Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Spherical coordinate.

Книги з теми "Spherical coordinate"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-19 книг для дослідження на тему "Spherical coordinate".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте книги для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Mueller, Ivan Istvan. Reference coordinate systems: An update. Columbus, Ohio: Ohio State University Research Foundation, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chen, Y. S. A computer code for three-dimensional incompressible flows using nonorthogonal body-fitted coordinate systems. Marshall Space Flight Center, Ala: Marshall Space Flight Center, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zingg, D. W. A method of smooth bivariate interpolation for data given on a generalized curvilinear grid. [S.l.]: [s.n.], 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nerney, Steven. Analytic solutions of the vector Burgers' equation. [Washington, DC: National Aeronautics and Space Administration, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

H, Carpenter Mark, and Institute for Computer Applications in Science and Engineering., eds. High order finite difference methods, multidimensional linear problems and curvilinear coordinates. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Breckenridge, Richard P. Localization of multiple broadband targets in spherical coordinates via adaptive beamforming and non-linear estimation. Monterey, Calif: Naval Postgraduate School, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

G, Ramirez, Pei K. C, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., eds. Discrete-layer piezoelectric plate and shell models for active tip-clearance control. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

G, Ramirez, Pei K. C, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., eds. Discrete-layer piezoelectric plate and shell models for active tip-clearance control. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

G, Ramirez, Pei K. C, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., eds. Discrete-layer piezoelectric plate and shell models for active tip-clearance control. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

N, Tiwari S., and Langley Research Center, eds. Numerical solutions of Navier-Stokes equations for a Butler wing: Progress report for the period ending August 31, 1985. Norfolk, Va: Old Dominion University Research Foundation, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

N, Tiwari S., and United States. National Aeronautics and Space Administration., eds. Numerical solutions of Navier-Stokes equations for a Butler wing. Norfolk, Va: Old Dominion University Research Foundation, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Mann, Peter. Energy and Work. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0002.

Повний текст джерела
Анотація:
This chapter discusses the work–energy theorem, which is developed from Newton’s second law, and defines the kinetic and potential energies of the system. While there is some vector calculus involved, it has been kept to the bare minimum and the reader should not require in-depth knowledge to understand the salient points. If there is a net force on the particle, it accelerates in the direction of the unbalanced force. The force is a central force if it depends only on the distance between the point on which the force acts and the coordinate origin. Using Stokes’s theorem, potential energies are thoroughly discussed. The chapter also discusses spherically symmetric potentials, isotropic force, force on systems of particles, centre of mass coordinates and rigid bodies.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

A spectral mulit-domain technique application to generalized curvilinear coordinates. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

A spectral mulit-domain technique application to generalized curvilinear coordinates. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Deruelle, Nathalie, and Jean-Philippe Uzan. The Schwarzschild solution. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0046.

Повний текст джерела
Анотація:
This chapter deals with the Schwarzschild metric. To find the gravitational potential U produced by a spherically symmetric object in the Newtonian theory, it is necessary to solve the Poisson equation Δ‎U = 4π‎Gρ‎. Here, the matter density ρ‎ and U depend only on the radial coordinate r and possibly on the time t. Outside the source the solution is U = –GM/r, where M = 4π‎ ∫ ρ‎r2dr is the source mass. In general relativity the problem is to find the ‘spherically symmetric’ spacetime solutions of the Einstein equations, and the analog of the vacuum solution U = –GM/r is the Schwarzschild metric.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Krishnamurti, T. N., H. S. Bedi, and V. M. Hardiker. An Introduction to Global Spectral Modeling. Oxford University Press, 1998. http://dx.doi.org/10.1093/oso/9780195094732.001.0001.

Повний текст джерела
Анотація:
This book is an indispensable guide to the methods used by nearly all major weather forecast centers in the United States, England, Japan, India, France, and Australia. Designed for senior-level undergraduates and first-year graduate students, the book provides an introduction to global spectral modeling. It begins with an introduction to elementary finite-difference methods and moves on towards the gradual description of sophisticated dynamical and physical models in spherical coordinates. Topics include computational aspects of the spectral transform method, the planetary boundary layer physics, the physics of precipitation processes in large-scale models, the radiative transfer including effects of diagnostic clouds and diurnal cycle, the surface energy balance over land and ocean, and the treatment of mountains. The discussion of model initialization includes the treatment of normal modes and physical processes, and the concluding chapter covers the spectral energetics as a diagnostic tool for model evaluation.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Chemin, Jean-Yves, Benoit Desjardins, Isabelle Gallagher, and Emmanuel Grenier. Mathematical Geophysics. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780198571339.001.0001.

Повний текст джерела
Анотація:
Aimed at graduate students, researchers and academics in mathematics, engineering, oceanography, meteorology, and mechanics, this text provides a detailed introduction to the physical theory of rotating fluids, a significant part of geophysical fluid dynamics. The text is divided into four parts, with the first part providing the physical background of the geophysical models to be analyzed. Part two is devoted to a self contained proof of the existence of weak (or strong) solutions to the imcompressible Navier-Stokes equations. Part three deals with the rapidly rotating Navier-Stokes equations, first in the whole space, where dispersion effects are considered. The case where the domain has periodic boundary conditions is then analyzed, and finally rotating Navier-Stokes equations between two plates are studied, both in the case of periodic horizontal coordinated and those in R2. In Part IV, the stability of Ekman boundary layers and boundary layer effects in magnetohydrodynamics and quasigeostrophic equations are discussed. The boundary layers which appear near vertical walls are presented and formally linked with the classical Prandlt equations. Finally spherical layers are introduced, whose study is completely open.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Numerical solution of the incompressible Navier-Stokes equations. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

The Essentials of Pattern Grading: The Projection of Cartesian Coordinates Into a Spherical Geometry of Fractal Order 2.5 Using Collinear Scaling As the Algebraic Matrix..... Clarified. Hanover Phist, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії