Статті в журналах з теми "Spectral Stabilization"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Spectral Stabilization.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Spectral Stabilization".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Heinrichs, Wilhelm. "Stabilization techniques for spectral methods." Journal of Scientific Computing 6, no. 1 (March 1991): 1–19. http://dx.doi.org/10.1007/bf01068121.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jenaliyev, Muvasharkhan, Kanzharbek Imanberdiyev, Arnay Kassymbekova, and Kadyrbek Sharipov. "STABILIZATION OF SOLUTIONS OF TWO-DIMENSIONAL PARABOLIC EQUATIONS AND RELATED SPECTRAL PROBLEMS." Eurasian Mathematical Journal 11, no. 1 (2020): 72–85. http://dx.doi.org/10.32523/2077-9879-2020-11-1-72-85.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Julsgaard, B., A. Walther, S. Kröll, and L. Rippe. "Understanding laser stabilization using spectral hole burning." Optics Express 15, no. 18 (2007): 11444. http://dx.doi.org/10.1364/oe.15.011444.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fischer, Paul, and Julia Mullen. "Filter-based stabilization of spectral element methods." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 332, no. 3 (February 2001): 265–70. http://dx.doi.org/10.1016/s0764-4442(00)01763-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Caccamo, Maria Teresa, and Salvatore Magazù. "Stabilization Effects Induced by Trehalose on Creatine Aqueous Solutions Investigated by Infrared Spectroscopy." Molecules 27, no. 19 (September 24, 2022): 6310. http://dx.doi.org/10.3390/molecules27196310.

Повний текст джерела
Анотація:
Creatine is a very popular amino acid widely utilized in the sports world due to its functions mainly related to muscle building and increasing performance. The present work investigates the behavior of creatine aqueous solutions and of creatine aqueous in the presence of trehalose as a function of time changes by means of Infrared spectroscopy. Infrared spectra have been gathered and studied over time for both the full spectrum and the intramolecular OH-stretching region for the two mixtures. This latter region was studied more specifically using a cutting-edge technique called Spectral Distance (SD). From this analysis of the spectral features of the investigated samples, it emerges that trehalose has a significant stabilizing effect on creatine aqueous solutions.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tsuge, Akira, Yoshinori Uwamino, and Toshio Ishizuka. "Applications of Laser-Induced Thermal Emission Spectroscopy to Various Samples." Applied Spectroscopy 43, no. 7 (September 1989): 1145–49. http://dx.doi.org/10.1366/0003702894203598.

Повний текст джерела
Анотація:
The Laser-Induced Thermal Emission (LITE) spectra of several solid samples were measured and compared with the usual thermal emission spectra generated by the heating element. The following advantages in LITE spectroscopy were made clear: (1) the spectral background is reduced; (2) the time required for the stabilization of the thermal emission signal is short; (3) the compounds which are coated on background materials with complex shapes can be measured.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Van Vliet, Bruce N., Francesca Belforti, and Jean-Pierre Montani. "Baroreflex stabilization of the double (pressure-rate) product at 0.05 Hz in conscious rabbits." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 282, no. 6 (June 1, 2002): R1746—R1753. http://dx.doi.org/10.1152/ajpregu.00529.2001.

Повний текст джерела
Анотація:
The product of heart rate (HR) and systolic blood pressure (SBP), the double product (DP), is an indirect index of cardiac oxygen consumption. We used spectral analysis to test the hypothesis that baroreflex adjustments of HR stabilize the DP during spontaneous variations in SBP. SBP and HR were recorded by telemetry in five male conscious rabbits. HR and SBP power spectra each exhibited a low frequency peak at ∼0.05 Hz that was associated with high (>0.5) spectral coherence and a positive phase relationship between SBP and HR (SBP leading). A prominent peak was absent in the spectra of their product, suggesting that SBP and HR interacted to reduce DP variability in this frequency region. In contrast, a prominent 0.05-Hz peak was present in the power spectrum of calculated surrogates of the DP in which reflex interactions between HR and SBP had been removed. Our results suggest that baroreflex adjustments of HR stabilize the DP during spontaneous low-frequency variations in SBP in conscious rabbits.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

WATANABE, Keiji, and Mitsuyoshi YAMATARI. "Stabilization of Repetitive Control Systems-Spectral Decomposition Approach." Transactions of the Society of Instrument and Control Engineers 22, no. 5 (1986): 535–41. http://dx.doi.org/10.9746/sicetr1965.22.535.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Strickland, N. M., P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone. "Laser frequency stabilization using regenerative spectral hole burning." Physical Review B 62, no. 3 (July 15, 2000): 1473–76. http://dx.doi.org/10.1103/physrevb.62.1473.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wendisch, Manfred, Dörthe Müller, Dieter Schell, and Jost Heintzenberg. "An Airborne Spectral Albedometer with Active Horizontal Stabilization." Journal of Atmospheric and Oceanic Technology 18, no. 11 (November 2001): 1856–66. http://dx.doi.org/10.1175/1520-0426(2001)018<1856:aasawa>2.0.co;2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Sovinec, C. R. "Stabilization of numerical interchange in spectral-element magnetohydrodynamics." Journal of Computational Physics 319 (August 2016): 61–78. http://dx.doi.org/10.1016/j.jcp.2016.04.063.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Hrabina, J., O. Acef, F. du Burck, N. Chiodo, Y. Candela, M. Sarbort, M. Hola, and J. Lazar. "Comparison of Molecular Iodine Spectral Properties at 514.7 and 532 nm Wavelengths." Measurement Science Review 14, no. 4 (August 1, 2014): 213–18. http://dx.doi.org/10.2478/msr-2014-0029.

Повний текст джерела
Анотація:
Abstract We present results of investigation and comparison of spectral properties of molecular iodine transitions in the spectral region of 514.7 nm that are suitable for laser frequency stabilization and metrology of length. Eight Doppler-broadened transitions that were not studied in detail before were investigated with the help of frequency doubled Yb-doped fiber laser, and three of the most promising lines were studied in detail with prospect of using them in frequency stabilization of new laser standards. The spectral properties of hyperfine components (linewidths, signal-to-noise ratio) were compared with transitions that are well known and traditionally used for stabilization of frequency doubled Nd:YAG laser at the 532 nm region with the same molecular iodine absorption. The external frequency doubling arrangement with waveguide crystal and the Yb-doped fiber laser is also briefly described together with the observed effect of laser aging.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Chen, Lizhen, Jie Shen, and Chuanju Xu. "Spectral Direction Splitting Schemes for the Incompressible Navier-Stokes Equations." East Asian Journal on Applied Mathematics 1, no. 3 (August 2011): 215–34. http://dx.doi.org/10.4208/eajam.190411.240511a.

Повний текст джерела
Анотація:
AbstractWe propose and analyze spectral direction splitting schemes for the incompressible Navier-Stokes equations. The schemes combine a Legendre-spectral method for the spatial discretization and a pressure-stabilization/direction splitting scheme for the temporal discretization, leading to a sequence of one-dimensional elliptic equations at each time step while preserving the same order of accuracy as the usual pressure-stabilization schemes. We prove that these schemes are unconditionally stable, and present numerical results which demonstrate the stability, accuracy, and efficiency of the proposed methods.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Vite, Leopoldo, and Sabine Mondié. "Input delay compensation of distributed time-delay systems via observer–predictors." Memorias del Congreso Nacional de Control Automático 5, no. 1 (October 17, 2022): 1–6. http://dx.doi.org/10.58571/cnca.amca.2022.002.

Повний текст джерела
Анотація:
This work is devoted to the stabilization of linear systems with distributed delay. The approach is based on a prediction-observation protocol that allows compensating input time-delay. The proposed control scheme is tuned by optimizing the smoothed spectral abscissa, which is a smooth relaxation of the non-smooth spectral abscissa function, and provides a trade-off between the decay rate and the $mathcal{H}_2$ norm of the system. The proposed controller is applied to the stabilization of combustion in rocket motor chambers.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Grigoryan, A. M., and E. R. Doughelly. "Optimization of linear filters under power-spectral-density stabilization." IEEE Transactions on Signal Processing 49, no. 10 (2001): 2292–300. http://dx.doi.org/10.1109/78.950785.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Heinrich, Matthias, Falk Eilenberger, Robert Keil, Felix Dreisow, Eric Suran, Frédéric Louradour, Andreas Tünnermann, Thomas Pertsch, Stefan Nolte, and Alexander Szameit. "Optical limiting and spectral stabilization in segmented photonic lattices." Optics Express 20, no. 24 (November 19, 2012): 27299. http://dx.doi.org/10.1364/oe.20.027299.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Xu, Chuanju. "Stabilization Methods for Spectral Element Computations of Incompressible Flows." Journal of Scientific Computing 27, no. 1-3 (January 6, 2006): 495–505. http://dx.doi.org/10.1007/s10915-005-9059-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Canuto, Claudio. "Stabilization of spectral methods by finite element bubble functions." Computer Methods in Applied Mechanics and Engineering 116, no. 1-4 (January 1994): 13–26. http://dx.doi.org/10.1016/s0045-7825(94)80004-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Liu, Bo, and Walter Littman. "On the Spectral Properties and Stabilization of Acoustic Flow." SIAM Journal on Applied Mathematics 59, no. 1 (January 1998): 17–34. http://dx.doi.org/10.1137/s0036139996314106.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Pasquetti, R., and C. J. Xu. "Comments on “Filter-Based Stabilization of Spectral Element Methods”." Journal of Computational Physics 182, no. 2 (November 2002): 646–50. http://dx.doi.org/10.1006/jcph.2002.7178.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Gerfo, L. Lo, L. Rosasco, F. Odone, E. De Vito, and A. Verri. "Spectral Algorithms for Supervised Learning." Neural Computation 20, no. 7 (July 2008): 1873–97. http://dx.doi.org/10.1162/neco.2008.05-07-517.

Повний текст джерела
Анотація:
We discuss how a large class of regularization methods, collectively known as spectral regularization and originally designed for solving ill-posed inverse problems, gives rise to regularized learning algorithms. All of these algorithms are consistent kernel methods that can be easily implemented. The intuition behind their derivation is that the same principle allowing for the numerical stabilization of a matrix inversion problem is crucial to avoid overfitting. The various methods have a common derivation but different computational and theoretical properties. We describe examples of such algorithms, analyze their classification performance on several data sets and discuss their applicability to real-world problems.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Kim, Jin-Tae, Liu Zhen, Venedikt Kapitanov, Hyun Su Kim, Jong Rak Park, and Si-Hyun Park. "Hyperfine Structure Measurement of Rubidium Atom and Tunable Diode Laser Stabilization by Using Sagnac Interferometer." Journal of Nanoscience and Nanotechnology 6, no. 11 (November 1, 2006): 3559–61. http://dx.doi.org/10.1166/jnn.2006.17982.

Повний текст джерела
Анотація:
The Rubidium saturated absorption spectra for D2 transition lines are used to measure the Fabry-Perot interferometer free spectral range (FSR). The scale linearity of the laser frequency tuning is determined. The Sagnac interferometer has been used for the laser stabilization. The result shows that the laser frequency is stabilized upto sub-mega Herz level. Also the hyperfine structure [52S1/2 F = 3 → F′ = 2, 3, 4 52P3/2 85Rb] of the rubidium atom has been measured by using the tilt locking method, which shows the same result as the conventional saturation spectroscopy.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Moscovich, Viviana. "French Spectral Music: an Introduction." Tempo, no. 200 (April 1997): 21–28. http://dx.doi.org/10.1017/s0040298200048403.

Повний текст джерела
Анотація:
The composers belonging to what would later be called the ‘spectral music movement’ started their careers in an unstable political period in France. Between 1962 and 1974, under the presidency of Charles de Gaulle and Georges Pompidou, France (the 5th Republic) was what we can call a ‘Gaullist Republic’. But in the middle of the 1960s the economic policy of the government aroused the hostility of the French people. The ‘Stabilization Plan’ of 1963 induced unemployment for the first time since 1945, and the authoritarian character of a government which, in 1967, legislated in the form of ordonnances, turned the people against the presidential policy in every domain.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Pérez de Tudela, Ricardo, and Dominik Marx. "Water-Induced Zwitterionization of Glycine: Stabilization Mechanism and Spectral Signatures." Journal of Physical Chemistry Letters 7, no. 24 (December 2016): 5137–42. http://dx.doi.org/10.1021/acs.jpclett.6b02247.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Pryde, G. J., T. Böttger, and R. L. Cone. "Numerical modeling of laser stabilization by regenerative spectral hole burning." Journal of Luminescence 94-95 (December 2001): 587–91. http://dx.doi.org/10.1016/s0022-2313(01)00328-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Zhao, Dongxia, and Junmin Wang. "Spectral analysis and stabilization of a coupled wave-ODE system." Journal of Systems Science and Complexity 27, no. 3 (June 2014): 463–75. http://dx.doi.org/10.1007/s11424-014-2219-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Thorpe, Michael J., Lars Rippe, Tara M. Fortier, Matthew S. Kirchner, and Till Rosenband. "Frequency stabilization to 6 × 10−16 via spectral-hole burning." Nature Photonics 5, no. 11 (September 11, 2011): 688–93. http://dx.doi.org/10.1038/nphoton.2011.215.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Bouyer, Jean-Philippe. "Spectral stabilization of an InGaAsP semiconductor laser by injection-locking." Annales de Physique 18, no. 2 (1993): 89–239. http://dx.doi.org/10.1051/anphys:0199300180208900.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Metel’skii, A. V. "Complete calming and stabilization of delay systems using spectral reduction." Journal of Computer and Systems Sciences International 53, no. 1 (January 2014): 1–19. http://dx.doi.org/10.1134/s1064230714010092.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Herzog, Bernd, Jochen Giesinger, and Volker Settels. "Insights into the stabilization of photolabile UV-absorbers in sunscreens." Photochemical & Photobiological Sciences 19, no. 12 (2020): 1636–49. http://dx.doi.org/10.1039/d0pp00335b.

Повний текст джерела
Анотація:
Butyl methoxy dibenzoylmethane and ethylhexyl methoxycinnamate as photolabile UV-filter molecules can be stabilized in the presence of photostable UV-absorbers by quenching effects and by spectral stabilization.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Böttger, Thomas, Y. Sun, G. J. Pryde, G. Reinemer, and R. L. Cone. "Diode laser frequency stabilization to transient spectral holes and spectral diffusion in Er3+:Y2SiO5 at 1536nm." Journal of Luminescence 94-95 (December 2001): 565–68. http://dx.doi.org/10.1016/s0022-2313(01)00324-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Mrabet, E., M. Abdelghani, and N. Ben Kahla. "A New Criterion for the Stabilization Diagram Used with Stochastic Subspace Identification Methods: An Application to an Aircraft Skeleton." Shock and Vibration 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/409298.

Повний текст джерела
Анотація:
The modal parameters of a structure that is estimated from ambient vibration measurements are always subject to bias and variance errors. Accordingly the concept of the stabilization diagram is introduced to help users identify the correct model. One of the most important problems using this diagram is the appearance of spurious modes that should be discriminated to simplify modes selections. This study presents a new stabilization criterion obtained through a novel numerical implementation of the stabilization diagram and the discussion of model validation employing the power spectral density. As an application, an aircraft skeleton is used.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Koval’, Vladimir A., Olga Yu Torgashova, and Maxim A. Solomin. "Distributed nonstationary control system synthesis on a basis of spectral representation in space-time domain." Vestnik of Samara State Technical University. Technical Sciences Series 30, no. 3 (December 4, 2022): 58–80. http://dx.doi.org/10.14498/tech.2022.3.5.

Повний текст джерела
Анотація:
It is proposed, based on the spectral representation of the system, to solve the problem of synthesis of a distributed control plant described by PDE, using LMI technique. The system is described by a spectral characteristic vector with the amplitudes of the space-time modes of the Fourier series as components. The spectral characteristic vector is satisfied to an infinite SLAE composed for an initial PDE using the spectral method. For the spectral plant representation in space-time domain the stability, controllability, and observability criterions are formulated. The procedure of control synthesis on the basis of solving of stabilization problem with full information and observation problem is proposed. The expression for time-dependent matrix regulator gain is received.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Dunaev, A. Yu, A. S. Baturin, V. N. Krutikov та S. P. Morozova. "Supercontinuum laser-based monochromatic radiant source for detector spectral responsivity characterization in the range 0.9–1.6 μm using absolute cryogenic radiometer". Izmeritel`naya Tekhnika, № 11 (2020): 28–33. http://dx.doi.org/10.32446/0368-1025it.2020-11-28-33.

Повний текст джерела
Анотація:
An improved monochromatic radiant source with spectral bandwidth of 4 nm based on supercontinuum laser and a double monochromator was included in absolute cryogenic radiometer-based facility to improve the accuracy of spectral responsivity measurement in the range 0.9–1.6 μm. The developed feedback system ensures stabilization of monochromatic radiant power with standard deviation up to 0.025 %. Radiant power that proceeds detector under test or absolute cryogenic radiometer varies from 0.1 to 1.5 mW in dependence of wavelength. The spectral power distribution of its monochromatic source for various operating mode is presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Prabhakaran, Erode N., Shama Tumminakatti, Kamal Vats, and Sudip Ghosh. "Spectral evidence for generic charge → acceptor interactions in carbamates and esters." RSC Advances 10, no. 20 (2020): 11871–75. http://dx.doi.org/10.1039/d0ra00313a.

Повний текст джерела
Анотація:
NMR, FT-IR spectral correlations of the R–O–CO groups in carbamates and esters of homologous alcohols (R) reveal R-group-dependent negative charge stabilization at the carbonyl oxygen and its donation to generic acceptors at Cα of even alkyl R.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Huang, Huang, and Kivanc Ekici. "Stabilization of High-Dimensional Harmonic Balance Solvers Using Time Spectral Viscosity." AIAA Journal 52, no. 8 (August 2014): 1784–94. http://dx.doi.org/10.2514/1.j052698.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Rebarber, R., and S. Townley. "Robustness With Respect to Sampling for Stabilization of Riesz Spectral Systems." IEEE Transactions on Automatic Control 51, no. 9 (September 2006): 1519–22. http://dx.doi.org/10.1109/tac.2006.880797.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Lu, X., J. H. Brownell, and S. R. Hartmann. "Spectral stabilization of amplified pulses from synchronously-pumped dye laser systems." Optics Communications 120, no. 5-6 (November 1995): 295–98. http://dx.doi.org/10.1016/0030-4018(95)00476-o.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Canuto, Claudio, and Gabriella Puppo. "Bubble stabilization of spectral Legendre methods for the advection-diffusion equation." Computer Methods in Applied Mechanics and Engineering 118, no. 3-4 (October 1994): 239–63. http://dx.doi.org/10.1016/0045-7825(94)90002-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Kim, Yoonsoo, Da-Wei Gu, and Ian Postlethwaite. "Spectral radius minimization for optimal average consensus and output feedback stabilization." Automatica 45, no. 6 (June 2009): 1379–86. http://dx.doi.org/10.1016/j.automatica.2009.02.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Osadchy, S. I., and V. A. Zozulia. "Passive identification of multivariable stabilization system elements’ dynamics." Automation of technological and business processes 12, no. 1 (March 30, 2020): 32–40. http://dx.doi.org/10.15673/atbp.v12i1.1701.

Повний текст джерела
Анотація:
Increasing domestic automatic control systems competitiveness requires the design work intensification based on the implementation of modern information technologies. Such implementation necessary condition is based on the control object dynamic model's improvement and real operating perturbations characteristics estimates' development with the help of the latest identification methods design and usage. Objective - to create an algorithm for structural identifying the controller transfer functions matrix, the control object's system of ordinary differential equations and the perturbations spectral densities matrix. The algorithm initial data include stabilization system control signals and it's output signals obtained in standard operating conditions. Method - minimization of an identification errors weighted dispersions sum by the Wiener – Kolmogorov’s method. Equations that allow one to calculate matrices of the controller's transfer functions and of the perturbation’s spectral densities, as well as to find a control object's ordinary differential equations system that minimize the identification error’s variance have been found. Processing results of the stabilization system’s work simulation based on these equations proves their correctness and illustrates the methodology of applying the new identification algorithm. Application of the new identification algorithm is limited by the following conditions fulfillment: signals in the stabilization circuit belong to a set of centered stationary random processes; measurement noises operate at the controller input and are independent from perturbations, the sensors transfer matrix is known.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Matei, Iulia, Cristina Maria Buta, Ioana Maria Turcu, Daniela Culita, Cornel Munteanu, and Gabriela Ionita. "Formation and Stabilization of Gold Nanoparticles in Bovine Serum Albumin Solution." Molecules 24, no. 18 (September 18, 2019): 3395. http://dx.doi.org/10.3390/molecules24183395.

Повний текст джерела
Анотація:
The formation and growth of gold nanoparticles (AuNPs) were investigated in pH 7 buffer solution of bovine serum albumin (BSA) at room temperature. The processes were monitored by UV-Vis, circular dichroism, Raman and electron paramagnetic resonance (EPR) spectroscopies. TEM microscopy and dynamic light scattering (DLS) measurements were used to evidence changes in particle size during nanoparticle formation and growth. The formation of AuNPs at pH 7 in the absence of BSA was not observed, which proves that the albumin is involved in the first step of Au(III) reduction. Changes in the EPR spectral features of two spin probes, CAT16 and DIS3, with affinity for BSA and AuNPs, respectively, allowed us to monitor the particle growth and to demonstrate the protective role of BSA for AuNPs. The size of AuNPs formed in BSA solution increases slowly with time, resulting in nanoparticles of different morphologies, as revealed by TEM. Raman spectra of BSA indicate the interaction of albumin with AuNPs through sulfur-containing amino acid residues. This study shows that albumins act as both reducing agents and protective corona of AuNPs.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Abdmouleh, F., and T. Ben Lakhal. "Left and right B-fredholm operators." Ukrains’kyi Matematychnyi Zhurnal 74, no. 10 (November 27, 2022): 1299–307. http://dx.doi.org/10.37863/umzh.v74i10.6331.

Повний текст джерела
Анотація:
UDC 517.9 We introduce the families of left and right B-Fredholm operators in Banach space, realize their stabilization with the help of finite-rank operators, and prove a spectral mapping theorem for the left and right B-Fredholm operators.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Kuzin, Aleksei, Ilya Fradkin, Vasiliy Chernyshev, Vadim Kovalyuk, Pavel An, Alexander Golikov, Irina Florya, Nikolay Gippius, Dmitry Gorin, and Gregory Goltsman. "Ultrasensitive Nanophotonic Random Spectrometer with Microfluidic Channels as a Sensor for Biological Applications." Nanomaterials 13, no. 1 (December 24, 2022): 81. http://dx.doi.org/10.3390/nano13010081.

Повний текст джерела
Анотація:
Spectrometers are widely used tools in chemical and biological sensing, material analysis, and light source characterization. However, an important characteristic of traditional spectrometers for biomedical applications is stable operation. It can be achieved due to high fabrication control during the development and stabilization of temperature and polarization of optical radiation during measurements. Temperature and polarization stabilization can be achieved through on-chip technology, and in turn robustness against fabrication imperfections through sensor design. Here, for the first time, we introduce a robust sensor based on a combination of nanophotonic random spectrometer and microfluidics (NRSM) for determining ultra-low concentrations of analyte in a solution. In order to study the sensor, we measure and analyze the spectra of different isopropanol solutions of known refractive indexes. Simple correlation analysis shows that the measured spectra shift with a tiny variation of the ambient liquid optical properties reaches a sensitivity of approximately 61.8 ± 2.3 nm/RIU. Robustness against fabrication imperfections leads to great scalability on a chip and the ability to operate in a huge spectral range from VIS to mid-IR. NRSM optical sensors are very promising for fast and efficient functionalization in the field of selective capture fluorescence-free oncological disease for liquid/gas biopsy in on-chip theranostics applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Lee, Tae-Ro, Yoon Hyuk Kim, and Paul S. Sung. "Spectral and entropy changes for back muscle fatigability following spinal stabilization exercises." Journal of Rehabilitation Research and Development 47, no. 2 (2010): 133. http://dx.doi.org/10.1682/jrrd.2009.07.0088.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Dus, Mathias, Francesco Ferrante, and Christophe Prieur. "Spectral stabilization of linear transport equations with boundary and in-domain couplings." Comptes Rendus. Mathématique 360, G3 (March 31, 2022): 219–40. http://dx.doi.org/10.5802/crmath.288.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Schehrer, Kevin L., Edward S. Fry, and Glenn T. Bennett. "Colliding pulse mode-locked dye laser stabilization using an intracavity spectral filter." Applied Optics 27, no. 10 (May 15, 1988): 1908. http://dx.doi.org/10.1364/ao.27.001908.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Venus, George, Vadim Smirnov, Oleksiy Mokhun, William W. Bewley, Charles D. Merritt, Chadwick L. Canedy, Chul Soo Kim, et al. "Spectral narrowing and stabilization of interband cascade laser by volume Bragg grating." Applied Optics 55, no. 1 (December 22, 2015): 77. http://dx.doi.org/10.1364/ao.55.000077.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Leidner, Jordan P., and John R. Marciante. "Spectral Narrowing and Stabilization for Broad-Area Lasers via Modified Delivery Fiber." IEEE Photonics Technology Letters 27, no. 18 (September 15, 2015): 1927–30. http://dx.doi.org/10.1109/lpt.2015.2446946.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Eisen, Henner, and Wilhelm Heinrichs. "A New Method of Stabilization for Singular Perturbation Problems with Spectral Methods." SIAM Journal on Numerical Analysis 29, no. 1 (February 1992): 107–22. http://dx.doi.org/10.1137/0729007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії