Добірка наукової літератури з теми "Split algorithm"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Split algorithm".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Split algorithm"
Liang, Liang. "A Fusion Multiobjective Empire Split Algorithm." Journal of Control Science and Engineering 2020 (December 14, 2020): 1–14. http://dx.doi.org/10.1155/2020/8882086.
Повний текст джерелаOrtiz Díaz, Agustín Alejandro, Isvani Inocencio Frías Blanco, Laura María Palomino Mariño, and Fabiano Baldo. "An Online Tree-Based Approach for Mining Non-Stationary High-Speed Data Streams." Revista de Informática Teórica e Aplicada 27, no. 1 (January 15, 2020): 36–47. http://dx.doi.org/10.22456/2175-2745.90822.
Повний текст джерелаPinker, Rachel T., Donglian Sun, Meng-Pai Hung, Chuan Li, and Jeffrey B. Basara. "Evaluation of Satellite Estimates of Land Surface Temperature from GOES over the United States." Journal of Applied Meteorology and Climatology 48, no. 1 (January 1, 2009): 167–80. http://dx.doi.org/10.1175/2008jamc1781.1.
Повний текст джерелаDelsarte, P., and Y. Genin. "The split Levinson algorithm." IEEE Transactions on Acoustics, Speech, and Signal Processing 34, no. 3 (June 1986): 470–78. http://dx.doi.org/10.1109/tassp.1986.1164830.
Повний текст джерелаHidayat, Trifenaus Prabu, and Andre Sugioko. "Performance Analyzes of Bee Colony Split-Plot Algorithm." International Journal of Information and Education Technology 5, no. 7 (2015): 549–52. http://dx.doi.org/10.7763/ijiet.2015.v5.566.
Повний текст джерелаJambunathan, Suriya Prakash. "A Machine Learning-Based Approach for Antenna Design Using Class_Reg Algorithm Optimized Using Genetic Algorithm." International Journal for Research in Applied Science and Engineering Technology 9, no. 11 (November 30, 2021): 1682–86. http://dx.doi.org/10.22214/ijraset.2021.39097.
Повний текст джерелаCui, Ying Hua, Yu Ping Zhao, Hui Yang Wang, and Jin He Zhou. "Pre-Split Anti-Collision Binary Tree Algorithm." Applied Mechanics and Materials 220-223 (November 2012): 2403–6. http://dx.doi.org/10.4028/www.scientific.net/amm.220-223.2403.
Повний текст джерелаHuang, Zheng, Yanting Zhang, Lin Wang, Jingyu Xu, and Yunlong Zheng. "Research on multi-objective parameter optimization of split flow dual flash thermodynamic cycle." Journal of Physics: Conference Series 2728, no. 1 (March 1, 2024): 012008. http://dx.doi.org/10.1088/1742-6596/2728/1/012008.
Повний текст джерелаChing, P. C., and K. F. Wan. "Generalised split structure adaptive algorithm." Electronics Letters 31, no. 24 (November 23, 1995): 2084–85. http://dx.doi.org/10.1049/el:19951435.
Повний текст джерелаJin, C., L. J. Lu, and J. N. Min. "A two-stage construction heuristic approach for vehicle routing problem with split deliveries and pickups: Case studies and performance comparison." Advances in Production Engineering & Management 17, no. 1 (March 15, 2022): 121–33. http://dx.doi.org/10.14743/apem2022.1.425.
Повний текст джерелаДисертації з теми "Split algorithm"
Liu, Rongrong. "A Novel Attack Method Against Split Manufactured Circuits." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1573812230926837.
Повний текст джерелаShi, Haijian. "Best-first Decision Tree Learning." The University of Waikato, 2007. http://hdl.handle.net/10289/2317.
Повний текст джерелаLian, Tea Sormbroen. "Computing Almost Split Sequences : An algorithm for computing almost split sequences of finitely generated modules over a finite dimensional algebra." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-19355.
Повний текст джерелаLakshman, Prabhashankar. "Parallel implementation of the split and merge algorithm on the hypercube machine." Ohio : Ohio University, 1989. http://www.ohiolink.edu/etd/view.cgi?ohiou1182440993.
Повний текст джерелаBrochier, Felipe Osmar Berwanger. "Otimização de um condicionador de ar do tipo split com vazão variável de refrigerante." Universidade do Vale do Rio dos Sinos, 2014. http://www.repositorio.jesuita.org.br/handle/UNISINOS/4619.
Повний текст джерелаMade available in DSpace on 2015-07-23T01:11:46Z (GMT). No. of bitstreams: 1 FelipeBrochier.pdf: 2248315 bytes, checksum: 51a12fbb2e530bf08f1847557932b381 (MD5) Previous issue date: 2014-02
Nenhuma
Este trabalho tem como objetivo otimizar o custo operacional dependente dos parâmetros de vazão de ar do condensador, número de aletas e de circuitos do condensador, frequência do compressor e parâmetros do dispositivo de expansão de um sistema de um condicionador de ar do tipo split hiwall unitário com vazão variável de refrigerante (VRV). Para a otimização foram consideradas as freqüências de ocorrência de quatro condições de temperatura do ambiente externo na cidade de Porto Alegre. O condicionador de ar abordado neste trabalho troca calor utilizando um ciclo de compressão de vapor de simples estágio, tendo como fluido de trabalho o refrigerante R-410A. O sistema completo, composto de um compressor, um condensador, um evaporador e tubo capilar, foi modelado analiticamente utilizando o software EES (Engineering Equation Solver) e ajustado de acordo com testes realizados em calorímetro. Para a otimização, um algoritmo genético foi programado no próprio EES. Após a otimização do custo operacional em função dos parâmetros físicos de projeto, o COP aumentou em até 12 % na condição de ar externo a 35 °C. A otimização em função dos parâmetros de controle mostrou aumento ainda mais significativo do COP do sistema. Também é feita uma comparação entre os valores de COP de um sistema de vazão constante de ar e refrigerante e um sistema com vazão variável de ar e refrigerante.
This work aims to optimize the operational cost of an air conditioning system with variable refrigerant flow (VRF). The cost is dependent of the following parameters: condenser air flow, number of condenser fins and circuits, compressor frequency and the expansion device. The optimization considered the frequencies of occurrence of four distinct ambient temperatures in the city of Porto Alegre. The air conditioner presented in this work exchange heat using a single stage vapor compression cycle, with the refrigerant R-410A as the working fluid. The complete system comprises a compressor, a condenser, an evaporator and a capillary tube and was analytically modeled using the EES (Engineering Equation Solver) software. The parameters were fitted according to results obtained in a calorimeter and for optimization, a genetic algorithm was programmed using the same software. After the optimization of the operational cost as a function of the project parameters, the COP was raised up to 12% in external ambient air at 35 °C. The optimization of the operational cost as a function of the control parameters showed even a more significant system COP raise. A comparison between the COP of a constant air and refrigerant flow system and a variable air and refrigerant flow system was also performed.
Shwayder, Kobey. "The best binary split algorithm a deterministic method for dividing vowel inventories into contrastive distinctive features /." Waltham, Mass. : Brandeis University, 2009. http://dcoll.brandeis.edu/handle/10192/23254.
Повний текст джерелаChen, Yuan. "A Fast, Passive and Accurate Model Generation Algorithm for RLCG Transmission Lines with Skin Effects." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1116250638.
Повний текст джерелаRao, Michaël. "Décompositions de graphes et algorithmes efficaces." Metz, 2006. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/2006/Rao.Michael.SMZ0607.pdf.
Повний текст джерелаThis thesis deals with the modular decomposition and several of its generalizations. In a first time we show how graph decompositions can be used to solve efficiently some problems on graphs. We show how the modular decomposition can be used to obtain linear algorithms for " independent set ", " clique ", " chromatic number " and " partition into cliques " on (P_5,gem)-free graphs. We also show how the split decomposition can be used to compute the chromatic number, and we give a new class of vertex partitioning problems which can be solved in polynomial time on graphs of bounded clique width. In a second time, we are interested to generalize the modular decomposition. We study a new decomposition called the bi-join decomposition. We give in particular several characterizations of completely decomposable graphs, and a linear time decomposition algorithm. We introduce some parametrized generalization of the modular decomposition, and we show that theses generalizations are relatively close to the clique width
Frigo, Nadia. "Composite likelihood inference in state space models." Doctoral thesis, Università degli studi di Padova, 2010. http://hdl.handle.net/11577/3426576.
Повний текст джерелаNell’ambito di modelli state space, per i quali ricavare la funzione di verosimiglianza completa non è computazionalmente possibile, si è analizzato il problema della stima di parametri statici mediante funzioni di verosimiglianza composita, in particolare funzioni di verosimiglianza a coppie e a blocchi. L’interesse si è concentrato sullo studio delle proprietà di consistenza e di efficienza di tali stimatori (in relazione alle caratteristiche del processo stazionario sottostante il modello) nonchè su problemi di distorsione in modelli stazionari per i quali la distribuzione invariante non è nota. Sono stati presi in esame metodi numerici per il calcolo delle stime dei parametri che descrivono un modello state space generale. Si è sviluppato un algoritmo Expectation- Maximization sequenziale per ottenere stime di massima verosimiglianza a coppie nel contesto di modelli state space generali. Tale metodo è illustrato per modelli lineari gaussiani e viene esteso per l’inferenza in sistemi lineari markoviani con salti. In questo contesto, è stato necessario sviluppare adeguate procedure di campionamento. In particolare, viene presentato un algoritmo per campionare dalla catena markoviana a stati discreti date le coppie di osservazioni.
Perdigão, Martino Diego. "Stratégies d'optimisation pour le problème intégré de transport et de gestion de stock." Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2024. http://www.theses.fr/2024UCFA0139.
Повний текст джерелаInventory management and vehicle routing problems are logistic challenges that can significantly influence the efficiency and effectiveness of supply chain operations and should be well-coordinated and aligned. Handling both jointly is even more challenging when considering the number of customers to be served and the length of the time horizon. In the literature, this problem is known as the Inventory Routing Problem (IRP) and aims to find a minimum-cost solution that addresses both inventory and transportation problems simultaneously. The IRP was first introduced in 1983 by Bell et al. and have received a lot of attention from the OR community so far, which has introduced numerous extensions and provided datasets to favor research and fair comparisons.In research, some gaps exist, and the IRP is not an exception. Most works in the literature so far assume that the fleet of vehicles used for the deliveries is homogeneous and that the costs associated with product storage and customer needs are constant and equal over the entire time horizon, which is not in accordance with a real scenario. Also, a single-item delivery per period is often considered by the formulation, which is clearly not cost-effective.This thesis addresses the IRP and introduces a new variant that is closer to a real logistic scenario by incorporating a heterogeneous vehicle fleet, customer demands, and inventory holding costs that are period-dependent. Additionally, it considers that customers may prefer receiving products in batches rather than in single units. For that, a new set of instances is introduced to handle these new features. This novel variant, named the Heterogeneous Inventory Routing Problem with Batch Size (HIRP-BS), is studied using three approaches. The first one is a mathematical formulation that extends a flow formulation initially designed to handle the HIRP-BS characteristics. New variables and constraints are then required to consider the new incorporated features. Not surprisingly, the formulation is not capable of handling large-scale instances and even the medium-scale ones are hard to solve in a timely manner. The second method is an iterative algorithm which decomposes the original IRP into as many sub-problems as periods of time are considered. The idea is to solve the sub-problems in chronological order such that at each iteration (except for the first, which corresponds to the first period), it uses the solution obtained in the previous as a starting point for the current one. The changes are limited by an input parameter to accelerate convergence. The overall idea is that for a given period, the following iterations should require smart modification of the previous solutions of the partial problem already solved and that the number of changes should decrease once it approaches the end of the time horizon.The third method is a split-based metaheuristic that decomposes a multi-period sequence of customers, called a giant tour, into routes that are assigned to a period and a vehicle type. The contribution leads to a new multi-period Split algorithm. It starts with the computation of the estimated quantities and periods for the replenishment, assuming the delivery operations at the latest possible moment. It allows the definition of a giant tour that is evaluated through a Split algorithm responsible for defining feasible solutions for the problem. Then, a local search mechanism dedicated to the routing problem takes advantage of classical route-based operators. Lastly, a post-optimization phase is considered, and slightly improve solution quality in terms of inventory and routing aspects based on a solution distance notion. Results are promising in terms of convergence and can provide valid upper bounds in a reasonable time even for the large-scale instances proposed
Книги з теми "Split algorithm"
Institute for Computer Applications in Science and Engineering. and United States. National Aeronautics and Space Administration., eds. Parallel directionally split solver based on reformulation of pipelined Thomas algorithm. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1998.
Знайти повний текст джерелаAnderson, W. Kyle. Three-dimensional multigrid algorithms for the flux-split Euler equations. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1989.
Знайти повний текст джерела1952-, Thomas James L., Whitfield David L, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., eds. Three-dimensional multigrid algorithms for the flux-split Euler equations. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1989.
Знайти повний текст джерелаAnderson, W. Kyle. Three-dimensional multigrid algorithms for the flux-split Euler equations. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1989.
Знайти повний текст джерелаAnderson, W. Kyle. Three-dimensional multigrid algorithms for the flux-split Euler equations. Hampton, Va: Langley Research Center, 1988.
Знайти повний текст джерелаUnited States. National Aeronautics and Space Administration., ed. Implicit multigrid algorithms for the three-dimensional flux split Euler equations. [Washington, DC: National Aeronautics and Space Administration, 1986.
Знайти повний текст джерелаB, Grossman, and United States. National Aeronautics and Space Administration., eds. Calculation of hypersonic shock structure using flux-splut algorithms. Blacksburg, VA: Interdiciplinmary Center for Applied Mathematics, Virginia Polytechnic Institute and State University, 1991.
Знайти повний текст джерелаUnited States. National Aeronautics and Space Administration. and Mississippi State University. Dept. of Aerophysics and Aerospace Engineering., eds. Adaptive grid embedding for the two-dimensional flux-split Euler equations. Mississippi State, Miss: Mississippi State University, Dept. of Aerospace Engineering, 1990.
Знайти повний текст джерелаImplicit multigrid algorithms for the three-dimensional flux split Euler equations. [Washington, DC: National Aeronautics and Space Administration, 1986.
Знайти повний текст джерелаDas, Vinu V., and Passent M. El-Kafrawy. Signal Processing and Information Technology: Second International Joint Conference, SPIT 2012, Dubai, UAE, September 20-21, 2012, Revised Selected Papers. Springer, 2014.
Знайти повний текст джерелаЧастини книг з теми "Split algorithm"
Ounali, Chedi, Fahmi Ben Rejab, and Kaouther Nouira Ferchichi. "Incremental Algorithm Based on Split Technique." In Advances in Intelligent Systems and Computing, 567–76. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16660-1_55.
Повний текст джерелаGhosh, Esha, Sudeshna Kolay, Mrinal Kumar, Pranabendu Misra, Fahad Panolan, Ashutosh Rai, and M. S. Ramanujan. "Faster Parameterized Algorithms for Deletion to Split Graphs." In Algorithm Theory – SWAT 2012, 107–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31155-0_10.
Повний текст джерелаManikandan, V., and S. Monikandan. "Algorithm for Reconstruction Number of Split Graphs." In Lecture Notes in Networks and Systems, 45–52. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-2066-8_5.
Повний текст джерелаZhang, Lijing, Xuanhui He, and Yulan Ren. "Research on the Improved Algorithm of Node Split." In Advances in Intelligent and Soft Computing, 1009–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25349-2_134.
Повний текст джерелаSetzer, Simon. "Split Bregman Algorithm, Douglas-Rachford Splitting and Frame Shrinkage." In Lecture Notes in Computer Science, 464–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02256-2_39.
Повний текст джерелаOchelska-Mierzejewska, Joanna. "Ant Colony Optimization Algorithm for Split Delivery Vehicle Routing Problem." In Advanced Information Networking and Applications, 758–67. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44041-1_67.
Повний текст джерелаChau, Kwok-wing. "A Split-Step PSO Algorithm in Predicting Construction Litigation Outcome." In Lecture Notes in Computer Science, 1211–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-36668-3_163.
Повний текст джерелаOdashima, Shigeyuki, Miwa Ueki, and Naoyuki Sawasaki. "A Split-Merge DP-means Algorithm to Avoid Local Minima." In Machine Learning and Knowledge Discovery in Databases, 63–78. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46227-1_5.
Повний текст джерелаDrescher, Matthew, Samuel Fiorini, and Tony Huynh. "A Simple $$(2+\epsilon )$$-Approximation Algorithm for Split Vertex Deletion." In Trends in Mathematics, 307–10. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83823-2_48.
Повний текст джерелаZhang, Han, Qing Li, and Xin Yao. "Knowledge-Guided Optimization for Complex Vehicle Routing with 3D Loading Constraints." In Lecture Notes in Computer Science, 133–48. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-70055-2_9.
Повний текст джерелаТези доповідей конференцій з теми "Split algorithm"
Maurice, Nathan, Julien Sopena, and Lionel Lacassagne. "A New Efficient Split & Merge Algorithm for Embedded Systems." In 2024 IEEE International Conference on Image Processing (ICIP), 3613–19. IEEE, 2024. http://dx.doi.org/10.1109/icip51287.2024.10648097.
Повний текст джерелаGhosh, Anjan, and Paparao Palacharla. "Efficient optical preprocessing using split-step algorithms." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.tudd2.
Повний текст джерелаWu, C. H., and A. E. Yagle. "The gradient adaptive split lattice algorithm." In [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing. IEEE, 1992. http://dx.doi.org/10.1109/icassp.1992.226447.
Повний текст джерелаBoeva, Veselka, Milena Angelova, and Elena Tsiporkova. "A Split-Merge Evolutionary Clustering Algorithm." In 11th International Conference on Agents and Artificial Intelligence. SCITEPRESS - Science and Technology Publications, 2019. http://dx.doi.org/10.5220/0007573103370346.
Повний текст джерелаSun, Jian, Hongyu Jia, Bo Hu, Xiao Huang, Hao Zhang, Hai Wan, and Xibin Zhao. "Speeding up Very Fast Decision Tree with Low Computational Cost." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/177.
Повний текст джерелаCombettes, Patrick L., and Jean-Christophe Pesquet. "Split convex minimization algorithm for signal recovery." In ICASSP 2009 - 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2009. http://dx.doi.org/10.1109/icassp.2009.4959676.
Повний текст джерелаLing, Hangkun. "Emulating Expert Systems and the Location-Identity Split." In 2018 International Conference on Computer Modeling, Simulation and Algorithm (CMSA 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/cmsa-18.2018.19.
Повний текст джерелаZhang, Zheyu, Tianping Zhang, and Jian Li. "Unbiased Gradient Boosting Decision Tree with Unbiased Feature Importance." In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/515.
Повний текст джерелаFaruquzzaman, A. B. M., Nafize Rabbani Paiker, Jahidul Arafat, Ziaul Karim, and M. Ameer Ali. "Object segmentation based on split and merge algorithm." In TENCON 2008 - 2008 IEEE Region 10 Conference (TENCON). IEEE, 2008. http://dx.doi.org/10.1109/tencon.2008.4766802.
Повний текст джерелаWu, Xindong. "TS: a test-split algorithm for inductive learning." In Optical Engineering and Photonics in Aerospace Sensing, edited by Firooz A. Sadjadi. SPIE, 1993. http://dx.doi.org/10.1117/12.150598.
Повний текст джерелаЗвіти організацій з теми "Split algorithm"
Warren, Russell, Stanley Osher, and Richard Vanderbeek. Multiple Aerosol Unmixing by the Split Bregman Algorithm. Fort Belvoir, VA: Defense Technical Information Center, May 2011. http://dx.doi.org/10.21236/ada555738.
Повний текст джерелаBarrios, Amalia E., and Kenneth H. Craig. Rough Surface Models Implemented Within the Split-Step Parabolic Equation Algorithm. Fort Belvoir, VA: Defense Technical Information Center, April 1994. http://dx.doi.org/10.21236/ada280843.
Повний текст джерелаOstashev, Vladimir, Michael Muhlestein, and D. Wilson. Extra-wide-angle parabolic equations in motionless and moving media. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42043.
Повний текст джерелаZhao, George, Grang Mei, Bulent Ayhan, Chiman Kwan, and Venu Varma. DTRS57-04-C-10053 Wave Electromagnetic Acoustic Transducer for ILI of Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), March 2005. http://dx.doi.org/10.55274/r0012049.
Повний текст джерелаSzymczak, William G. Viscous Split Algorithms for the Time Dependent Incompressible Navier Stokes Equations. Fort Belvoir, VA: Defense Technical Information Center, June 1989. http://dx.doi.org/10.21236/ada211592.
Повний текст джерела