliding mode variable control based on error compensation method preserves effective non-linearities and real-time estimation of parameters, and this method provides effective stability and convergence.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Hsu Yuan-Yih, Liu Chuan-Sheng, C. J. Lin, and C. T. Huang. "Application of power system stabilizers and static VAr compensators on a longitudinal power system." IEEE Transactions on Power Systems 3, no. 4 (1988): 1464–70. http://dx.doi.org/10.1109/59.192954.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Zhang, Chao, shaojie Xin, and Cong Xu. "Grid-connected power oscillation study of hybrid storage direct-drive wind farms based on SVG." Journal of Physics: Conference Series 2338, no. 1 (September 1, 2022): 012017. http://dx.doi.org/10.1088/1742-6596/2338/1/012017.

Повний текст джерела
Анотація:
Abstract This paper studies the control strategy of hybrid energy storage to suppress power fluctuation of direct-drive wind turbine based on static var generator, and proposes a grid-connected power oscillation suppression of hybrid energy storage direct-drive wind turbine based on static var generator (SVG). Method, the static var generator is mainly to solve the reactive current generated by the large and impact load and the resulting reactive power, and the SVG connected in parallel with the fan outlet busbar performs reactive power coordinated control to support the grid voltage. This control strategy control The lead-acid battery compensates for the intermediate frequency power fluctuation and the super capacitor (SC) quickly absorbs the high frequency power fluctuation, thereby smoothing the wind power and improving the power quality. sexual demands. Finally, a system simulation model is established in the Matlab/Simulink environment to verify the effectiveness of the proposed method.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії