Добірка наукової літератури з теми "Stability intervals"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Stability intervals".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Stability intervals"

1

Satoh, Akira. "Stability of Computational Algorithms Used in Molecular Dynamics Simulations." Journal of Fluids Engineering 117, no. 3 (September 1, 1995): 531–34. http://dx.doi.org/10.1115/1.2817296.

Повний текст джерела
Анотація:
The present study focuses on a three-dimensional Lennard-Jones system in a thermodynamic equilibrium in order to discuss divergence processes, the relationship between time intervals and divergence times, and the influence of time intervals on thermodynamic quantities and transport coefficients under various number density and temperature. It is found that the velocities of molecules in a system gradually increase with time until the system suddenly diverges exponentially. The time interval-divergence time relationship can be expressed in approximate terms as linear functions if the data are plotted on logarithmic scales, and the system diverges more easily as temperature or number density increases. Thermodynamic quantities show the influence of large time intervals more clearly than do transport coefficients.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kumiega, Andrew, Thaddeus Neururer, and Ben Van Vliet. "Investor Behavior, Reporting Intervals, and HedgeFund Stability." Journal of Investing 21, no. 2 (May 31, 2012): 40–48. http://dx.doi.org/10.3905/joi.2012.21.2.040.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mareschal, Bertrand. "Weight stability intervals in multicriteria decision aid." European Journal of Operational Research 33, no. 1 (January 1988): 54–64. http://dx.doi.org/10.1016/0377-2217(88)90254-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kreiss, Gunilla, Heinz-Otto Kreiss, and Jens Lorenz. "Stability of Viscous Shocks on Finite Intervals." Archive for Rational Mechanics and Analysis 187, no. 1 (October 17, 2007): 157–83. http://dx.doi.org/10.1007/s00205-007-0073-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Prokofiev, Anton V. "Fast Background Modeling Algorithm Based on Stability Intervals." Journal of Automation and Information Sciences 40, no. 6 (2008): 72–79. http://dx.doi.org/10.1615/jautomatinfscien.v40.i6.70.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Aguarón, Juan, and José Marı́a Moreno-Jiménez. "Local stability intervals in the analytic hierarchy process." European Journal of Operational Research 125, no. 1 (August 2000): 113–32. http://dx.doi.org/10.1016/s0377-2217(99)00204-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gouveia, M. C., L. C. Dias, and C. H. Antunes. "Super-efficiency and stability intervals in additive DEA." Journal of the Operational Research Society 64, no. 1 (January 2013): 86–96. http://dx.doi.org/10.1057/jors.2012.19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Alonso, Jose Miguel. "Optimal intervals of stability of a forced oscillator." Proceedings of the American Mathematical Society 123, no. 7 (July 1, 1995): 2031. http://dx.doi.org/10.1090/s0002-9939-1995-1301005-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Li, Chenhao, and Yusheng Xue. "Effects of cascading failure intervals on synchronous stability." International Journal of Electrical Power & Energy Systems 106 (March 2019): 502–10. http://dx.doi.org/10.1016/j.ijepes.2018.10.036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Boros, Z., Zs Páles, and P. Volkmann. "On stability for the Jensen equation on intervals." Aequationes Mathematicae 60, no. 3 (November 1, 2000): 291–97. http://dx.doi.org/10.1007/s000100050155.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Stability intervals"

1

Couture, Chad. "Steady States and Stability of the Bistable Reaction-Diffusion Equation on Bounded Intervals." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37110.

Повний текст джерела
Анотація:
Reaction-diffusion equations have been used to study various phenomena across different fields. These equations can be posed on the whole real line, or on a subinterval, depending on the situation being studied. For finite intervals, we also impose diverse boundary conditions on the system. In the present thesis, we solely focus on the bistable reaction-diffusion equation while working on a bounded interval of the form $[0,L]$ ($L>0$). Furthermore, we consider both mixed and no-flux boundary conditions, where we extend the former to Dirichlet boundary conditions once our analysis of that system is complete. We first use phase-plane analysis to set up our initial investigation of both systems. This gives us an integral describing the transit time of orbits within the phase-plane. This allows us to determine the bifurcation diagram of both systems. We then transform the integral to ease numerical calculations. Finally, we determine the stability of the steady states of each system.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Selfridge, Colin. "Stability of stochastic interval systems." Thesis, University of Strathclyde, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248725.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dinh, Ngoc Thach. "Observateur par intervalles et observateur positif." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112335/document.

Повний текст джерела
Анотація:
Cette thèse est construite autour de deux types d'estimation de l'état d'un système, traités séparément. Le premier problème abordé concerne la construction d'observateurs positifs basés sur la métrique de Hilbert. Le second traite de la synthèse d'observateurs par intervalles pour différentes familles de systèmes dynamiques et la construction de lois de commande robustes qui stabilisent ces systèmes.Un système positif est un système dont les variables d'état sont toujours positives ou nulles lorsque celles-ci ont des conditions initiales qui le sont. Les systèmes positifs apparaissent souvent de façon naturelle dans des applications pratiques où les variables d'état représentent des quantités qui n'ont pas de signification si elles ont des valeurs négatives. Dans ce contexte, il parait naturel de rechercher des observateurs fournissant des estimées elles aussi positives ou nulles. Dans un premier temps, notre contribution réside dans la mise au point d'une nouvelle méthode de construction d'observateurs positifs sur l'orthant positif. L'analyse de convergence est basée sur la métrique de Hilbert. L'avantage concurrentiel de notre méthode est que la vitesse de convergence peut être contrôlée.Notre étude concernant la synthèse d'observateurs par intervalles est basée sur la théorie des systèmes dynamiques positifs. Les observateurs par intervalles constituent un type d'observateurs très particuliers. Ce sont des outils développés depuis moins de 15 ans seulement : ils trouvent leur origine dans les travaux de Gouzé et al. en 2000 et se développent très rapidement dans de nombreuses directions. Un observateur par intervalles consiste en un système dynamique auxiliaire fournissant un intervalle dans lequel se trouve l'état, en considérant que l'on connait des bornes pour la condition initiale et pour les quantités incertaines. Les observateurs par intervalles donnent la possibilité de considérer le cas où des perturbations importantes sont présentes et fournissent certaines informations à tout instant
This thesis presents new results in the field of state estimation based on the theory of positive systems. It is composed of two separate parts. The first one studies the problem of positive observer design for positive systems. The second one which deals with robust state estimation through the design of interval observers, is at the core of our work.We begin our thesis by proposing the design of a nonlinear positive observer for discrete-time positive time-varying linear systems based on the use of generalized polar coordinates in the positive orthant. For positive systems, a natural requirement is that the observers should provide state estimates that are also non-negative so they can be given a physical meaning at all times. The idea underlying the method is that first, the direction of the true state is correctly estimated in the projective space thanks to the Hilbert metric and then very mild assumptions on the output map allow to reconstruct the norm of the state. The convergence rate can be controlled.Later, the thesis is continued by studying the so-called interval observers for different families of dynamic systems in continuous-time, in discrete-time and also in a context "continuous-discrete" (i.e. a class of continuous-time systems with discrete-time measurements). Interval observers are dynamic extensions giving estimates of the solution of a system in the presence of various type of disturbances through two outputs giving an upper and a lower bound for the solution. Thanks to interval observers, one can construct control laws which stabilize the considered systems
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Junghanns, P., and U. Weber. "Local theory of projection methods for Cauchy singular integral equations on an interval." Universitätsbibliothek Chemnitz, 1998. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801281.

Повний текст джерела
Анотація:
We consider a finite section (Galerkin) and a collocation method for Cauchy singular integral equations on the interval based on weighted Chebyshev polymoninals, where the coefficients of the operator are piecewise continuous. Stability conditions are derived using Banach algebra techniques, where also the system case is mentioned. With the help of appropriate Sobolev spaces a result on convergence rates is proved. Computational aspects are discussed in order to develop an effective algorithm. Numerical results, also for a class of nonlinear singular integral equations, are presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Junghanns, P., and U. Weber. "Local theory of a collocation method for Cauchy singular integral equations on an interval." Universitätsbibliothek Chemnitz, 1998. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801203.

Повний текст джерела
Анотація:
We consider a collocation method for Cauchy singular integral equations on the interval based on weighted Chebyshev polynomials , where the coefficients of the operator are piecewise continuous. Stability conditions are derived using Banach algebra methods, and numerical results are given.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Xiao, Bo. "Stability and performance analysis of polynomial fuzzy-model-based control systems and interval type-2 fuzzy logic systems." Thesis, King's College London (University of London), 2018. https://kclpure.kcl.ac.uk/portal/en/theses/stability-and-performance-analysis-of-polynomial-fuzzymodelbased-control-systems-and-interval-type2-fuzzy-logic-systems(1a455ca8-f27d-49aa-ab4a-8ae697aeba17).html.

Повний текст джерела
Анотація:
The main research objective in this thesis is to investigate the stability and performance of the interval type-2 (IT2) polynomial-fuzzy-model-based (PFMB) control system. PFMB control scheme has been developed recently around 2009 and demonstrates more potential than the traditional Takagi-Sugeno fuzzy-model-based (T-S FMB) control approach to represent the nonlinearities in the plant. Meanwhile, the IT2 fuzzy logic has also been proposed to incorporate uncertainties of the nonlinear systems into the membership functions directly. Through the IT2 PFMB control design approach, both the nonlinearity and the uncertainty in the system can be handled well. The control performance and the relaxation of stability conditions of IT2 PFMB control systems are studied and investigated in the thesis. The main contribution of the thesis is summarized in three tasks and presented as following: In the first task in Chapter 3, the stability conditions of the PFMB systems equipped with mismatched IT2 membership functions are investigated. Unlike the membership-function-independent (MFI) methods, the information and properties of IT2 membership functions are considered in the stability analysis and contained in the stability conditions in terms of sum-of-squares (SOS) based on the Lyapunov stability theory. Three methods, demonstrating their own merits, are proposed to conduct the stability analysis for the IT2 PFMB control systems and all of the methods can achieve feasible control results. All the three approaches are well explained, which offers the reader systematic ways to include the information of the membership functions into the analysis. In addition, all the approaches are compared and the pros and cons are presented to help the reader choose the most appropriate approach in the applications. In the second task presented in Chapter 4, the membership-functions-dependent (MFD) methods have been proceeded to the tracking control problems and the output feedback tracking issues of IT2 PFMB fuzzy control systems are investigated. The output-feedback IT2 polynomial fuzzy controller connected with the nonlinear plant in a closed loop drives the system states of the nonlinear plant to track those of the stable reference model. The system stability is investigated based on the Lyapunov stability theory under the SOS-based analysis approach and the SOSbased stability conditions are derived subject to a prescribed H1 performance. Like in the first work, the information of membership functions is also included in the analysis to facilitate the analysis and help improve the tracking performance in terms of H1 performance. Considering the implementation of the mentioned control schemes on digital computers, the sampled-data control systems are investigated as the last work in the thesis, which is presented in Chapter 5. In this task, the IT2 PFMB tracking control system is extended to the sampled-data based one. Through using the sampled output of both the control system and the reference system, an IT2 polynomial sampled-data based output feedback fuzzy controller can be designed to ful ll the tracking control task, the stability conditions can be obtained in terms of SOS and the tracking error is attenuated by the H1 performance index. As did in the previous two works, the information of the IT2 membership functions is used to relax the stability conditions and improve the tracking performance. The approaches proposed in the thesis to relax the stability conditions as well as to improve the tracking performance of the IT2 PFMB control systems are proved through the Lyapunov based stability theory. Meanwhile, simulation examples are provided to demonstrate and verify the theoretical analysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Huang, Hsun-Hsuan. "Controller Design for Stability and Rollover Prevention of Multi-body Ground Vehicles with Uncertain Dynamics and Faults." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1253631414.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Недашківська, Надія Іванівна. "Методологія та інструментарій підтримки прийняття рішень на основі ієрархічних та мережевих моделей". Thesis, КПІ ім. Ігоря Сікорського, 2018. https://ela.kpi.ua/handle/123456789/25122.

Повний текст джерела
Анотація:
Робота виконана в Інституті прикладного системного аналізу Національного технічного університету України «Київський політехнічний інститут імені Ігоря Сікорського»
У дисертаційній роботі запропоновано методологію підтримки прийняття рішень, яка з використанням розробленого системного підходу дозволяє підвищити достовірність розв’язків в складних слабко структурованих системах на основі ієрархічних та мережевих моделей і включає нові та удосконалені методи: оцінювання і підвищення узгодженості матриць парних порівнянь загального виду залежно від властивостей цих матриць, розрахунку довірчих інтервалів для локальних ваг, розрахунку нечітких локальних ваг, гібридний метод розрахунку локальних та агрегованих ваг, метод комплексного оцінювання чутливості розв'язку та спосіб оцінювання реверсу рангів при використанні різних правил комбінування функцій довіри. Розроблено нові методики, засоби та система моделювання експертного оцінювання. Практичне значення одержаних результатів полягає у створенні інструментарію у вигляді системи підтримки прийняття рішень, який застосовано при розв'язанні практичних задач на замовлення міністерств і відомств України.
In the dissertation work, an important scientific and technical problem has been solved, which deals with development of mathematical and methodological support for increasing the reliability of solutions to decision analysis problems in complex weakly structured systems based on hierarchical and network models. The scientific novelty of the work is determined by the following theoretical and practical results obtained by author. Using proposed systematic approach, a new methodology of decision support is developed, which allows to increase the reliability of solutions of decision analysis problems in complex weakly structured systems on the basis of hierarchical and network models. This methodology includes the proposed and described below methods and techniques. A new method for evaluating and improving the consistency of expert judgements, which are given in a form of pairwise comparison matrix, is developed. Features of the method include an analysis of property of weak inconsistency, the presence of cycles in a pairwise comparison matrix and a search for the most inconsistent element of this matrix. The method can be applied to pairwise comparison matrices of various types, including multiplicative, additive, fuzzy and other. A Transitiv method for searching the most inconsistent elements of the matrix is proposed. A method of flows for finding the most inconsistent element of the matrix is improved by taking into account the input flow. The simulation shows that the developed Transitiv method and the method of flows are more efficient than existing methods. Usage of the proposed method of consistency evaluating and improving allows to obtain pairwise comparison matrices of acceptable quality for all elements of the model and these matrices can be used further to find local weights of model’s elements. A new method for calculating confidence intervals of local weights is developed, which, unlike others, takes into account the uncertainty of scale, expert's personal qualities such as optimism and pessimism, and does not require comparison of groups of elements with the frame. The method is based on notions of the Dempster-Schafer theory of evidence and results of computer simulation of expert's judgments. An uncertainty index of expert judgments is proposed, assuming that this uncertainty is caused by above factors. An improved method for calculating fuzzy local weights on basis of fuzzy pairwise comparison matrix is proposed, which differs from others in estimating and increasing the consistency of the matrix and taking into account properties of weak and strong order preservation on a set of calculated fuzzy weights. This method, unlike existing ones, makes it possible to determine the weak inconsistency of fuzzy matrix, to assess the acceptability of inconsistency level of fuzzy matrix for reliable local weights calculation, and to find the most inconsistent elements of the matrix using methods developed for crisp matrices. A hybrid method for calculating aggregated weights of hierarchical model elements with interdependent decision criteria has been improved, when input data for evaluation are fuzzy expert judgments. Improvement consists in using the developed more effective methods for assessment and increasing of crisp and fuzzy expert judgements consistency. A method for complex sensitivity analysis of results has been improved by taking into account sensitivity analysis of local rankings of model’s elements. In the developed method for estimating local sensitivity, intervals and indices of stability of pairwise comparison matrix elements are calculated, which retain the best decision alternative and all ranking of alternatives. Resulting stability intervals allow to find critical elements of the problem that require more careful analysis. A new technique for estimating the rank reversal is suggested, which can appear after applying combination rules of confidence functions for model’s elements. Using this technique, the Dempster, Yager, Zhang, Dubois and Prada and other combination rules were examined. Cases and features of rank reversals appearance in these rules were revealed. New techniques and tools for modeling a process of decision alternatives evaluation by an expert of high competence, expert-optimist and expert-pessimist while performing pairwise comparisons are developed. Using these techniques and tools, efficiency of proposed methods has been proved. A decision support system has been constructed on basis of proposed methods and techniques. This system has been used to solve several practical problems. Within the work with the Ministry of Education and Science of Ukraine, critical technologies of the Ukrainian energy industry were assessed, priorities of technologies were calculated and aggregated according to hierarchical model of criteria, and on their basis the most priority technologies for implementation were identified. In the course of research work together with the Institute of Space Research, directions of the expedient use of space information for remote sensing of the Earth for geoinformation systems were evaluated and the relative demand for the space information in the national economy of Ukraine was determined. On order of the Kyiv City State Administration, social problems of the Kyiv city were estimated in terms of benefits, costs, opportunities and risks, followed by selection of priority activities for implementation and evaluation of scenarios of the transport system development. Results of the dissertation work have been introduced into the educational process of the department "Mathematical methods of system analysis" of Institute for applied system analysis of National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”.
В диссертационной работе предложена методология поддержки принятия решений, которая с использованием разработанного системного подхода позволяет повысить достоверность решений в сложных слабо структурированных системах на основе иерархических и сетевых моделей и включает новые и усовершенствованные методы: оценки и повышения согласованности матриц парных сравнений общего вида в зависимости от свойств этих матриц, расчета доверительных интервалов для локальных весов, расчета нечетких локальных весов, гибридный метод расчета локальных и агрегированных весов, метод комплексной оценки чувствительности решения, а также способ оценки реверса рангов при использовании различных правил комбинирования функций доверия. Разработаны новые методики, средства и система моделирования экспертного оценивания. Практическое значение полученных результатов заключается в создании инструментария в виде системы поддержки принятия решений, который применен при решении практических задач по заказу министерств и ведомств Украины.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Недашківська, Надія Іванівна. "Методологія та інструментарій підтримки прийняття рішень на основі ієрархічних та мережевих моделей". Doctoral thesis, Київ, 2018. https://ela.kpi.ua/handle/123456789/25119.

Повний текст джерела
Анотація:
Робота виконана в Інституті прикладного системного аналізу Національного технічного університету України «Київський політехнічний інститут імені Ігоря Сікорського»
У дисертаційній роботі запропоновано методологію підтримки прийняття рішень, яка з використанням розробленого системного підходу дозволяє підвищити достовірність розв’язків в складних слабко структурованих системах на основі ієрархічних та мережевих моделей і включає нові та удосконалені методи: оцінювання і підвищення узгодженості матриць парних порівнянь загального виду залежно від властивостей цих матриць, розрахунку довірчих інтервалів для локальних ваг, розрахунку нечітких локальних ваг, гібридний метод розрахунку локальних та агрегованих ваг, метод комплексного оцінювання чутливості розв'язку та спосіб оцінювання реверсу рангів при використанні різних правил комбінування функцій довіри. Розроблено нові методики, засоби та система моделювання експертного оцінювання. Практичне значення одержаних результатів полягає у створенні інструментарію у вигляді системи підтримки прийняття рішень, який застосовано при розв'язанні практичних задач на замовлення міністерств і відомств України.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Meyer, François. "Comparaison d'horloges atomiques distantes par les satellites de télévision directe TDF2 et Télécom 2 A." Besançon, 1995. http://www.theses.fr/1995BESA2030.

Повний текст джерела
Анотація:
Entre 1990 et 1994, deux expériences de transfert de temps ont été menées avec les satellites de télévision directe TDF2 et Télécom-2A, entre 41aboratoires : le L. P. T. F. (Paris), le C. N. E. S. (Toulouse), l'O. C. A. (Grasse) et l'Observatoire de Besançon. Le principe de l'utilisation passive des signaux de télévision transmis par les satellites géostationnaires à des fins de transfert de temps (comparaîson des écarts de temps d'horloges atomiques distantes) est exposé, ainsi que la configuration matérielle dans laquelles les deux expériences ont été effectuées. Les principales sources d'incertitude sur ces transferts de temps sont dues à l'incertitude sur la position du satellite, aux perturbations de la propagation des signaux, et aux délais internes de chaque station. Tous ces phénomènes sont analysées et leur influence sur l'exactitude des résultats est chiffrée. L'influence du mouvement du satellite est ensuite étudiée en détail, et trois méthodes sont proposées pour en réduire les effets : la première est une méthode différentielle qui exploite certaines propriétés de l'orbite géostationnaire ; la deuxième méthode est basée sur une détermination explicite de la position du satellite effectuée préalablement au transfert de temps proprement dit. La troisième méthode met en oeuvre un filtrage numérique (filtre de Kalman) des données acquises entre les quatre stations de l'expérience, dans le but de restituer l'orbite du satellite. Dans les configurations les plus favorables des stations utilisées, l'exactitude des transferts de temps effectués peut une dizaine de nanosecondes, et des instabilités de fréquence peuvent être mesurées au niveau de 10 [puissance] -13 après moins de 24 heures d'intégration, et de 10 [puissance] -14 après moins de 10 jours
Between 1990 and 1994, two time transfer experiments have been set up wilh direct TV satellites TDF2 ànd Telecom-2A, implying four laboratories : the L. P. T. F. In Paris, the C. N. E. S. In Toulouse, the O. C. A. In Grasse and the Observatory of Besançon. The principle of time transfer (time comparison or remote atomic clocks, by passive use of television signals broadcasted by geostationary satellites is described together with the experimental setup that was used. The main sources of uncertainty on the time transfer are the uncertainty on the satellite position, perturbation of the signal propagation. And internal delays. All these phenomena are studied and their influence on the accuracy of the results is evaluated. Influence of the satellite motion is studied in detail, and three methodes are proposed to lessen its influence : the first one takes advantage of some properties of the geostationary orbit ; the second method is based on an explicit detemination of the satellite position carried out before the time transfer itself. The third method is a numeric (Kalman) filter using data from 4 stations in order to perform orbit restitution. Ln most favorable configurations, accuracy of time transfer can reach about 10 ns, and frequency instabilities lower han 10 [to the minus] 13 can be measured after an averaging tune of one day, or lower than 10 [to the minus] 14 after less than 10 days
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Stability intervals"

1

Vvedenie v teorii͡u ustoĭchivosti dvizhenii͡a na konechnom intervale vremeni. Moskva: "Nauka," Glav. red. fiziko-matematicheskoĭ lit-ry, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

P, Bhattacharyya S., and United States. National Aeronautics and Space Administration., eds. Parametric stability margin for multilinear interval control systems. [Washington, DC: National Aeronautics and Space Administration, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

P, Bhattacharyya S., and United States. National Aeronautics and Space Administration., eds. Stability margins for multilinear interval systems via phase conditions: A unified approach. [Washington, DC: National Aeronautics and Space Administration, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Stability margins for multilinear interval systems via phase conditions: A unified approach. [Washington, DC: National Aeronautics and Space Administration, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Surface Layer Stability Transition Research Minimum Neutral Event-to- Sunrise Time Interval: 2001 September Case Study. Storming Media, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Stability intervals"

1

Okoneshnikov, Yu D. "Confidence intervals for the parameters of strongly stable laws." In Stability Problems for Stochastic Models, 242–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/bfb0074822.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zaslavski, Alexander J. "Stability Results for Bolza Problems." In Discrete-Time Optimal Control and Games on Large Intervals, 131–91. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52932-5_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gorban, Igor I. "Experimental Investigation of the Statistical Stability of Physical Processes Over Long Observation Intervals." In The Statistical Stability Phenomenon, 77–90. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43585-5_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chapellat, Hervé, and S. P. Bhattacharyya. "Robust Stability and Stabilization of Interval Plants." In Robustness in Identification and Control, 207–29. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4615-9552-6_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lu, Wenlian, and Tianping Chen. "Robust Stability of Interval Delayed Neural Networks." In Advances in Neural Networks — ISNN 2005, 215–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11427391_33.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sladký, Karel. "Stability analysis of time—varying discrete interval systems." In System Modelling and Optimization, 179–86. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-0-387-34897-1_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Polyak, B. T. "Robust Stability of Interval Matrices: a Stochastic Approach." In Stochastic Programming Methods and Technical Applications, 202–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-45767-8_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Liu, Duyu, and Xin Gao. "Globe Robust Stability Analysis for Interval Neutral Systems." In Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence, 614–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25944-9_80.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhang, Jiye, Dianbo Ren, and Weihua Zhang. "Exponential Stability of Interval Neural Networks with Variable Delays." In Lecture Notes in Computer Science, 357–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11816157_40.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ruszewski, Andrzej. "Practical Stability and Asymptotic Stability of Interval Fractional Discrete-Time Linear State-Space System." In Recent Advances in Automation, Robotics and Measuring Techniques, 217–27. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05353-0_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Stability intervals"

1

Khrustalev, M. M., and A. S. Khalina. "Nash equilibrium for quasi-linear stochastic systems operating on infinite time intervals." In 2018 14th International Conference "Stability and Oscillations of Nonlinear Control Systems" (Pyatnitskiy's Conference) (STAB). IEEE, 2018. http://dx.doi.org/10.1109/stab.2018.8408363.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Guo, Shuli, Shaoze Yan, and Lin Huang. "Mathematical Models and Stability of Linear System in the Presence of Control Saturations." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-43947.

Повний текст джерела
Анотація:
In this paper, a new method for the control system with saturation inputs is given. By defining saturation function, the whole space is divided into 3m intervals and relationships among equilibrium points and intervals are established. The equilibrium points are discussed for the linear system under saturated inputs.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chen, Jie, Peilin Fu, Cesar-Fernando Mendez-Barrios, Silviu-Iulian Niculescu, and Hongwei Zhang. "Stability and instability intervals of polynomially dependent systems: An matrix pencil analysis." In 2017 American Control Conference (ACC). IEEE, 2017. http://dx.doi.org/10.23919/acc.2017.7963198.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

"Atmospheric stability determination using fine time-step intervals for timing of aerial application." In 2016 ASABE International Meeting. American Society of Agricultural and Biological Engineers, 2016. http://dx.doi.org/10.13031/aim.20162461162.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lombardi, Michael A. "Determining the Uncertainty of Frequency Measurements Referenced to GPS Disciplined Oscillators." In NCSL International Workshop & Symposium. NCSL International, 2013. http://dx.doi.org/10.51843/wsproceedings.2013.34.

Повний текст джерела
Анотація:
GPS disciplined oscillators (GPSDOs) are commonly used as references for frequency calibrations. Over long intervals, a GPSDO is an inherently accurate source of frequency because it is continuously adjusted to agree with the Coordinated Universal Time (UTC) time scale maintained by the United States Naval Observatory (USNO). However, most frequency calibrations last for intervals of one day or less, and it can be difficult for metrologists to determine the uncertainty of a GPSDO during a short interval, and even more difficult to prove their uncertainty claims to skeptical laboratory assessors. This paper can serve as a guide to metrologists and laboratory assessors who work with GPSDOs as frequency standards. It describes the relationship between GPS time and Coordinated Universal Time (UTC) and explains why GPS time is traceable to the SI. It discusses how a GPSDO utilizes the GPS signals to control the frequency of its local oscillator. It explains how to estimate frequency stability, and how to apply estimates of frequency stability to determine the uncertainty of a GPSDO used as the reference for a frequency calibration.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Butcher, Eric A., Haitao Ma, Ed Bueler, Victoria Averina, and Zsolt Szabo. "Stability Analysis of Parametrically Excited Systems With Time-Delay." In ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/vib-48574.

Повний текст джерела
Анотація:
This paper presents a new technique for studying the stability properties of parametrically excited dynamic systems with time delay modeled by delay-differential equations (DDEs) with time-periodic parameters. By employing a shifted Chebyshev polynomial approximation in each time interval with length equal to the delay period, the dynamic system can be reduced to a set of linear difference equations for the Chebyshev expansion coefficients of the state vector in the previous and current intervals. This defines a linear map which is the “infinite-dimensional Floquet transition matrix U”. Two different formulas for the computation of the approximate U, whose size is determined by the number of polynomials employed, are given. The first one, which results in a numerical stability matrix, uses the direct integral form of the original system in state space form while the second, which can give a symbolic stability matrix in terms of parameters, uses a convolution integral (variation of parameters) formulation. An extension of the method to the case where the delay and parametric periods are commensurate is also available. Numerical and symbolic stability charts are produced for several examples of time-periodic DDEs, including the delayed Mathieu equation and a model for regenerative chatter in impedance-modulated turning. The results indicate that this method is a effective way to study the stability of periodic DDEs.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Matsuda, Tadasuke, Michihiro Kawanishi, and Tatsuo Narikiyo. "Computation method for complete D-stability intervals of a class of matrices based on generalization of the stability feeler." In 2010 49th IEEE Conference on Decision and Control (CDC). IEEE, 2010. http://dx.doi.org/10.1109/cdc.2010.5716989.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

da Cruz Figueredo, Luis Felipe, Joao Yoshiyuki Ishihara, Geovany Araujo Borges, and Adolfo Bauchspiess. "Robust stability criteria for uncertain systems with delay and its derivative varying within intervals." In 2011 American Control Conference. IEEE, 2011. http://dx.doi.org/10.1109/acc.2011.5990910.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Varma, Vineeth S., Romain Postoyan, Irinel-Constantin Morarescu, and Jamal Daafouz. "Stochastic maximum allowable transmission intervals for the stability of linear wireless networked control systems." In 2017 IEEE 56th Annual Conference on Decision and Control (CDC). IEEE, 2017. http://dx.doi.org/10.1109/cdc.2017.8264658.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zhong, Hanyi, Zhengsong Qiu, Ganghua Chen, Weian Huang, Bingqiang Dong, Daoming Zhang, Jianguo Fu, and Shiquan Tong. "Improving the Wellbore Stability While Drilling Long Open Hole Shale Intervals in Tahe Oil Field." In SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. Society of Petroleum Engineers, 2015. http://dx.doi.org/10.2118/176165-ms.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії