Добірка наукової літератури з теми "Spectral geometry processing"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Spectral geometry processing".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Spectral geometry processing"
Vallet, B., and B. Lévy. "Spectral Geometry Processing with Manifold Harmonics." Computer Graphics Forum 27, no. 2 (April 2008): 251–60. http://dx.doi.org/10.1111/j.1467-8659.2008.01122.x.
Повний текст джерелаFumero, Marco, Michael Möller, and Emanuele Rodolà. "Nonlinear spectral geometry processing via the TV transform." ACM Transactions on Graphics 39, no. 6 (November 26, 2020): 1–16. http://dx.doi.org/10.1145/3414685.3417849.
Повний текст джерелаClouet, Axel, Jérôme Vaillant, and David Alleysson. "The Geometry of Noise in Color and Spectral Image Sensors." Sensors 20, no. 16 (August 11, 2020): 4487. http://dx.doi.org/10.3390/s20164487.
Повний текст джерелаKleinert, A., F. Friedl-Vallon, T. Guggenmoser, M. Höpfner, T. Neubert, R. Ribalda, M. K. Sha, et al. "Level 0 to 1 processing of the imaging Fourier transform spectrometer GLORIA: generation of radiometrically and spectrally calibrated spectra." Atmospheric Measurement Techniques 7, no. 12 (December 5, 2014): 4167–84. http://dx.doi.org/10.5194/amt-7-4167-2014.
Повний текст джерелаKleinert, A., F. Friedl-Vallon, T. Guggenmoser, M. Höpfner, T. Neubert, R. Ribalda, M. K. Sha, et al. "Level 0 to 1 processing of the imaging Fourier transform spectrometer GLORIA: generation of radiometrically and spectrally calibrated spectra." Atmospheric Measurement Techniques Discussions 7, no. 3 (March 25, 2014): 2827–78. http://dx.doi.org/10.5194/amtd-7-2827-2014.
Повний текст джерелаPatané, Giuseppe. "STAR - Laplacian Spectral Kernels and Distances for Geometry Processing and Shape Analysis." Computer Graphics Forum 35, no. 2 (May 2016): 599–624. http://dx.doi.org/10.1111/cgf.12866.
Повний текст джерелаLitvinovich, Hl S., and I. I. Bruchkouski. "Algorithm for preliminary processing of charge coupled devices array data based on the adaptive Wiener filter." Informatics 18, no. 1 (March 29, 2021): 72–83. http://dx.doi.org/10.37661/1816-0301-2021-18-1-72-83.
Повний текст джерелаJiang, Yonghua, Jingyin Wang, Li Zhang, Guo Zhang, Xin Li, and Jiaqi Wu. "Geometric Processing and Accuracy Verification of Zhuhai-1 Hyperspectral Satellites." Remote Sensing 11, no. 9 (April 26, 2019): 996. http://dx.doi.org/10.3390/rs11090996.
Повний текст джерелаFeng, Sheng, Xiaoqiang Hua, and Xiaoqian Zhu. "Matrix Information Geometry for Spectral-Based SPD Matrix Signal Detection with Dimensionality Reduction." Entropy 22, no. 9 (August 20, 2020): 914. http://dx.doi.org/10.3390/e22090914.
Повний текст джерелаZolotov, Denis, Alexey Buzmakov, Maxim Grigoriev, and Igor Schelokov. "Dual-energy crystal-analyzer scheme for spectral tomography." Journal of Applied Crystallography 53, no. 3 (May 27, 2020): 781–88. http://dx.doi.org/10.1107/s1600576720005439.
Повний текст джерелаДисертації з теми "Spectral geometry processing"
Yu, Wang S. M. Massachusetts Institute of Technology. "Steklov geometry processing : an extrinsic approach to spectral shape analysis." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/118033.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 75-80).
We propose using the Dirichlet-to-Neumann operator as an extrinsic alternative to the Laplacian for spectral geometry processing and shape analysis. Intrinsic approaches, usually based on the Laplace-Beltrami operator, cannot capture the spatial embedding of a shape up to rigid motion, and many previous extrinsic methods lack theoretical justification. Instead, we consider the Steklov eigenvalue problem, computing the spectrum of the Dirichlet-to-Neumann operator of a surface bounding a volume. A remarkable property of this operator is that it completely encodes volumetric geometry. We use the boundary element method (BEM) to discretize the operator, accelerated by hierarchical numerical schemes and preconditioning; this pipeline allows us to solve eigenvalue and linear problems on large-scale meshes despite the density of the Dirichlet-to-Neumann discretization. We further demonstrate that our operators naturally fit into existing frameworks for geometry processing, making a shift from intrinsic to extrinsic geometry as simple as substituting the Laplace-Beltrami operator with the Dirichlet-to-Neumann operator.
by Yu Wang.
S.M.
Rabiei, Hamed. "Spectral analysis of the cerebral cortex complexity." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0289/document.
Повний текст джерелаSurface shape complexity is a morphological characteristic of folded surfaces. In this thesis, we aim at developing some spectral methods to quantify this feature of the human cerebral cortex reconstructed from structural MR images. First, we suggest some properties that a standard measure of surface complexity should possess. Then, we propose two clear definitions of surface complexity based on surface bending properties. To quantify these definitions, we extended the recently introduced graph windowed Fourier transform to mesh model of surfaces. Through some experiments on synthetic surfaces, we show that our curvature-based measurements overcome the classic surface area-based ones which may not distinguish deep folds from oscillating ones with equal area. The proposed method is applied to a database of 124 healthy adult subjects. We also define the surface complexity by the Hölder regularity of fractional Brownian motions defined on manifolds. Then, for the first time, we develop a spectral-regression algorithm to quantify the Hölder regularity of a given fractional Brownian surface by estimating its Hurst parameter H. The proposed method is evaluated on a set of simulated fractional Brownian spheres. Moreover, assuming the cerebral cortex is a fractional Brownian surface, the proposed algorithm is applied to estimate the Hurst parameters of a set of 14 fetal cerebral cortices
Zhou, Bingxin. "Geometric Signal Processing with Graph Neural Networks." Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/28617.
Повний текст джерелаSirugue, Léa. "Conception et développement d’une méthode de comparaison de surfaces appliquée aux protéines." Thesis, Paris, HESAM, 2020. http://www.theses.fr/2020HESAC042.
Повний текст джерелаProtein interactions play a crucial role in the living processes such as cell communication, immunity, cell growth, proliferation and death. These interactions occur through the surface of proteins and the disruption of their interactions is the start of many disease processes. It is therefore necessary to understand and characterize the surface of proteins and their interactions to better understand living processes. Different methods of protein surfaces comparison have been developed in the recent years but none are powerful enough to handle all the structures currently available in databases. The PhD project is to develop rapid methods of surface comparison and apply them to the surface of macromolecules
Goes, Fernando Ferrari de. "Analise espectral de superficies e aplicações em computação grafica." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/275916.
Повний текст джерелаDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação
Made available in DSpace on 2018-08-14T02:23:56Z (GMT). No. of bitstreams: 1 Goes_FernandoFerraride_M.pdf: 31957234 bytes, checksum: c369081bcbbb5f360184a1f8467839ea (MD5) Previous issue date: 2009
Resumo: Em computação gráfica, diversos problemas consistem na análise e manipulação da geometria de superfícies. O operador Laplace-Beltrami apresenta autovalores e autofunções que caracterizam a geometria de variedades, proporcionando poderosas ferramentas para o processamento geométrico. Nesta dissertação, revisamos as propriedades espectrais do operador Laplace-Beltrami e propomos sua aplicação em computação gráfica. Em especial, introduzimos novas abordagens para os problemas de segmentação semântica e geração de atlas em superfícies
Abstract: Many applications in computer graphics consist of the analysis and manipulation of the geometry of surfaces. The Laplace-Beltrami operator presents eigenvalues and eigenfuncitons which caracterize the geometry of manifolds, supporting powerful tools for geometry processing. In this dissertation, we revisit the spectral properties of the Laplace-Beltrami operator and apply them in computer graphics. In particular, we introduce new approaches for the problems of semantic segmentation and atlas generation on surfaces
Mestrado
Computação Grafica
Mestre em Ciência da Computação
Batard, Thomas. "Géométrie différentielle des fibrés vectoriels et algèbres de Clifford appliquées au traitement d'images multicanaux." Phd thesis, Université de La Rochelle, 2009. http://tel.archives-ouvertes.fr/tel-00684250.
Повний текст джерелаКниги з теми "Spectral geometry processing"
Fischer, Paul. On the optimal number of subdomains for hyperbolic problems on parallel computers. Hampton, Va: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1996.
Знайти повний текст джерелаFischer, P. F. On the optimal number of subdomains for hyperbolic problems on parallel computers. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Знайти повний текст джерелаBluston, H. S. Geometric and computer graphics applications of the spectrum / spectrum plus computers. Bedford: Energy Consultancy, 1986.
Знайти повний текст джерелаJørgensen, Palle E. T., 1947-, ed. Wavelets through a looking glass: The world of the spectrum. Boston: Birkhäuser, 2002.
Знайти повний текст джерелаPatane, Giuseppe. Introduction to Laplacian Spectral Distances and Kernels: Theory, Computation, and Applications. Morgan & Claypool Publishers, 2017.
Знайти повний текст джерелаBratteli, Ola, Palle Jorgensen, and B. Treadway. Wavelets Through a Looking Glass: The World of the Spectrum. Birkhäuser, 2013.
Знайти повний текст джерелаBratteli, Ola, Palle Jorgensen, and B. Treadway. Wavelets Through a Looking Glass: The World of the Spectrum. Springer, 2007.
Знайти повний текст джерелаBratteli, Ola, and Palle Jorgensen. Wavelets through a Looking Glass (Applied and Numerical Harmonic Analysis). Birkhäuser Boston, 2002.
Знайти повний текст джерелаЧастини книг з теми "Spectral geometry processing"
Kim, Sung-Yeol, Seung-Uk Yoon, and Yo-Sung Ho. "Spectral Coding of Three-Dimensional Mesh Geometry Information Using Dual Graph." In Advances in Multimedia Information Processing - PCM 2004, 410–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30541-5_51.
Повний текст джерелаLiu, Rong, Hao Zhang, and Oliver van Kaick. "Spectral Sequencing Based on Graph Distance." In Geometric Modeling and Processing - GMP 2006, 630–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11802914_50.
Повний текст джерелаJain, Varun, and Hao Zhang. "Shape-Based Retrieval of Articulated 3D Models Using Spectral Embedding." In Geometric Modeling and Processing - GMP 2006, 299–312. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11802914_21.
Повний текст джерела"Spectral Transform." In A Sampler of Useful Computational Tools for Applied Geometry, Computer Graphics, and Image Processing, 77–94. A K Peters/CRC Press, 2015. http://dx.doi.org/10.1201/b18472-7.
Повний текст джерелаТези доповідей конференцій з теми "Spectral geometry processing"
Pauly, Mark, and Markus Gross. "Spectral processing of point-sampled geometry." In the 28th annual conference. New York, New York, USA: ACM Press, 2001. http://dx.doi.org/10.1145/383259.383301.
Повний текст джерелаHeylen, Rob, and Paul Scheunders. "Spectral unmixing using distance geometry." In 2011 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). IEEE, 2011. http://dx.doi.org/10.1109/whispers.2011.6080889.
Повний текст джерелаLi, Yili, and K. M. Wong. "Signal classification by power spectral density: An approach via Riemannian geometry." In 2012 IEEE Statistical Signal Processing Workshop (SSP). IEEE, 2012. http://dx.doi.org/10.1109/ssp.2012.6319854.
Повний текст джерелаKonur, Umut, Ulug Bayazit, Hasan F. Ates, and Fikret S. Gurgen. "Spectral Coding of Mesh Geometry with a Hierarchical Set Partitioning Algorithm." In 2007 IEEE 15th Signal Processing and Communications Applications. IEEE, 2007. http://dx.doi.org/10.1109/siu.2007.4298692.
Повний текст джерелаForster, P., and T. Aste. "Rectification of cross spectral matrices for arrays of arbitrary geometry." In 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258). IEEE, 1999. http://dx.doi.org/10.1109/icassp.1999.761351.
Повний текст джерелаCui, Kangning, Ruoning Li, Sam L. Polk, James M. Murphy, Robert J. Plemmons, and Raymond H. Chan. "Unsupervised Spatial-Spectral Hyperspectral Image Reconstruction And Clustering With Diffusion Geometry." In 2022 12th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS). IEEE, 2022. http://dx.doi.org/10.1109/whispers56178.2022.9955069.
Повний текст джерелаCai, Baolai, Chentao Yue, Jiamin Li, and Pengcheng Zhu. "Downlink spectral efficiency of multi-user distributed antenna systems under a stochastic geometry model." In 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2017. http://dx.doi.org/10.1109/wcsp.2017.8171033.
Повний текст джерелаPazi, Idan, Dvir Ginzburg, and Dan Raviv. "Unsupervised Scale-Invariant Multispectral Shape Matching." In 24th Irish Machine Vision and Image Processing Conference. Irish Pattern Recognition and Classification Society, 2022. http://dx.doi.org/10.56541/vhmq4826.
Повний текст джерелаChang, Hanpeng, Yue Wen, Siu Lung Lee, Powing Yuen, William I. Wei, Jonathan Sham, and Jianan Y. Qu. "Light Induced Autofluorescence for Detection of Nasopharyngeal Carcinoma in vivo." In European Conference on Biomedical Optics. Washington, D.C.: Optica Publishing Group, 2001. http://dx.doi.org/10.1364/ecbo.2001.4432_186.
Повний текст джерелаTootooni, M. Samie, Ashley Dsouza, Ryan Donovan, Prahalad K. Rao, Zhenyu (James) Kong, and Peter Borgesen. "Assessing the Geometric Integrity of Additive Manufactured Parts From Point Cloud Data Using Spectral Graph Theoretic Sparse Representation-Based Classification." In ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/msec2017-2794.
Повний текст джерелаЗвіти організацій з теми "Spectral geometry processing"
Alchanatis, Victor, Stephen W. Searcy, Moshe Meron, W. Lee, G. Y. Li, and A. Ben Porath. Prediction of Nitrogen Stress Using Reflectance Techniques. United States Department of Agriculture, November 2001. http://dx.doi.org/10.32747/2001.7580664.bard.
Повний текст джерела