Добірка наукової літератури з теми "Stabilization of PDEs"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Stabilization of PDEs".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Stabilization of PDEs"
Mokra, Daniela, and Juraj Mokry. "Phosphodiesterase Inhibitors in Acute Lung Injury: What Are the Perspectives?" International Journal of Molecular Sciences 22, no. 4 (February 16, 2021): 1929. http://dx.doi.org/10.3390/ijms22041929.
Повний текст джерелаBernard, Pauline, and Miroslav Krstic. "Adaptive output-feedback stabilization of non-local hyperbolic PDEs." Automatica 50, no. 10 (October 2014): 2692–99. http://dx.doi.org/10.1016/j.automatica.2014.09.001.
Повний текст джерелаLi, Jian, and Yungang Liu. "Adaptive stabilization for ODE systems coupled with parabolic PDES." Journal of Systems Science and Complexity 29, no. 4 (May 27, 2016): 959–77. http://dx.doi.org/10.1007/s11424-016-5094-4.
Повний текст джерелаBernard, Pauline, and Miroslav Krstic. "Adaptive Output-Feedback Stabilization of Non-Local Hyperbolic PDEs." IFAC Proceedings Volumes 47, no. 3 (2014): 7755–60. http://dx.doi.org/10.3182/20140824-6-za-1003.00108.
Повний текст джерелаLhachemi, Hugo, and Christophe Prieur. "Global Output Feedback Stabilization of Semilinear Reaction-Diffusion PDEs." IFAC-PapersOnLine 55, no. 26 (2022): 53–58. http://dx.doi.org/10.1016/j.ifacol.2022.10.376.
Повний текст джерелаKrstic, Miroslav. "Systematization of approaches to adaptive boundary stabilization of PDEs." International Journal of Robust and Nonlinear Control 16, no. 16 (2006): 801–18. http://dx.doi.org/10.1002/rnc.1098.
Повний текст джерелаYıldız, Hüseyin Alpaslan, and Leyla Gören-Sümer. "Stabilization of a class of underactuated Euler Lagrange system using an approximate model." Transactions of the Institute of Measurement and Control 44, no. 8 (December 7, 2021): 1569–78. http://dx.doi.org/10.1177/01423312211058556.
Повний текст джерелаAuriol, Jean, and Florent Di Meglio. "Two-Sided Boundary Stabilization of Heterodirectional Linear Coupled Hyperbolic PDEs." IEEE Transactions on Automatic Control 63, no. 8 (August 2018): 2421–36. http://dx.doi.org/10.1109/tac.2017.2763320.
Повний текст джерелаElharfi, Abdelhadi. "Exponential stabilization of a class of 1-D hyperbolic PDEs." Journal of Evolution Equations 16, no. 3 (February 3, 2016): 665–79. http://dx.doi.org/10.1007/s00028-015-0317-z.
Повний текст джерелаFornberg, Bengt, and Erik Lehto. "Stabilization of RBF-generated finite difference methods for convective PDEs." Journal of Computational Physics 230, no. 6 (March 2011): 2270–85. http://dx.doi.org/10.1016/j.jcp.2010.12.014.
Повний текст джерелаДисертації з теми "Stabilization of PDEs"
Mirrahimi, Mazyar. "Estimation et contrôle non-linéaire : application à quelques systèmes quantiques et classiques." Habilitation à diriger des recherches, Université Pierre et Marie Curie - Paris VI, 2011. http://tel.archives-ouvertes.fr/tel-00844394.
Повний текст джерелаProuff, Antoine. "Correspondance classique-quantique et application au contrôle d'équations d'ondes et de Schrödinger dans l'espace euclidien." Electronic Thesis or Diss., université Paris-Saclay, 2024. https://theses.hal.science/tel-04634673.
Повний текст джерелаWave and Schrödinger equations model a variety of phenomena, such as propagation of light, vibrating structures or the time evolution of a quantum particle. In these models, the high-energy asymptotics can be approximated by classical mechanics, as geometric optics. In this thesis, we study several applications of this principle to control problems for wave and Schrödinger equations in the Euclidean space, using microlocal analysis.In the first two chapters, we study the damped wave equation and the Schrödinger equation with a confining potential in the euclidean space. We provide necessary and sufficient conditions for uniform stability in the first case, or observability in the second one. These conditions involve the underlying classical dynamics which consists in a distorted version of geometric optics, due to the presence of the potential.Then in the third part, we analyze the quantum-classical correspondence principle in a general setting that encompasses the two aforementioned problems. We prove a version of Egorov's theorem in the Weyl--Hörmander framework of metrics on the phase space. We provide with various examples of application of this theorem for Schrödinger, half-wave and transport equations
Trad, Farah. "Stability of some hyperbolic systems with different types of controls under weak geometric conditions." Electronic Thesis or Diss., Valenciennes, Université Polytechnique Hauts-de-France, 2024. http://www.theses.fr/2024UPHF0015.
Повний текст джерелаThe purpose of this thesis is to investigate the stabilization of certain second order evolution equations. First, we focus on studying the stabilization of locally weakly coupled second order evolution equations of hyperbolic type, characterized by direct damping in only one of the two equations. As such systems are not exponentially stable , we are interested in determining polynomial energy decay rates. Our main contributions concern abstract strong and polynomial stability properties, which are derived from the stability properties of two auxiliary problems: the sole damped equation and the equation with a damping related to the coupling operator. The main novelty is thatthe polynomial energy decay rates are obtained in several important situations previously unaddressed, including the case where the coupling operator is neither partially coercive nor necessarily bounded. The main tools used in our study are the frequency domain approach combined with new multipliers technique based on the solutions of the resolvent equations of the aforementioned auxiliary problems. The abstract framework developed is then illustrated by several concrete examples not treated before. Next, the stabilization of a two-dimensional Kirchhoff plate equation with generalized acoustic boundary conditions is examined. Employing a spectrum approach combined with a general criteria of Arendt-Batty, we first establish the strong stability of our model. We then prove that the system doesn't decay exponentially. However, provided that the coefficients of the acoustic boundary conditions satisfy certain assumptions we prove that the energy satisfies varying polynomial energy decay rates depending on the behavior of our auxiliary system. We also investigate the decay rate on domains satisfying multiplier boundary conditions. Further, we present some appropriate examples and show that our assumptions have been set correctly. Finally, we consider a wave wave transmission problem with generalized acoustic boundary conditions in one dimensional space, where we investigate the stability theoretically and numerically. In the theoretical part we prove that our system is strongly stable. We then present diverse polynomial energy decay rates provided that the coefficients of the acoustic boundary conditions satisfy some assumptions. we give relevant examples to show that our assumptions are correct. In the numerical part, we study a numerical approximation of our system using finite volume discretization in a spatial variable and finite difference scheme in time
Vest, Ambroise. "Stabilisation rapide et observation en plusieurs instants de systèmes oscillants." Phd thesis, Université de Strasbourg, 2013. http://tel.archives-ouvertes.fr/tel-00864407.
Повний текст джерелаZhu, Hui. "Contrôle, stabilisation et propagation des singularités pour des EDP dispersives." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS057/document.
Повний текст джерелаIn this thesis, we study the closely related theories of control, stabilization and propagation of singularities for some linear and nonlinear dispersive partial differential equations. Main results come from the author’s works:[1] Zhu, H., 2016. Stabilization of damped waves on spheres and Zoll surfaces of revolution. ESAIM: Control, Optimisation and Calculus of Variations (ESAIM: COCV), to appear.[2] Zhu, H., 2017. Control of three dimensional water waves. arXiv preprint arXiv:1712.06130.[3] Zhu, H., 2018. Propagation of singularities for gravity-capillary water waves. arXiv preprint arXiv:1810.09339.In [1] we studied the stabilization of the damped wave equation on Zoll surfaces of revolution. We gave an example where the region of damping is at the borderline of the geometric control condition, yet the damped waves exhibit a uniform exponential decay of energy, generalizing an example of Lebeau.In [2] we studied the controllability of the gravity-capillary water wave equation. Under the geometric control condition, we proved in arbitrary spatial dimension the exact controllability for spatially periodic small data. This generalizes a result of Alazard, Baldi and Han-Kwan for the 2D gravity-capillary water wave equation.In [3] we studied the propagation of singularities for the gravity-capillary water wave equation. We defined the quasi-homogeneous wavefront set, generalizing the wavefront set of H¨ ormander and the homogeneous wavefront set of Nakamura, and proved propagation results for quasi-homogeneous wavefront sets by the gravity-capillary water wave equation. As corollaries, we obtained local and microlocal smoothing effects for gravity-capillary water waves with sufficient spatial decay
Mohamad, Ali Zeinab. "Well-posedness and stabilization of coupled hyperbolic equations involving Timoshenko, Rao-Nakra and Bresse systems by various types of controls." Electronic Thesis or Diss., Université de Lorraine, 2023. http://www.theses.fr/2023LORR0324.
Повний текст джерелаThis thesis is devoted to study the well-posedness and stabilization of some locally coupled systems. First, we study the well-posedness and stability of a one-dimensional Timoshenko system with localized internal fractional Kelvin-Voigt damping in a bounded domain. We investigate three cases : the first one, when the damping is localized in the bending moment, the second case when the damping is localized in the shear stress, we prove that the system is well posed in the sense of semigroup theory and its energy decays polynomially with rate t−1 in both cases. While, when the fractional Kelvin-Voigt is acting on the shear stress and the bending moment simultaneously, we show that the system is well posed in the sense of semigroup theory and polynomially stable, provided that the two dampings are acting in the same sub-interval. Second, we consider the generalized Rao-Nakra beam equation. The system consists of four waveequations for the longitudinal displacements and the shear angle of the top and bottom layers and one Euler-Bernoulli beam equation for the transversal displacement. We start by proving that the system is well posed in the sense of semigroup theory. Then, we study the stability problem. First, we show that the analytic stability holds when all the displacements are globally damped through Kelvin-Voigt damping. Second, we consider the case where the local damping acts only on the shear angle displacements of the top and bottom layers, and we obtain sufficient conditions for the system to be stronglystable. Using frequency domain arguments combined with the multiplier method, we prove that the energy of the system decays polynomially. Finally, we investigate the stability of a Bresse-type system in the whole line with a frictional damping working only on the first equation (vertical displacement). Our objectives are proving some stability and non-stability results depending on the parameters in the system. More precisely, we prove that, in some cases, the system is polynomially stable, and in some other cases, the solution does not converge to zero at all. The proofs are based on the energy method and Fourier analysis combined with some well choosen weight functions
Klein, Guillaume. "Stabilisation et asymptotique spectrale de l’équation des ondes amorties vectorielle." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAD050/document.
Повний текст джерелаIn this thesis we are considering the vectorial damped wave equation on a compact and smooth Riemannian manifold without boundary. The damping term is a smooth function from the manifold to the space of Hermitian matrices of size n. The solutions of this équation are thus vectorial. We start by computing the best exponential energy decay rate of the solutions in terms of the damping term. This allows us to deduce a sufficient and necessary condition for strong stabilization of the vectorial damped wave equation. We also show the appearance of a new phenomenon of high-frequency overdamping that did not exists in the scalar case. In the second half of the thesis we look at the asymptotic distribution of eigenfrequencies of the vectorial damped wave equation. Were show that, up to a null density subset, all the eigenfrequencies are in a strip parallel to the imaginary axis. The width of this strip is determined by the Lyapunov exponents of a dynamical system defined from the damping term
SONG, EN-SHOU, and 宋恩碩. "Polynomial Fuzzy PDE Model Based Pointwise Stabilization for Semilinear Parabolic Distributed Parameter System." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/55au3z.
Повний текст джерела國立臺北科技大學
自動化科技研究所
107
In this thesis, the problems of pointwise control design and exponential stabilization for the semilinear parabolic distributed parameter systems are investigated. Firstly, a distributed parameter system which is expressed by the nonlinear parabolic partial differential equation (PDE) system is modeled as a polynomial fuzzy parabolic PDE system by Taylor’s series identification approach. For controller design, three kinds of fuzzy controllers are designed for the polynomial fuzzy parabolic PDE system including full state feedback, pointwise state feedback, and collocated pointwise state feedback. By examining the stability analysis, based on the homogeneous polynomial Lyapunov function, Euler's homogeneous relation, and vector-valued Wirtinger's inequality, three different exponential stabilization conditions are proposed in terms of sum-of-squares (SOS). Lastly, a physical system and a numerical example are illustrated to show the feasibility and validity of the proposed methods.
Книги з теми "Stabilization of PDEs"
Rajeev, S. G. Fluid Mechanics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805021.001.0001.
Повний текст джерелаЧастини книг з теми "Stabilization of PDEs"
Trélat, Emmanuel. "Stabilization." In SpringerBriefs on PDEs and Data Science, 61–74. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-5948-4_3.
Повний текст джерелаGuo, Bao-Zhu, and Jun-Min Wang. "Stabilization of Coupled Systems Through Boundary Connection." In Control of Wave and Beam PDEs, 505–92. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12481-6_6.
Повний текст джерелаSmyshlyaev, Andrey, and Miroslav Krstic. "Explicit Formulae for Boundary Control of Parabolic PDEs." In Optimal Control, Stabilization and Nonsmooth Analysis, 231–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-39983-4_15.
Повний текст джерелаŁoś, Marcin, Robert Schaefer, and Maciej Smołka. "Effective Solution of Ill-Posed Inverse Problems with Stabilized Forward Solver." In Computational Science – ICCS 2021, 343–57. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77964-1_27.
Повний текст джерелаKarafyllis, Iasson, and Miroslav Krstic. "An ODE Observer for Lyapunov-Based Global Stabilization of a Bioreactor Nonlinear PDE." In Feedback Stabilization of Controlled Dynamical Systems, 101–24. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51298-3_4.
Повний текст джерелаRigatos, Gerasimos G. "Stabilization of Commodities Pricing PDE Using Differential Flatness Theory." In State-Space Approaches for Modelling and Control in Financial Engineering, 265–79. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52866-3_14.
Повний текст джерелаRigatos, Gerasimos G. "Stabilization of the Multi-asset Black–Scholes PDE Using Differential Flatness Theory." In State-Space Approaches for Modelling and Control in Financial Engineering, 253–63. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52866-3_13.
Повний текст джерелаRigatos, Gerasimos G. "Stabilization of Financial Systems Dynamics Through Feedback Control of the Black-Scholes PDE." In State-Space Approaches for Modelling and Control in Financial Engineering, 235–51. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52866-3_12.
Повний текст джерелаLhachemi, Hugo, and Christophe Prieur. "Output Feedback Stabilization of a Reaction-Diffusion PDE in the Presence of Saturations of the Input and Its Time Derivatives." In Advances in Distributed Parameter Systems, 45–68. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94766-8_3.
Повний текст джерелаErn, A., and J. L. Guermond. "Linear Stabilization for First-Order PDEs." In Handbook of Numerical Analysis, 265–88. Elsevier, 2016. http://dx.doi.org/10.1016/bs.hna.2016.09.017.
Повний текст джерелаТези доповідей конференцій з теми "Stabilization of PDEs"
Zhang, Yihuai, Jean Auriol, and Huan Yu. "Robust Boundary Stabilization of Stochastic Hyperbolic PDEs." In 2024 American Control Conference (ACC), 5333–38. IEEE, 2024. http://dx.doi.org/10.23919/acc60939.2024.10644228.
Повний текст джерелаKang, Wen, Emilia Fridman, Jing Zhang, and Chuan-Xin Liu. "Event-Triggered Stabilization of Parabolic PDEs by Switching." In 2023 62nd IEEE Conference on Decision and Control (CDC). IEEE, 2023. http://dx.doi.org/10.1109/cdc49753.2023.10383781.
Повний текст джерелаKrstic, Miroslav. "Systematization of Approaches to Adaptive Boundary Stabilization of PDEs." In Proceedings of the 45th IEEE Conference on Decision and Control. IEEE, 2006. http://dx.doi.org/10.1109/cdc.2006.377363.
Повний текст джерелаVatankhah, Ramin, Mohammad Abediny, Hoda Sadeghian, and Aria Alasty. "Backstepping Boundary Control for Unstable Second-Order Hyperbolic PDEs and Trajectory Tracking." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87038.
Повний текст джерелаDiagne, Ababacar, Shuxia Tang, Mamadou Diagne, and Miroslav Krstic. "Output Feedback Stabilization of the Linearized Bilayer Saint-Venant Model." In ASME 2016 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/dscc2016-9733.
Повний текст джерелаAnfinsen, Henrik, and Ole Morten Aamo. "Adaptive state feedback stabilization of n + 1 coupled linear hyperbolic PDEs." In 2017 25th Mediterranean Conference on Control and Automation (MED). IEEE, 2017. http://dx.doi.org/10.1109/med.2017.7984234.
Повний текст джерелаLhachemi, Hugo, and Christophe Prieur. "Output feedback stabilization of Reaction-Diffusion PDEs with distributed input delay." In 2022 European Control Conference (ECC). IEEE, 2022. http://dx.doi.org/10.23919/ecc55457.2022.9837995.
Повний текст джерелаAuriol, Jean, and Florent Di Meglio. "Two-sided boundary stabilization of two linear hyperbolic PDEs in minimum time." In 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, 2016. http://dx.doi.org/10.1109/cdc.2016.7798736.
Повний текст джерелаRen, Zhigang, Chao Xu, Qun Lin, and Ryan Loxton. "Output stabilization of boundary-controlled parabolic PDEs via gradient-based dynamic optimization." In 2015 American Control Conference (ACC). IEEE, 2015. http://dx.doi.org/10.1109/acc.2015.7171998.
Повний текст джерелаLi, Xiaoguang, and Jinkun Liu. "Boundary Stabilization for a Class of Hyperbolic PDEs with a Free End." In 2012 Second International Conference on Instrumentation, Measurement, Computer, Communication and Control (IMCCC). IEEE, 2012. http://dx.doi.org/10.1109/imccc.2012.57.
Повний текст джерела