Статті в журналах з теми "Spectro-Microscopy"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Spectro-Microscopy.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Spectro-Microscopy".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Miyoshi, N., T. Yamada, T. Ogawa, and H. Kinoshita. "Bioogical Meaning for Bioimaging by FT-IR spectro-microscopy and Raman spectro-microscopy." Seibutsu Butsuri 43, supplement (2003): S118. http://dx.doi.org/10.2142/biophys.43.s118_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Harter, Klaus, Alfred J. Meixner, and Frank Schleifenbaum. "Spectro-Microscopy of Living Plant Cells." Molecular Plant 5, no. 1 (January 2012): 14–26. http://dx.doi.org/10.1093/mp/ssr075.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Makita, Seiji, Hiroyuki Matsuda, Yasuaki Okano, Takayuki Yano, Eiken Nakamura, Yuri Hasegawa, Satoshi Kera, Shigemasa Suga, and Fumihiko Matsui. "Contrast Inversion of Photoelectron Spectro-microscopy Image." e-Journal of Surface Science and Nanotechnology 19 (May 13, 2021): 42–47. http://dx.doi.org/10.1380/ejssnt.2021.42.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Schmidt, Th, M. Siebert, A. Pretorius, S. Gangopadhyay, S. Figge, J. I. Flege, L. Gregoratti, A. Barinov, D. Hommel, and J. Falta. "Spectro-microscopy of Si doped GaN films." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 246, no. 1 (May 2006): 79–84. http://dx.doi.org/10.1016/j.nimb.2005.12.018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lepert, Guillaume, Ricardo M. Gouveia, Che J. Connon, and Carl Paterson. "Assessing corneal biomechanics with Brillouin spectro-microscopy." Faraday Discussions 187 (2016): 415–28. http://dx.doi.org/10.1039/c5fd00152h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A new Brillouin spectro-microscope was designed and built to investigate the mechanical properties of bovine and human corneas. This instrument integrates a single-stage virtually imaged phased array spectrometer with a novel adaptive-optics interferometric filter to achieve unprecedented rejection of the elastic background signal. As a result, highly-resolved, reproducible data from both thin and thick collagen-based materials were obtained. In particular, this technique is capable of rigorously measuring the relative stiffness of different areas of human corneas, thus providing a true non-contact method to characterise the fundamental mechanical features of both live and fixed biological tissue samples.
6

KURATA, Hiroki, Seiji ISODA, and Takashi KOBAYASHI. "Study of Organic Crystals by Electron Spectro-Microscopy." Nihon Kessho Gakkaishi 36, no. 3 (1994): 199–203. http://dx.doi.org/10.5940/jcrsj.36.199.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rehman, R. A., H. J. Zhang, A. Razaq, S. M. Ramay, M. Hasan, M. A. Javed, and S. Atiq. "Spectro-microscopy characterization of CoPc-Au(111) interface." Physica E: Low-dimensional Systems and Nanostructures 125 (January 2021): 114357. http://dx.doi.org/10.1016/j.physe.2020.114357.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bode, M., A. Kubetzka, O. Pietzsch, and R. Wiesendanger. "Spin-resolved spectro-microscopy of magnetic nanowire arrays." Surface Science 514, no. 1-3 (August 2002): 135–44. http://dx.doi.org/10.1016/s0039-6028(02)01619-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bohic, S., R. Tucoulou, G. Martinez-Criado, S. Labouré, M. Salomé, and P. Cloetens. "C-10 Synchrotron Based Spectro-Microscopy for Cell Biology." Powder Diffraction 24, no. 2 (June 2009): 166. http://dx.doi.org/10.1154/1.3175930.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Stohr, J., and S. Anders. "X-ray spectro-microscopy of complex materials and surfaces." IBM Journal of Research and Development 44, no. 4 (July 2000): 535–51. http://dx.doi.org/10.1147/rd.444.0535.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Schmidt, Th, T. Clausen, S. Gangopadhyay, J. Falta, S. Heun, L. Gregoratti, A. Barinov, B. Kaulich, and M. Kiskinova. "Spectro-microscopy of ultra-thin SiN films on Si()." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 200 (January 2003): 79–84. http://dx.doi.org/10.1016/s0168-583x(02)01678-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Amati, Matteo, Lada Yashina, Philipp Winkler, Kevin Sparwasser, Zygmunt Milosz, Günther Rupprechter, and Luca Gregoratti. "Catalytically Active Materials Visualized by Scanning Photoelectron Spectro-Microscopy." Surfaces 7, no. 3 (June 26, 2024): 442–59. http://dx.doi.org/10.3390/surfaces7030028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Modern catalysts are complex systems whose performance depends both on space and time domains and, most importantly, on the operational environment. As a direct consequence, understanding their functionalities requires sophisticated techniques and tools for measurement and simulation, addressing the proper spatial and temporal scale and being capable of mimicking the working conditions of every single component, such as catalyst supports, electrodes, electrolytes, as well as of the entire assembly, e.g., in the case of fuel cells or batteries. Scanning photoelectron spectro-microscopy (SPEM) is one of the approaches that allow combining X-ray photoelectron spectroscopy with sub-micron spatial resolution; in particular, the SPEM hosted at the ESCA Microscopy beamline at Elettra has been upgraded to conduct in situ and operando experiments. Three different case studies are presented to illustrate the capabilities of the SPEM in the investigation of catalytic materials in different conditions and processes.
13

Lee, Wai Hin, Carol Crean, John R. Varcoe, and Rachida Bance-Soualhi. "A Raman spectro-microscopic investigation of ETFE-based radiation-grafted anion-exchange membranes." RSC Adv. 7, no. 75 (2017): 47726–37. http://dx.doi.org/10.1039/c7ra09650j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Baaske, Martin D., Nasrin Asgari, Patrick Spaeth, Subhasis Adhikari, Deep Punj, and Michel Orrit. "Photothermal Spectro-Microscopy as Benchmark for Optoplasmonic Bio-Detection Assays." Journal of Physical Chemistry C 125, no. 45 (November 9, 2021): 25087–93. http://dx.doi.org/10.1021/acs.jpcc.1c07592.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Higgins, Drew Higgins, Ahmed Abdellah, Chunyang Zhang, Kholoud Abousalem, Robert Black, Haytham Eraky, and Adam Hitchcock. "In Situ Transmission Electron Microscopy and Soft X-Ray Spectro-Microscopy to Understand Electrochemical Processes." ECS Meeting Abstracts MA2023-02, no. 55 (December 22, 2023): 2684. http://dx.doi.org/10.1149/ma2023-02552684mtgabs.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Electrochemical CO2 conversion offers a route to use renewable sources of electricity to convert CO2 into valuable carbon-based fuels and chemicals, including carbon monoxide, ethanol and ethylene. For electrochemical CO2 conversion technologies to become a viable component of future sustainable energy infrastructures, improved performance materials (catalysts, electrodes, membrane electrode assemblies) are needed to achieve high conversion rates, selectivity and single-pass utilization of CO2. This talk will focus on the development of techniques to characterize the properties of electrochemical CO2 conversion materials under reaction conditions. These in-situ methods are producing results which will guide the design of next generation materials and reactors. The talk will focus primarily on in situ transmission electron microscopy (TEM) and related spectroscopic techniques (energy dispersive X-ray analysis and selected area electron diffraction), along with synchrotron-based methods including in-situ soft X-ray scanning transmission X-ray microscopy (STXM).
16

Ogunleke, Abiodun, Benoit Recur, Hugo Balacey, Hsiang-Hsin Chen, Maylis Delugin, Yeukuang Hwu, Sophie Javerzat, and Cyril Petibois. "3D chemical imaging of the brain using quantitative IR spectro-microscopy." Chemical Science 9, no. 1 (2018): 189–98. http://dx.doi.org/10.1039/c7sc03306k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Brimaud, Sylvain, Zenonas Jusys, and R. Jürgen Behm. "Shape-selected nanocrystals for in situ spectro-electrochemistry studies on structurally well defined surfaces under controlled electrolyte transport: A combined in situ ATR-FTIR/online DEMS investigation of CO electrooxidation on Pt." Beilstein Journal of Nanotechnology 5 (May 28, 2014): 735–46. http://dx.doi.org/10.3762/bjnano.5.86.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The suitability and potential of shape selected nanocrystals for in situ spectro-electrochemical and in particular spectro-electrocatalytic studies on structurally well defined electrodes under enforced and controlled electrolyte mass transport will be demonstrated, using Pt nanocrystals prepared by colloidal synthesis procedures and a flow cell set-up allowing simultaneous measurements of the Faradaic current, FTIR spectroscopy of adsorbed reaction intermediates and side products in an attenuated total reflection configuration (ATR-FTIRS) and differential electrochemical mass spectrometry (DEMS) measurements of volatile reaction products. Batches of shape-selected Pt nanocrystals with different shapes and hence different surface structures were prepared and structurally characterized by transmission electron microscopy (TEM) and electrochemical methods. The potential for in situ spectro-electrocatalytic studies is illustrated for COad oxidation on Pt nanocrystal surfaces, where we could separate contributions from two processes occurring simultaneously, oxidative COad removal and re-adsorption of (bi)sulfate anions, and reveal a distinct structure sensitivity in these processes and also in the structural implications of (bi)sulfate re-adsorption on the CO adlayer.
18

Gloter, A., M. Tence, O. Stephan, S. Y. Chen, C. L. Dong, M. van Schooneveld, and C. Colliex. "Visualizing and Analyzing Doped and Functionalized Nanoparticles with STEM-EELS Spectro-Microscopy." Microscopy and Microanalysis 19, S2 (August 2013): 1484–85. http://dx.doi.org/10.1017/s1431927613009410.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Dučić, Tanja, Susanne Quintes, Klaus-Armin Nave, Jean Susini, Margaret Rak, Rémi Tucoulou, Mihai Alevra, Peter Guttmann, and Tim Salditt. "Structure and composition of myelinated axons: A multimodal synchrotron spectro-microscopy study." Journal of Structural Biology 173, no. 2 (February 2011): 202–12. http://dx.doi.org/10.1016/j.jsb.2010.10.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Faraj, Marwa A., Mushtak A. Jabbar, and Ahmed N. Abd. "Inhibitory Effect of Bi2O3NPs Produced by green synthesis method." Journal of Physics: Conference Series 2322, no. 1 (August 1, 2022): 012083. http://dx.doi.org/10.1088/1742-6596/2322/1/012083.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Because of its medical and biological uses, green nanoparticle production has gotten a lot of attention. Bismuth oxide nanoparticles (Bi2O3 NP) were synthesized using aqueous extract from cocoa plants in this study, and the result was examined using an ultraviolet-visible, spectro-photometer, Fourier transform infrared, X-ray diffraction, and atomic force microscopy, The samples’ antibacterial activity was tested against a variety of microorganisms.
21

Bonanni, Valentina, and Alessandra Gianoncelli. "Soft X-ray Fluorescence and Near-Edge Absorption Microscopy for Investigating Metabolic Features in Biological Systems: A Review." International Journal of Molecular Sciences 24, no. 4 (February 6, 2023): 3220. http://dx.doi.org/10.3390/ijms24043220.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Scanning transmission X-ray microscopy (STXM) provides the imaging of biological specimens allowing the parallel collection of localized spectroscopic information by X-ray fluorescence (XRF) and/or X-ray Absorption Near Edge Spectroscopy (XANES). The complex metabolic mechanisms which can take place in biological systems can be explored by these techniques by tracing even small quantities of the chemical elements involved in the metabolic pathways. Here, we present a review of the most recent publications in the synchrotrons’ scenario where soft X-ray spectro-microscopy has been employed in life science as well as in environmental research.
22

Moffet, R. C., T. C. Rödel, S. T. Kelly, X. Y. Yu, G. T. Carroll, J. Fast, R. A. Zaveri, A. Laskin, and M. K. Gilles. "Spectro-microscopic measurements of carbonaceous aerosol aging in Central California." Atmospheric Chemistry and Physics Discussions 13, no. 4 (April 5, 2013): 9179–216. http://dx.doi.org/10.5194/acpd-13-9179-2013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. Carbonaceous aerosols are responsible for large uncertainties in climate models, degraded visibility, and adverse health effects. The Carbonaceous Aerosols and Radiative Effects Study (CARES) was designed to study carbonaceous aerosols in the natural environment of Central Valley, California, and learn more about their atmospheric formation and aging. This paper presents results from spectro-microscopic measurements of carbonaceous particles collected during CARES at the time of pollution accumulation event (27–29 June 2010), when in situ measurements indicated an increase in the organic carbon content of aerosols as the Sacramento urban plume aged. Computer controlled scanning electron microscopy coupled with an energy dispersive X-ray detector (CCSEM/EDX) and scanning transmission X-ray microscopy coupled with near edge X-ray absorption spectroscopy (STXM/NEXAFS) were used to probe the chemical composition and morphology of individual particles. It was found that the mass of organic carbon on individual particles increased through condensation of secondary organic aerosol. STXM/NEXAFS indicated that the number fraction of homogenous organic particles lacking inorganic inclusions (greater than ~50 nm diameter) increased with plume age as did the organic mass per particle. Comparison of the CARES spectro-microscopic data set with a similar dataset obtained in Mexico City during the MILAGRO campaign showed that individual particles in Mexico City contained twice as much carbon as those sampled during CARES. The number fraction of soot particles at the Mexico City urban site (30%) was larger than at the CARES urban site (10%) and the most aged samples from CARES contained less carbon-carbon double bonds. Differences between carbonaceous particles in Mexico City and California result from different sources, photochemical conditions, gas phase reactants, and secondary organic aerosol precursors. The detailed results provided by these spectro-microscopic measurements will allow for a comprehensive evaluation of aerosol process models used in climate research.
23

Tivanski, A. V. "Physical, Chemical and Hygroscopic Properties of Submicrometer Particles Studied using X-ray Spectro-Microscopy and Atomic Force Microscopy." Microscopy and Microanalysis 18, S2 (July 2012): 848–49. http://dx.doi.org/10.1017/s1431927612006095.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Amati, Matteo, Luca Gregoratti, Patrick Zeller, Mark Greiner, Mattia Scardamaglia, Benjamin Junker, Tamara Ruß, et al. "Near ambient pressure photoelectron spectro-microscopy: from gas–solid interface to operando devices." Journal of Physics D: Applied Physics 54, no. 20 (March 2, 2021): 204004. http://dx.doi.org/10.1088/1361-6463/abe5e2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Alperstein, Ariel M., Craig Van Bruggen, Punarbasu Roy, Theresa M. Reineke, and Renee R. Frontiera. "Raman spectro-microscopy to improve gene therapy vehicle design for CRISPR/cas9 delivery." Biophysical Journal 121, no. 3 (February 2022): 414a. http://dx.doi.org/10.1016/j.bpj.2021.11.687.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Xu, Yang, Tatsuhiko Aizawa, and Junji Kihara. "Structure of Surface Wave on Coarse-Grained Nickel Observed by Acoustic Spectro-Microscopy." Materials Transactions, JIM 37, no. 11 (1996): 1690–98. http://dx.doi.org/10.2320/matertrans1989.37.1690.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Susini, J., M. Cotte, K. Scheidt, O. Chubar, F. Polack, and P. Dumas. "Technical Report: The FTIR Spectro-Microscopy End-Station at the ESRF-ID21 Beamline." Synchrotron Radiation News 20, no. 5 (September 21, 2007): 13–16. http://dx.doi.org/10.1080/08940880701631344.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Quaroni, Luca, and Theodora Zlateva. "Real-Time Metabolic Analysis of Living Cancer Cells with Correlated Cellular Spectro-microscopy." Analytical Chemistry 86, no. 14 (June 26, 2014): 6887–95. http://dx.doi.org/10.1021/ac501561x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Watts, Benjamin, Christopher R. McNeill, and Jörg Raabe. "Imaging nanostructures in organic semiconductor films with scanning transmission X-ray spectro-microscopy." Synthetic Metals 161, no. 23-24 (January 2012): 2516–20. http://dx.doi.org/10.1016/j.synthmet.2011.09.016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Chiou, L. F., P. Y. Huang, W. F. Chiang, T. Y. Wong, Y. C. Lee, and D. B. Shieh. "P71. SR-FTIR microscopy revealed oral carcinogenesis spectro-markers for physisorption based diagnosis." Oral Oncology 47 (July 2011): S96. http://dx.doi.org/10.1016/j.oraloncology.2011.06.314.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Reininger, R., S. L. Hulbert, P. D. Johnson, J. T. Sadowski, D. E. Starr, O. Chubar, T. Valla, and E. Vescovo. "The electron spectro-microscopy beamline at National Synchrotron Light Source II: A wide photon energy range, micro-focusing beamline for photoelectron spectro-microscopies." Review of Scientific Instruments 83, no. 2 (February 2012): 023102. http://dx.doi.org/10.1063/1.3681440.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Moffet, R. C., T. C. Rödel, S. T. Kelly, X. Y. Yu, G. T. Carroll, J. Fast, R. A. Zaveri, A. Laskin, and M. K. Gilles. "Spectro-microscopic measurements of carbonaceous aerosol aging in Central California." Atmospheric Chemistry and Physics 13, no. 20 (October 29, 2013): 10445–59. http://dx.doi.org/10.5194/acp-13-10445-2013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. Carbonaceous aerosols are responsible for large uncertainties in climate models, degraded visibility, and adverse health effects. The Carbonaceous Aerosols and Radiative Effects Study (CARES) was designed to study carbonaceous aerosols in the natural environment of the Central Valley, California, and learn more about their atmospheric formation and aging. This paper presents results from spectro-microscopic measurements of carbonaceous particles collected during CARES at the time of a pollution accumulation event (27–29 June 2010), when in situ measurements indicated an increase in the organic carbon content of aerosols as the Sacramento urban plume aged. Computer-controlled scanning electron microscopy coupled with an energy dispersive X-ray detector (CCSEM/EDX) and scanning transmission X-ray microscopy coupled with near-edge X-ray absorption spectroscopy (STXM/NEXAFS) were used to probe the chemical composition and morphology of individual particles. It was found that the mass of organic carbon on individual particles increased through condensation of secondary organic aerosol. STXM/NEXAFS indicated that the number fraction of homogenous organic particles lacking inorganic inclusions (greater than ~50 nm equivalent circular diameter) increased with plume age, as did the organic mass per particle. Comparison of the CARES spectro-microscopic dataset with a similar dataset obtained in Mexico City during the MILAGRO campaign showed that fresh particles in Mexico City contained three times as much carbon as those sampled during CARES. The number fraction of soot particles at the Mexico City urban site (ranging from 16.6 to 47.3%) was larger than at the CARES urban site (13.4–15.7%), and the most aged samples from CARES contained fewer carbon–carbon double bonds. Differences between carbonaceous particles in Mexico City and California result from different sources, photochemical conditions, gas phase reactants, and secondary organic aerosol precursors. The detailed results provided by these spectro-microscopic measurements will allow for a comprehensive evaluation of aerosol process models used in climate research.
33

Kayani, Zohra N., Mehawish Saleem, Saira Riaz, Shahzad Naseem, and Farhat Saleemi. "Structure and Optical Properties of TiO2 Thin Films Prepared by a Sol-Gel Processing." Zeitschrift für Naturforschung A 74, no. 7 (July 26, 2019): 635–42. http://dx.doi.org/10.1515/zna-2019-0011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractTitanium dioxide (TiO2) thin films were deposited on CR-39 by a sol-gel dip coating route with different withdrawal speeds ranging from 250 to 350 mm/s. The TiO2 thin films were characterised by x-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, ellipsometry, and ultraviolet (UV)-visible (VIS)-near infrared (NIR) spectro-photometry. The role of withdrawal speed on the thickness of thin films to tailor properties of TiO2 thin films was studied. The XRD results revealed that all the films are amorphous in nature. TiO2 thin films deposited at different withdrawal speeds exhibit a decrease in transmission with an increase in speed. The direct optical band gap of the films has been estimated to be in the range 3.48–3.00 eV by UV-VIS-NIR spectro-photometry and 3.52–3.38 eV by ellipsometry. TiO2 is a potential prospect in microelectronic applications and can serve as an absorber layer for photovoltaic devices. Surface morphology is granular with an increase in grain size and an increase in withdrawal speed.
34

Somogyi, Andrea, and Cristian Mocuta. "Possibilities and Challenges of Scanning Hard X-ray Spectro-microscopy Techniques in Material Sciences." AIMS Materials Science 2, no. 2 (2015): 122–62. http://dx.doi.org/10.3934/matersci.2015.2.122.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Wonner, Kevin, Mathies V. Evers, and Kristina Tschulik. "Simultaneous Opto- and Spectro-Electrochemistry: Reactions of Individual Nanoparticles Uncovered by Dark-Field Microscopy." Journal of the American Chemical Society 140, no. 40 (July 11, 2018): 12658–61. http://dx.doi.org/10.1021/jacs.8b02367.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Cassabaum, Alyssa A., Kajari Bera, Christopher C. Rich, Bailey R. Nebgen, Siu Yi Kwang, Margaret L. Clapham, and Renee R. Frontiera. "Femtosecond stimulated Raman spectro-microscopy for probing chemical reaction dynamics in solid-state materials." Journal of Chemical Physics 153, no. 3 (July 21, 2020): 030901. http://dx.doi.org/10.1063/5.0009976.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Wierer, Sebastian, Sébastien Peter, Kirstin Elgass, Hans-Georg Mack, Stefan Bieker, Alfred J. Meixner, Ulrike Zentgraf, and Frank Schleifenbaum. "Determination of the in vivo redox potential by one-wavelength spectro-microscopy of roGFP." Analytical and Bioanalytical Chemistry 403, no. 3 (March 21, 2012): 737–44. http://dx.doi.org/10.1007/s00216-012-5911-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Pattammattel, Ajith, Valerie J. Leppert, Paul Aronstein, Matthew Robinson, Amirhosein Mousavi, Constantinos Sioutas, Henry Jay Forman, and Peggy A. O'Day. "Iron speciation in particulate matter (PM2.5) from urban Los Angeles using spectro-microscopy methods." Atmospheric Environment 245 (January 2021): 117988. http://dx.doi.org/10.1016/j.atmosenv.2020.117988.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Gloter, A., M. Tence, O. Stephan, M. Kociak, L. Catala, T. Mallah, C. Colliex, and M. M. van Schooneveld. "Visualizing the morphology of hybrid nanoparticles at the nanometer level using STEM-EELS spectro-microscopy." Microscopy and Microanalysis 18, S2 (July 2012): 1602–3. http://dx.doi.org/10.1017/s1431927612009865.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Quinn, Paul D., Miguel Gomez-Gonzalez, Fernando Cacho-Nerin, and Julia E. Parker. "Beam and sample movement compensation for robust spectro-microscopy measurements on a hard X-ray nanoprobe." Journal of Synchrotron Radiation 28, no. 5 (August 19, 2021): 1528–34. http://dx.doi.org/10.1107/s1600577521007736.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Static and in situ nanoscale spectro-microscopy is now routinely performed on the Hard X-ray Nanoprobe beamline at Diamond and the solutions implemented to provide robust energy scanning and experimental operation are described. A software-based scheme for active feedback stabilization of X-ray beam position and monochromatic beam flux across the operating energy range of the beamline is reported, consisting of two linked feedback loops using extremum seeking and position control. Multimodal registration methods have been implemented for active compensation of drift during an experiment to compensate for sample movement during in situ experiments or from beam-induced effects.
41

Arul, K. Thanigai, Han-Wei Chang, Hung-Wei Shiu, Chung-Li Dong, and Way-Faung Pong. "A review of energy materials studied by in situ/operando synchrotron x-ray spectro-microscopy." Journal of Physics D: Applied Physics 54, no. 34 (June 16, 2021): 343001. http://dx.doi.org/10.1088/1361-6463/ac017f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Tizei, Luiz Henrique Galvão, Hugo Lourenço-Martins, Pabitra Das, Steffi Y. Woo, Leonardo Scarabelli, Christoph Hanske, Luis M. Liz-Marzán, Kenji Watanabe, Takashi Taniguchi, and Mathieu Kociak. "Monolayer and thin h–BN as substrates for electron spectro-microscopy analysis of plasmonic nanoparticles." Applied Physics Letters 113, no. 23 (December 3, 2018): 231108. http://dx.doi.org/10.1063/1.5054751.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Bista, Rajan K., Reinhard F. Bruch, Aaron M. Covington, Alexander Sorger, Thoralf Gerstmann, and Alexander Otto. "Investigations of thermotropic phase behavior of newly developed synthetic PEGylated lipids using Raman spectro-microscopy." Biopolymers 89, no. 11 (November 2008): 1012–20. http://dx.doi.org/10.1002/bip.21051.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Zeller, Patrick, Matteo Amati, Hikmet Sezen, Mattia Scardamaglia, Claudia Struzzi, Carla Bittencourt, Gabriel Lantz, et al. "Scanning Photoelectron Spectro-Microscopy: A Modern Tool for the Study of Materials at the Nanoscale." physica status solidi (a) 215, no. 19 (August 21, 2018): 1800308. http://dx.doi.org/10.1002/pssa.201800308.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Dima, Antonela, Massimo Gagliardi, Dun Liu, Walter Perrie, Craig J. Williams, Ivo Rendina, Geoff Dearden, and Ken G. Watkins. "Nano-Silicon Sol-Gel Film Refraction Index Modulation with Femtosecond Laser." Solid State Phenomena 154 (April 2009): 101–6. http://dx.doi.org/10.4028/www.scientific.net/ssp.154.101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Patterned structures were created by exposing SiO2 sol-gel films containing nano-silicon particles to a Clark MXR CPA-2010 fs laser (387 nm). A refractive index variation of 0.2 was obtained, similar to that of polymer films, however in an entirely superior stability class (structural, chemical, thermal, radiation, etc). The useful optical range of refractive index modulation is beyond 800 nm, respectively near-IR. Material characteristics were investigated with atomic force microscopy (AFM), Raman spectroscopy and spectro-ellipsometry measurements. Material properties were also investigated on different substrates in order to determine the influence of substrate type in laser processing.
46

Makin, R. A., K. R. York, A. S. Messecar, and S. M. Durbin. "Quantitative Disorder Analysis and Particle Removal Efficiency of Polypropylene-Based Masks." MRS Advances 5, no. 56 (2020): 2853–61. http://dx.doi.org/10.1557/adv.2020.346.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractWe demonstrate a methodology for predicting particle removal efficiency of polypropylene-based filters used in personal protective equipment, based on quantification of disorder in the context of methyl group orientation as structural motifs in conjunction with an Ising model. The corresponding Bragg-Williams order parameter is extracted through either Raman spectro-scopy or scanning electron microscopy. Temperature-dependent analysis verifies the presence of an order-disorder transition, and the methodology is applied to published data for multiple samples. The result is a method for predicting the particle removal efficiency of filters used in masks based on a material-level property.
47

Li, Lintao, Xiaorui Li, Yiding Shen, Xuyong Chen, and Luan Jiang. "Hydrophobicity and corrosion resistance of waterborne fluorinated acrylate/silica nanocomposite coatings." e-Polymers 21, no. 1 (January 1, 2021): 779–92. http://dx.doi.org/10.1515/epoly-2021-0079.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract This study aims to improve the hydrophobic properties and corrosion resistance of fluorinated acrylate coatings. The surface of nano-SiO2 was modified by the silicone coupling reagent (KH-570), and the reactive functional groups were introduced to modify fluorinated acrylates. The functionalized SiO2-modified waterborne fluorinated acrylate emulsion was prepared by free polymerization with dual initiators. The structure of the polymer was analyzed by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectro-meter (1H-NMR), X-ray photoelectron spectroscopy (XPS) and Waters gel chromatography (GPC). The properties of the films and coatings were analyzed by contact angle, atomic force microscopy, scanning electron microscopy, and electrochemical analysis. The results showed that the contact angle reached 120° when the SiO2 content was 3%, the electrochemical impedance value reached 1.49 × 107 Ω·cm2, and the pencil hardness was 3H.
48

Betti, Maria Grazia, Elena Blundo, Marta De Luca, Marco Felici, Riccardo Frisenda, Yoshikazu Ito, Samuel Jeong, et al. "Homogeneous Spatial Distribution of Deuterium Chemisorbed on Free-Standing Graphene." Nanomaterials 12, no. 15 (July 29, 2022): 2613. http://dx.doi.org/10.3390/nano12152613.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Atomic deuterium (D) adsorption on free-standing nanoporous graphene obtained by ultra-high vacuum D2 molecular cracking reveals a homogeneous distribution all over the nanoporous graphene sample, as deduced by ultra-high vacuum Raman spectroscopy combined with core-level photoemission spectroscopy. Raman microscopy unveils the presence of bonding distortion, from the signal associated to the planar sp2 configuration of graphene toward the sp3 tetrahedral structure of graphane. The establishment of D–C sp3 hybrid bonds is also clearly determined by high-resolution X-ray photoelectron spectroscopy and spatially correlated to the Auger spectroscopy signal. This work shows that the low-energy molecular cracking of D2 in an ultra-high vacuum is an efficient strategy for obtaining high-quality semiconducting graphane with homogeneous uptake of deuterium atoms, as confirmed by this combined optical and electronic spectro-microscopy study wholly carried out in ultra-high vacuum conditions.
49

Rani, Ekta, Harishchandra Singh, Tuomas Alatarvas, Mourad Kharbach, Wei Cao, Brice Sarpi, Lin Zhu, et al. "Uncovering temperature-tempted coordination of inclusions within ultra-high-strength-steel via in-situ spectro-microscopy." Journal of Materials Research and Technology 17 (March 2022): 2333–42. http://dx.doi.org/10.1016/j.jmrt.2022.01.170.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Xu, Yang, Tatsuhiko Aizawa, and Junji Kihara. "Simultaneous Determination of Elastic Constants and Crystallographic Orientation in Coarse-Grained Nickel by Acoustic Spectro-Microscopy." Materials Transactions, JIM 38, no. 6 (1997): 536–45. http://dx.doi.org/10.2320/matertrans1989.38.536.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії