Статті в журналах з теми "Spheronizer"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Spheronizer.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-45 статей у журналах для дослідження на тему "Spheronizer".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Pinto, João F., and Cristina N. Abreu. "Evaluation of the Performance of a New Continuous Spheronizer." Drug Development and Industrial Pharmacy 32, no. 9 (January 2006): 1067–78. http://dx.doi.org/10.1080/03639040600865231.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

El-Mahdi, Idris M., and Salma A. El-Shhibia. "Effect of spheronizer plate design on the spheronization of ketoprofen." Future Journal of Pharmaceutical Sciences 3, no. 2 (December 2017): 153–57. http://dx.doi.org/10.1016/j.fjps.2017.05.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bouffard, J., F. Bertrand, J. Chaouki, and H. Dumont. "Discrete element investigation of flow patterns and segregation in a spheronizer." Computers & Chemical Engineering 49 (February 2013): 170–82. http://dx.doi.org/10.1016/j.compchemeng.2012.09.023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

MORIWAKI, Tohru. "Dynamic Analysis for the Motion of Circulating Material Flux in Disc Type Spheronizer." Journal of the Society of Powder Technology, Japan 35, no. 11 (1998): 782–91. http://dx.doi.org/10.4164/sptj.35.782.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Umprayn, Kaisri, Padungkwan Chitropas, and Sukavat Amarekajorn. "Influence of Process Variables on Physical Properties of the Pellets Using Extruder and Spheronizer." Drug Development and Industrial Pharmacy 25, no. 1 (January 1999): 46–61. http://dx.doi.org/10.1081/ddc-100102141.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

., Gaikwad A. D., Yadav V. D. ., Sabale V. U. ., and Gaikwad V. D. . "Design and Development of Drug Coated Pellets of Erythromycin Base by Using Extruder and Spheronizer." Journal of Current Pharma Research 2, no. 2 (February 15, 2012): 466–70. http://dx.doi.org/10.33786/jcpr.2012.v02i02.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bouffard, J., A. Cabana, J. Chaouki, and F. Bertrand. "Experimental investigation of the effect of particle cohesion on the flow dynamics in a spheronizer." AIChE Journal 59, no. 5 (November 26, 2012): 1491–501. http://dx.doi.org/10.1002/aic.13955.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wang, C., G. Zhang, N. H. Shah, M. H. Infeld, A. W. Malick, and J. W. McGinity. "Compaction Properties of Spheronized Binary Granular Mixtures." Drug Development and Industrial Pharmacy 21, no. 7 (January 1995): 753–79. http://dx.doi.org/10.3109/03639049509026642.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hu, Yingchao, Mingyu Qu, Hailong Li, Yuandong Yang, Jianping Yang, Wenqi Qu, and Wenqiang Liu. "Porous extruded-spheronized Li4SiO4 pellets for cyclic CO2 capture." Fuel 236 (January 2019): 1043–49. http://dx.doi.org/10.1016/j.fuel.2018.09.072.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Paker-Leggs, Safak, and Steven H. Neau. "Propranolol forms affect properties of Carbopol-containing extruded-spheronized beads." International Journal of Pharmaceutics 361, no. 1-2 (September 2008): 169–76. http://dx.doi.org/10.1016/j.ijpharm.2008.05.041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Chen, Hongqiang, Wenqiang Liu, Jian Sun, Yingchao Hu, Wenyu Wang, Yuandong Yang, Shun Yao, and Minghou Xu. "Routine Investigation of CO2 Sorption Enhancement for Extruded–Spheronized CaO-Based Pellets." Energy & Fuels 31, no. 9 (August 16, 2017): 9660–67. http://dx.doi.org/10.1021/acs.energyfuels.7b00921.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Cantor, Stuart L., Stephen W. Hoag, and Larry L. Augsburger. "Evaluation of the mechanical properties of extrusion-spheronized beads and multiparticulate systems." Drug Development and Industrial Pharmacy 35, no. 6 (January 2009): 683–93. http://dx.doi.org/10.1080/03639040802526797.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Sun, Jian, Wenqiang Liu, Hongqiang Chen, Yang Zhang, Yingchao Hu, Wenyu Wang, Xian Li, and Minghou Xu. "Stabilized CO2 capture performance of extruded–spheronized CaO-based pellets by microalgae templating." Proceedings of the Combustion Institute 36, no. 3 (2017): 3977–84. http://dx.doi.org/10.1016/j.proci.2016.09.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Pi, Shuai, Zonghao Zhang, Donglin He, Changlei Qin, and Jingyu Ran. "Novel Binders-Promoted Extrusion-Spheronized CaO-Based Pellets for High-Temperature CO2 Capture." Energy & Fuels 33, no. 3 (February 20, 2019): 2381–89. http://dx.doi.org/10.1021/acs.energyfuels.8b04189.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Zhang, Zonghao, Shuai Pi, Donglin He, Changlei Qin, and Jingyu Ran. "Investigation of Pore-Formers to Modify Extrusion-Spheronized CaO-Based Pellets for CO2 Capture." Processes 7, no. 2 (January 24, 2019): 62. http://dx.doi.org/10.3390/pr7020062.

Повний текст джерела
Анотація:
The application of circulating fluidized bed technology in calcium looping (CaL) requires that CaO-based sorbents should be manufactured in the form of spherical pellets. However, the pelletization of powdered sorbents is always hampered by the problem that the mechanical strength of sorbents is improved at the cost of loss in CO2 sorption performance. To promote both the CO2 sorption and anti-attrition performance, in this work, four kinds of pore-forming materials were screened and utilized to prepare sorbent pellets via the extrusion-spheronization process. In addition, impacts of the additional content of pore-forming material and their particle sizes were also investigated comprehensively. It was found that the addition of 5 wt.% polyethylene possesses the highest CO2 capture capacity (0.155 g-CO2/g-sorbent in the 25th cycle) and mechanical performance of 4.0 N after high-temperature calcination, which were about 14% higher and 25% improved, compared to pure calcium hydrate pellets. The smaller particle size of pore-forming material was observed to lead to a better performance in CO2 sorption, while for mechanical performance, there was an optimal size for the pore-former used.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Sun, Jian, Wenqiang Liu, Wenyu Wang, Yingchao Hu, Xinwei Yang, Hongqiang Chen, Yang Peng, and Minghou Xu. "CO2 Sorption Enhancement of Extruded-Spheronized CaO-Based Pellets by Sacrificial Biomass Templating Technique." Energy & Fuels 30, no. 11 (October 5, 2016): 9605–12. http://dx.doi.org/10.1021/acs.energyfuels.6b01859.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Agrawal, Anjali M., Matthew A. Howard, and Steven H. Neau. "Extruded and Spheronized Beads Containing No Microcrystalline Cellulose: Influence of Formulation and Process Variables." Pharmaceutical Development and Technology 9, no. 2 (January 2004): 197–217. http://dx.doi.org/10.1081/pdt-120030250.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Lee, Sibeum, Min-Soo Kim, Seoung Wook Jun, Jeong-Sook Park, and Sung-Joo Hwang. "Preparation of controlled release spheronized beads by a simple extrusion and modified spheronization process." Archives of Pharmacal Research 28, no. 5 (May 2005): 619–25. http://dx.doi.org/10.1007/bf02977768.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Sun, Jian, Wenqiang Liu, Yingchao Hu, Jianqun Wu, Mingkui Li, Xinwei Yang, Wenyu Wang, and Minghou Xu. "Enhanced performance of extruded–spheronized carbide slag pellets for high temperature CO 2 capture." Chemical Engineering Journal 285 (February 2016): 293–303. http://dx.doi.org/10.1016/j.cej.2015.10.026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Hellén, Leena, Jouko Yliruusi, and Eeva Kristoffersson. "Process variables of instant granulator and spheroniser: II. Size and size distributions of pellets." International Journal of Pharmaceutics 96, no. 1-3 (July 1993): 205–16. http://dx.doi.org/10.1016/0378-5173(93)90229-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Hellén, Leena, and Jouko Yliruusi. "Process variables of instant granulator and spheroniser: III. Shape and shape distributions of pellets." International Journal of Pharmaceutics 96, no. 1-3 (July 1993): 217–23. http://dx.doi.org/10.1016/0378-5173(93)90230-d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Neau, S. "Fabrication and characterization of extruded and spheronized beads containing carbopol® 974P, NF resin." International Journal of Pharmaceutics 131, no. 1 (April 5, 1996): 47–55. http://dx.doi.org/10.1016/0378-5173(95)04293-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Kibria, Golam, and Afsana Akhter. "Effect of acrylic polymers on physical parameters of spheronized pellets using an aqueous coating system." Asian Journal of Pharmaceutics 3, no. 4 (2009): 292. http://dx.doi.org/10.4103/0973-8398.59953.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Hellén, Leena, Jouko Yliruusi, Pasi Merkku, and Eeva Kristoffersson. "Process variables of instant granulator and spheroniser: I. Physical properties of granules, extrudate and pellets." International Journal of Pharmaceutics 96, no. 1-3 (July 1993): 197–204. http://dx.doi.org/10.1016/0378-5173(93)90228-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Gorakshanath, Ghugarkar Prasad. "FORMULATION, DEVELOPMENT AND OPTIMISATION OF PH. DEPENDENT DRUG DELIVERY SYSTEM CONTAINING PROTON PUMP INHIBITOR." Journal of Medical pharmaceutical and allied sciences 10, no. 6 (November 15, 2021): 3878–82. http://dx.doi.org/10.22270/jmpas.v10i6.1632.

Повний текст джерела
Анотація:
The present study was involving the targeting the Rabeprazole formulation at site specificity. Peptic ulcer mostly occurs in the lower part of the gastrointestinal tract. Proton pump inhibitors category drugs mainly used to cure peptic ulcer. As most of proton pump inhibitors degrades in acidic condition in stomach, the present study mainly focus on targeting site specificity without degradation of drug in stomach. Rabeprazole and selected excipients was tested for reformulation study as well as for analytical techniques like Ultra Violet Visible Spectroscopy, Fourier Transform Infrared Spectroscopy and Differential Scanning Calorimetry. Core pellet formulation of Rabeprazole was formulated using extruder and spheroniser. After core pellet preformulation seal coating of pellet was completed. As seal coating mainly helps the core pellet from interaction between another coating polymer. Seal coating was completed by using Opadry coat. At the top of the pellet polymer coat was applied. Polymer coat was helps to deliver the formulation in appropriate pH only. Polymer coat also protects the formulation from degradation in stomach where acidic condition presents. Evaluation parameters like dissolution test, Ultra Violet Visible Spectroscopy, Fourier Transform Infrared Spectroscopy and Differential Scanning Calorimetry, optimisation parameter applied to optimised formulation. Stability study was performed on optimised formulation.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

HOWARD, M., S. NEAU, and M. SACK. "PEO and MPEG in high drug load extruded and spheronized beads that are devoid of MCC." International Journal of Pharmaceutics 307, no. 1 (January 3, 2006): 66–76. http://dx.doi.org/10.1016/j.ijpharm.2005.09.021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Zhang, M., X. K. Li, D. I. Wilson, T. T. Yao, and Y. Y. Zhang. "Influence of the dimensions of spheroniser plate protuberances on the production of pellets by extrusion-spheronisation." Advanced Powder Technology 29, no. 5 (May 2018): 1128–41. http://dx.doi.org/10.1016/j.apt.2018.02.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Goyanes, Alvaro, Consuelo Souto, and Ramón Martínez-Pacheco. "A comparison of chitosan-silica and sodium starch glycolate as disintegrants for spheronized extruded microcrystalline cellulose pellets." Drug Development and Industrial Pharmacy 37, no. 7 (March 15, 2011): 825–31. http://dx.doi.org/10.3109/03639045.2010.545415.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Bommareddy, Ganesh S., Safak Paker-Leggs, Kalyan K. Saripella, and Steven H. Neau. "Extruded and spheronized beads containing Carbopol® 974P to deliver nonelectrolytes and salts of weakly basic drugs." International Journal of Pharmaceutics 321, no. 1-2 (September 2006): 62–71. http://dx.doi.org/10.1016/j.ijpharm.2006.05.017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Eerikäinen, S., and A. S. Lindqvist. "The behaviour of various fillers in spheronized uncoated and film-coated granules containing slightly water-soluble indomethacin." International Journal of Pharmaceutics 75, no. 2-3 (September 1991): 181–92. http://dx.doi.org/10.1016/0378-5173(91)90192-q.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Valle, Brenda L., Wycliffe S. Omwancha, Steven H. Neau та Rodney J. Wigent. "Use of к-carrageenan, chitosan and Carbopol 974P in extruded and spheronized pellets that are devoid of MCC". Drug Development and Industrial Pharmacy 42, № 11 (10 травня 2016): 1903–16. http://dx.doi.org/10.1080/03639045.2016.1181647.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Shah, Viral, Garvit Hathi, Manju Misra, and Manish Nivsarkar. "Design, development and QbD based optimization of double coated spheronized aceclofenac pellets for effective palliative care in rheumatoid arthritis." Journal of Drug Delivery Science and Technology 67 (January 2022): 102920. http://dx.doi.org/10.1016/j.jddst.2021.102920.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Theismann, Eva-Maria, Julia K. Keppler, Martin Owen, Karin Schwarz, and Walkiria Schlindwein. "Modelling the Effect of Process Parameters on the Wet Extrusion and Spheronisation of High-Loaded Nicotinamide Pellets Using a Quality by Design Approach." Pharmaceutics 11, no. 4 (April 1, 2019): 154. http://dx.doi.org/10.3390/pharmaceutics11040154.

Повний текст джерела
Анотація:
The aim of the present study was to develop an alternative process to spray granulation in order to prepare high loaded spherical nicotinamide (NAM) pellets by wet extrusion and spheronisation. Therefore, a quality by design approach was implemented to model the effect of the process parameters of the extrusion-spheronisation process on the roundness, roughness and useable yield of the obtained pellets. The obtained results were compared to spray granulated NAM particles regarding their characteristics and their release profile in vitro after the application of an ileocolon targeted shellac coating. The wet extrusion-spheronisation process was able to form highly loaded NAM pellets (80%) with a spherical shape and a high useable yield of about 90%. However, the water content range was rather narrow between 24.7% and 21.3%. The design of experiments (DoE), showed that the spheronisation conditions speed, time and load had a greater impact on the quality attributes of the pellets than the extrusion conditions screw design, screw speed and solid feed rate (hopper speed). The best results were obtained using a low load (15 g) combined with a high rotation speed (900 m/min) and a low time (3–3.5 min). In comparison to spray granulated NAM pellets, the extruded NAM pellets resulted in a higher roughness and a higher useable yield (63% vs. 92%). Finally, the coating and dissolution test showed that the extruded and spheronised pellets are also suitable for a protective coating with an ileocolonic release profile. Due to its lower specific surface area, the required shellac concentration could be reduced while maintaining the release profile.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Paker-Leggs, Safak, and Steven H. Neau. "Pellet characteristics and drug release when the form of propranolol is fixed as moles or mass in formulations for extruded and spheronized Carbopol-containing pellets." International Journal of Pharmaceutics 369, no. 1-2 (March 2009): 96–104. http://dx.doi.org/10.1016/j.ijpharm.2008.11.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Podczeck, Fridrun, and John Michael Newton. "Influence of the standing time of the extrudate and speed of rotation of the spheroniser plate on the properties of pellets produced by extrusion and spheronization." Advanced Powder Technology 25, no. 2 (March 2014): 659–65. http://dx.doi.org/10.1016/j.apt.2013.10.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

KANUGO, ABHISHEK. "LIQUISOLID-PELLETS TECHNIQUE: A RECENT TECHNIQUE FOR ENHANCING SOLUBILITY AND BIOAVAILABILITY OF DRUGS." International Journal of Applied Pharmaceutics, October 7, 2020, 34–40. http://dx.doi.org/10.22159/ijap.2020v12i6.39510.

Повний текст джерела
Анотація:
The current article aims with the introduction of newer solubility enhancing technique as Liquisolid-pellet. The majority of newly invented molecules comes under the biopharmaceutical classification system (BCS) Class II, IV indicating poor solubility and thereby poor bioavailability. Liquisolid Compaq is one of the solubility enhancement techniques used for improving solubility and dissolution of the molecule by incorporating non-volatile solvent followed by carrier and coating agents. However, this technique is only applicable to potent molecules as a higher dose resulted in inconvenience to the patient and difficult to swallow. Another drawback of this method is not suitable for pilot plant scale-up. Liquisolid pellet technique overcoming all limitations of Liquisolid Compaq and offers good compaction, flowability, dose accuracy, less gastric irritations, and better bioavailability. In the Liquisolid-Pellet technique, powdered material received from Liquisolid Compaq is further moistened with granulating fluid to provide enough plasticity. The material is subjected to extrusion using an extruder to generate extrudates. The extrudates are placed under the spheronizer to form spherical particles as Pellets. The pellets are mainly prepared by extrusion-spheronization and hence, articles elaborate details of extruders and spheronizers, their specifications as well as factors, which strongly impart processing. These pellets are filled in capsules according to their dose and utilized as an immediate release or sustained release. The literature related to this review was collected from Science Direct, PubMed, Google Scholar, Google, USPTO, etc. from 1998 to 2020 with the following key-words.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Rana, Hardik, Hussain Hasan, Mukesh Gohel, Vaishali Thakkar, and Tejal Gandhi. "Systematic Development of Bicalutamide Immediate Release Pellets using Aeroperl and Non-MCC Extruder aid." Current Drug Therapy 15 (April 24, 2020). http://dx.doi.org/10.2174/1574885515999200424082315.

Повний текст джерела
Анотація:
Background: The Microcrystalline Cellulose is called as a gold standard for the manufacture of pellets. The poor disintegration leads to incomplete drug release restricts the use of MCC in the immediate-release formulation. Objective: The present work aims to explore non-MCC extruder aid for pellet formulation and solubility modulation potential of Aeroperl® 300 Pharma. Methods: Bicalutamide (BCL) was selected as a model BCS class-II drug. The solubility of BCL was assessed in different vehicles like polyethylene glycol, propylene glycol, and Tween by carrying out phase solubility study. The suitable vehicle was selected based on the higher solubility of BCL. The vehicle was further adsorbed on newer adsorbent Aeroperl® 300 Pharma to formulate liquisolid granules. The liquisolid granules were further incorporated into the pellet using mannitol and microcrystalline cellulose as an extruder aid. Box-Behnken design was adopted for optimization of formulation considering MCC: mannitol ratio, concentration of HPMC and spheronizer speed as independent factors whereas drug release at 30 min, disintegration time and aspect ratio were selected as dependent variables. The pellets were evaluated for different evaluation parameters. Results: Propylene glycol was selected for the formulation of liquisolid technique based on the results of the phase solubility study. Propylene glycol containing BCL was adsorbed on Aeroperl 300 Pharma. The optimized batch was selected exploring the Design-Expert software by considering limits of different responses. Pellet had excellent flowability. Friability was found to be within the range (<1%). Pellets were found to be spherical and had pores on the surfaces. Conclusion: Liquisolid granules containing newer solubilizer Aeroperl was found to be a promising approach for the improvement in the solubility of the drug. The use of mannitol with MCC has a profound effect on disintegration time, without altering flow property and other parameters. No patents were reported on the combination of Bicalutamide, mannitol and Aeroperl. The critical finding of the present work is to use mannitol as an extruder aid to fasten the disintegration leads to complete drug release within a short period of time. Aeroperl and Mannitol, MCC: mannitol ratio, concentration of HPMC and spheronizer speed was found to be significant and had the potential effect in pellet formulation.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Evers, Maria, Dominik Weis, Sergiy Antonyuk, and Markus Thommes. "Particle movement in the spheronizer – Experimental investigations with respect to the toroidal and poloidal direction." Powder Technology, April 2022, 117452. http://dx.doi.org/10.1016/j.powtec.2022.117452.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Biswal, Sudarsan, Jagannath Sahoo, Padala Murthy, Rajesh Giradkar, Subash Das, and Jasmine Avari. "Production variables affecting characteristics of pellets in melt pelletization with wax combination in a laboratory scale spheronizer." Acta Pharmaceutica 59, no. 2 (January 1, 2009). http://dx.doi.org/10.2478/v10007-009-0013-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

MISHRA, RAKESH V., SHUBHAM G. PALDEWAR, and TANAJI D. NANDGUDE. "AN OUTLINE OF VARIABLES IN PELLETIZATION BY EXTRUSION AND SPHERONIZATION." International Journal of Applied Pharmaceutics, May 21, 2020, 39–44. http://dx.doi.org/10.22159/ijap.2020v12i4.37277.

Повний текст джерела
Анотація:
Pelletization is an agglomeration process which converts fine granules or powders of bulk drugs into small, free-flowing, spherical units, known as pellets. The pelletization can be achieved either through agitation, compaction (extrusion-spheronization), drug layering and globulation. Among the various pelletization techniques extrusion–spheronization process is preferred over other methods for the preparation of pellets as it allows the incorporation of the higher amount of drug, modified physical characteristics of the drug (density, sphericity, narrow size distribution, smoother surface) and multiple drugs can be easily combined in the same unit. This current review summarizes the findings or investigations by the researchers on various variables, including process parameters, equipment parameters and formulation parameters influencing the quality of pellets. The article also focuses on process optimization and additives used in pellets formulation. To prepare the current review search criterion used was the parameters affecting final pellet characterization in the extrusion spheronization process. The sources were peer-reviewed relevant scientific articles of recognized journals. Keywords used as filters were extrusion, spheronization, formulation parameters, process parameters, equipment parameters, moisture content, granulating liquid, drying rate, extrusion temperature, spheronizer load, pelletization. Literature survey has been done in a range of years (1992-2019) regarding the various variables of the extrusion spheronization process, which affects and has foremost impact on the final quality of pellets so as to make the review updated and comprehensive.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Chaudhari, Pallavi M. "Formulation and characterization of extruded and spheronized pellets using pectin and crosslinking agents." Journal of Chinese Pharmaceutical Sciences 23, no. 11 (November 25, 2014). http://dx.doi.org/10.5246/jcps.2014.11.101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Qazi, Faaiza, Muhammad Harris Shoaib, Rabia Ismail Yousuf, Muhammad Iqbal Nasiri, Kamran Ahmed, and Mansoor Ahmad. "Lipids bearing extruded-spheronized pellets for extended release of poorly soluble antiemetic agent—Meclizine HCl." Lipids in Health and Disease 16, no. 1 (April 12, 2017). http://dx.doi.org/10.1186/s12944-017-0466-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Qazi, Faaiza, Muhammad Harris Shoaib, Rabia Ismail Yousuf, Fahad Siddiqui, Muhammad Iqbal Nasiri, Kamran Ahmed, Iyad Naeem Muhammad, and Farrukh Rafiq Ahmed. "QbD based Eudragit coated Meclizine HCl immediate and extended release multiparticulates: formulation, characterization and pharmacokinetic evaluation using HPLC-Fluorescence detection method." Scientific Reports 10, no. 1 (September 10, 2020). http://dx.doi.org/10.1038/s41598-020-71751-y.

Повний текст джерела
Анотація:
Abstract This study is based on the QbD development of extended-release (ER) extruded-spheronized pellets of Meclizine HCl and its comparative pharmacokinetic evaluation with immediate-release (IR) pellets. HPLC-fluorescence method was developed and validated for plasma drug analysis. IR drug cores were prepared from lactose, MCC, and PVP using water as granulating fluid. Three-level, three-factor CCRD was applied for modeling and optimization to study the influence of Eudragit (RL100-RS100), TEC, and talc on drug release and sphericity of coated pellets. HPLC-fluorescence method was sensitive with LLOQ 1 ng/ml and linearity between 10 and 200 ng/ml with R2 > 0.999. Pharmacokinetic parameters were obtained by non-compartmental analysis and results were statistically compared using logarithmically transformed data, where p > 0.05 was considered as non-significant with a 90% CI limit of 0.8–1.25. The AUC0–t and AUC0–∞ of ER pellets were not significantly different with geometric mean ratio 1.0096 and 1.0093, respectively. The Cmax of IR pellets (98.051 ng/ml) was higher than the ER pellets (84.052 ng/ml) and the Tmax of ER pellets (5.116 h) was higher than the IR pellets (3.029 h). No significant food effect was observed on key pharmacokinetic parameters of ER pellets. Eudragit RL100 (6%) coated Meclizine HCl pellets have a potential therapeutic effect for an extended time period.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Pi, Shuai, Zonghao Zhang, Donglin He, Changlei Qin, and Jingyu Ran. "Investigation of Y 2 O 3 /MgO‐modified extrusion–spheronized CaO‐based pellets for high‐temperature CO 2 capture." Asia-Pacific Journal of Chemical Engineering 14, no. 6 (September 9, 2019). http://dx.doi.org/10.1002/apj.2366.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Maboos, Madiha, Rabia Ismail Yousuf, Muhammad Harris Shoaib, Iqbal Nasiri, Tazeen Hussain, Hafiza Fouzia Ahmed, and Wajiha Iffat. "Effect of lipid and cellulose based matrix former on the release of highly soluble drug from extruded/spheronized, sintered and compacted pellets." Lipids in Health and Disease 17, no. 1 (June 9, 2018). http://dx.doi.org/10.1186/s12944-018-0783-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії