Добірка наукової літератури з теми "Spatial-temporal disorders"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Spatial-temporal disorders".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Spatial-temporal disorders"
Casarrubias-Jaimez, Ana I., Ana Laura Juárez-López, Efraín Tovar-Sánchez, José Luis Rosas-Acevedo, Maximino Reyes-Umaña, América Libertad Rodríguez-Herrera, and Fernando Ramos-Quintana. "Dealing with the Understanding of the Dynamics Related to Multifactorial Temporal Interactions That Spatially Affect the Landscape of Coastal Lagoons." Water 13, no. 15 (July 31, 2021): 2099. http://dx.doi.org/10.3390/w13152099.
Повний текст джерелаUsov, Konstantin. "SYNDROMES OF TPO LESION AND SPATIAL FACTOR DISORDERS IN MENTAL PROCESSES." Modern Technologies and Scientific and Technological Progress 2022, no. 1 (May 16, 2022): 283–84. http://dx.doi.org/10.36629/2686-9896-2022-1-283-284.
Повний текст джерелаBuhusi, Mona, Ioana Scripa, Christina L. Williams, and Catalin V. Buhusi. "Impaired Interval Timing and Spatial–Temporal Integration in Mice Deficient in CHL1, a Gene Associated with Schizophrenia." Timing & Time Perception 1, no. 1 (2013): 21–38. http://dx.doi.org/10.1163/22134468-00002003.
Повний текст джерелаLopez, C., C. Hemimou, and L. Vaivre-Douret. "Handwriting disorders in children with developmental coordination disorder (DCD): Exploratory study." European Psychiatry 41, S1 (April 2017): S456. http://dx.doi.org/10.1016/j.eurpsy.2017.01.494.
Повний текст джерелаKwon, Hyeokhyen, Gari D. Clifford, Imari Genias, Doug Bernhard, Christine D. Esper, Stewart A. Factor, and J. Lucas McKay. "An Explainable Spatial-Temporal Graphical Convolutional Network to Score Freezing of Gait in Parkinsonian Patients." Sensors 23, no. 4 (February 4, 2023): 1766. http://dx.doi.org/10.3390/s23041766.
Повний текст джерелаBĂLĂNEAN, DENISA, EUGEN BOTA, and SIMONA PETRACOVSCHI. "CORRECTION OF LEARNING DISORDERS BY OPTIMIZING THE DEVELOPMENT OF SPATIAL AND TEMPORAL ORIENTATION." Studia Universitatis Babeş-Bolyai Educatio Artis Gymnasticae 66, no. 2 (June 30, 2021): 43–66. http://dx.doi.org/10.24193/subbeag.66(2).15.
Повний текст джерелаBucci, Maria Pia, Nathalie Goulème, Coline Stordeur, Eric Acquaviva, Isabelle Scheid, Aline Lefebvre, Christophe‐Loïc Gerard, Hugo Peyre, and Richard Delorme. "Discriminant validity of spatial and temporal postural index in children with neurodevelopmental disorders." International Journal of Developmental Neuroscience 61, no. 1 (July 3, 2017): 51–57. http://dx.doi.org/10.1016/j.ijdevneu.2017.06.010.
Повний текст джерелаLopez, C., and L. Vaivre-Douret. "Effect of the vision suppression on the graphomotor gesture in school aged children typically developed and with handwriting disorders." European Psychiatry 65, S1 (June 2022): S751. http://dx.doi.org/10.1192/j.eurpsy.2022.1939.
Повний текст джерелаBereskin, D., and I. A. Gorbunov. "Features of Bioelectric Activity of the Cerebral Cortex and Thinking Disorders in Children with Various Borderline Disorders of Residual Organic Genesis." Experimental Psychology (Russia) 14, no. 1 (2021): 151–71. http://dx.doi.org/10.17759/exppsy.2021140107.
Повний текст джерелаHegemann, Stefan, Sabine Fitzek, Clemens Fitzek, and Michael Fetter. "Cortical vestibular representation in the superior temporal gyrus." Journal of Vestibular Research 14, no. 1 (April 27, 2004): 33–35. http://dx.doi.org/10.3233/ves-2004-14103.
Повний текст джерелаДисертації з теми "Spatial-temporal disorders"
Stewart, Jillian. "Spatial and temporal effects on visual filtering in autism spectrum disorder." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=121544.
Повний текст джерелаÊtre capable de filtrer les stimuli non pertinents afin de se concentrer sur les sources d'information significatives est de première importance dans le fonctionnement adaptif, car l'environnement de chaque individuel est composé d'innombrables stimuli qui changent sans cesse. Cette étude cherche à mieux comprendre la capacité des enfants avec des troubles du spectre autistique (TSA) à filtrer des stimuli visuels distractifs pour accéder plus facilement aux sources d'informations pertinentes, comparé à des enfants qui démontrent un développement typique (DT). Une version modifiée de la tâche "flanker paradigm" (Eriksen & Eriksen, 1974) a été utilisée, dans laquelle les participants répondent à un stimulus (la "cible") présenté au centre de l'écran d'ordinateur, avec des stimuli qui flanquent (les stimuli "distractifs") la cible, de gauche et de droite, sur le même axe horizontal. Les stimuli distractifs varient en tant que forme (soit similaires ou dissimilaires à la cible), distance de la cible (angle visuel de 1.16°, 3.46°, ou 6.89°), et temps d'apparition relatif à la cible (simultanés, ou +150ms, + 300ms, ou +450 ms), pour identifier les conditions qui affectent la performance de filtration visuelle. La vitesse et la précision de l'identification de la cible ont été mesurées pour chacune de ces conditions. Les participants étaient des enfants d'âge scolaire avec TSA (n =13) et DT (n = 13), avec l'âge mental (AM) égalisé (moyenne AM = 8.6 ans). Les deux groupes d'enfants répondaient plus rapidement quand les distractifs ressemblaient à la cible que quand ils ne ressemblaient pas. Les enfants avec le TSA ont aussi démontré une performance améliorée quand les distractifs et la cible étaient présentés simultanément, et une performance diminuée avec des délais croissants entre l'apparition de la cible et les distractifs. Contrairement aux enfants DT, qui répondaient plus rapidement quand les distractifs étaient plus éloignés de la cible, les participants avec TSA n'étaient pas affectés par la manipulation de la distance. Ceci indique un déficit dans les enfants avec le TSA d'ajuster leur attention, une procédure qui est essentielle au succès scolaire parmi les enfants d'âge scolaire.
Scheible, Colleen G. "THE USE OF SPATIAL, TEMPORAL, AND METAPHORICAL TERMS BY CHILDREN WITH AUTISM SPECTRUM DISORDER." Miami University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=miami1556746121099907.
Повний текст джерелаVARALTA, Valentina. "FUNCTIONAL AND NEURAL BASES OF SPATIAL-TEMPORAL DISORDERS OF VISUAL AWARENESS." Doctoral thesis, 2013. http://hdl.handle.net/11562/557550.
Повний текст джерелаVisual extinction is a spatial-temporal disorder of visual awareness. Right-hemisphere patients with visual extinction frequently miss the stimulus presented in their contralesional field on trials with bilateral presentation. They can also need the left stimulus to be presented with a temporal lead in order to be perceived as simultaneous to the right one. In the present work, three experiments were carried out in order to investigate functional and neural bases of spatial-temporal disorders of visual awareness. The first one focused on neural correlates of spatial-temporal disorders of visual awareness in patients with visual extinction at a chronic stage. An impairment of visual awareness is likely to depend upon unbalanced top-down modulation from dorsal fronto-parietal on occipital areas, typically intact in the ipsilesional hemisphere, biasing spatial-temporal processing of visual information towards the ipsilesional side. However, it is not clear yet whether the effect of a dysfunctional top-down modulation can only affect responses or, rather, induce neural changes in targeted visual areas. In this experiment, we addressed this issue by using position emission tomography (PET) at rest to measure possible differences between the cortical metabolism of one patient showing visual extinction at a chronic stage, and two patients who recovered from extinction, one at a chronic and another at a sub-acute stage. We found the structurally intact visual cortex of the extinction patient being hypometabolic in the right as compared to the left hemisphere, whereas no hemispheric asymmetry in the metabolism of visual cortex was found in the patients who recovered from extinction. Our data suggest that neural changes in structurally intact occipital areas might be crucial to explain the lack of visual awareness for contralesional stimuli in chronic extinction patients. In the second and third experiment we investigated the possible contribution of mechanisms of contingent attentional capture to spatial-temporal processing of visual information both in patients with attention disorders (experiment 2) and in healthy individuals (experiment 3). It was suggested that impairments of right parietal patients can be accounted for by a deficit in disengaging exogenous attention from ipsilesional stimuli and reorienting it towards contralesional events. It has been shown that the disengagement deficit depending on their behavioural relevance of ipsilesional stimuli (task demands and expectation of the patient). Also the results in the healthy subjects suggest that attending to a sensory modality can speed up the relative perception of stimulus presented in that rather than a different modality, reducing the time necessary for the stimulus to be perceived (“prior entry” hypothesis). The second experiment focused on functional basis of spatial-temporal disorders of visual awareness in patients with visual extinction, investigating whether task-set related factors can affect spatial-temporal processing of visual information in these patients. Specifically, we examined the performance of a visual extinction patient on a temporal order judgment (TOJ) task under conditions with different attentional set and compared his performance to that of one right-brain-damaged patient without visual extinction and four healthy subjects age matched. In the not focused condition the extinction patient shown spatial-temporal bias (PSS=-255), while he shown an important reduction of this bias under focused condition (PSS=-44). These findings indicate a clear modulation of patient’s performance with the attentional set, particularly for the PSS. On the contrary, no such a modulation was found both in the brain-damaged control patient (not focused condition: PSS=-4, focused condition: PSS=-2) and in healthy subjects (not focused condition: mean PSS=-16; focused condition: mean PSS=3). Furthermore the extinction patient showed higher accuracy of temporal discrimination for left-sided stimuli, but not for right-sides stimuli, in the focused (62,5%) as compared to the not focused (46,7%) condition. The aim of the third experiment was to investigate whether mechanisms of contingent attentional capture would also affect spatial-temporal processing of visual information in healthy subjects. Eighteen participants were tested on a similar TOJ paradigm as that used in experiment 2. In the not focused task-set condition subjects showed no bias in temporal order judgment (PSS=-3.6). On the contrary focusing subject’s attentional set onto one stimulus dimension yielded a clear-cut bias in temporal order judgment (PSS=-11). Present findings support evidence indicating that exogenous attention would affect sensitivity in a TOJ task and also extend this evidence, showing that in a TOJ task, as in other visual orienting tasks, capture of attention by external stimuli is contingent to the current attentional set.
Fitterer, Jessica Laura. "The effects of alcohol access on the spatial and temporal distribution of crime." Thesis, 2017. http://hdl.handle.net/1828/7848.
Повний текст джерелаGraduate
2018-02-27
Книги з теми "Spatial-temporal disorders"
Roberts, Timothy P. L., and Luke Bloy. Neuroimaging in Pediatric Psychiatric Disorders. Edited by Dennis S. Charney, Eric J. Nestler, Pamela Sklar, and Joseph D. Buxbaum. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190681425.003.0060.
Повний текст джерелаMaquet, Pierre, and Julien Fanielle. Neuroimaging in normal sleep and sleep disorders. Edited by Sudhansu Chokroverty, Luigi Ferini-Strambi, and Christopher Kennard. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199682003.003.0011.
Повний текст джерелаWassermann, Eric M. Direct current brain polarization. Edited by Charles M. Epstein, Eric M. Wassermann, and Ulf Ziemann. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780198568926.013.0007.
Повний текст джерелаMonteggia, Lisa M., and Wei Xu. Methods for In Vivo Gene Manipulation. Edited by Dennis S. Charney, Eric J. Nestler, Pamela Sklar, and Joseph D. Buxbaum. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190681425.003.0004.
Повний текст джерелаKiszka, Krzysztof. Ruchy osuwiskowe w świetle badań dendrogeomorfologicznych na podstawie analizy osuwiska Sawickiego w Beskidzie Niskim = Landsilde movements based on dendrogeomorphological research based on a analysis of the Sawicki Landslide in the Beskid Niski mts. Instytut Geografii i Przestrzennego Zagospodarowania im. Stanisława Leszczyckiego, Polska Akademia Nauk, 2021. http://dx.doi.org/10.7163/9788361590835.
Повний текст джерелаЧастини книг з теми "Spatial-temporal disorders"
Skillicorn, David B., Olivier J. Walther, Quan Zheng, and Christian Leuprecht. "Spatial and temporal diffusion of political violence in North and West Africa." In African Border Disorders, 87–112. New York : Routledge, 2017. | Series: Routledge studies in African politics and international relations: Routledge, 2017. http://dx.doi.org/10.4324/9781315166483-5.
Повний текст джерелаMisbah, Chaouqi. "Order and Disorder both Spatial and Temporal near a Hopf Bifurcation." In Complex Dynamics and Morphogenesis, 319–38. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-024-1020-4_12.
Повний текст джерелаZhu, Yingying, Xiaofeng Zhu, Han Zhang, Wei Gao, Dinggang Shen, and Guorong Wu. "Reveal Consistent Spatial-Temporal Patterns from Dynamic Functional Connectivity for Autism Spectrum Disorder Identification." In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, 106–14. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46720-7_13.
Повний текст джерелаChandran, Siddharthan, and Alastair Compston. "Demyelinating disorders of the central nervous system." In Oxford Textbook of Medicine, 4948–63. Oxford University Press, 2010. http://dx.doi.org/10.1093/med/9780199204854.003.0241002_update_001.
Повний текст джерелаTiège, Xavier De, and Veikko Jousmäki. "Investigations of the Somatosensory System with Magnetoencephalography." In Fifty Years of Magnetoencephalography, 225–46. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190935689.003.0016.
Повний текст джерелаSivasubramaniyan, V., and K. Venkataramaniah. "Focal Increased Radiopharmaceutical Uptake Differentiation Using Quantitative Indices." In Radiopharmaceuticals [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99065.
Повний текст джерелаZhou, Lang, Pengyu Chen, and Aleksandr Simonian. "Advanced Biosensing towards Real-Time Imaging of Protein Secretion from Single Cells." In Biosensor - Current and Novel Strategies for Biosensing [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.94248.
Повний текст джерелаPlerou, Antonia, and Panayiotis Vlamos. "Evaluation of Mathematical Cognitive Functions with the Use of EEG Brain Imaging." In Advances in Multimedia and Interactive Technologies, 284–306. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-8659-5.ch014.
Повний текст джерелаТези доповідей конференцій з теми "Spatial-temporal disorders"
Tyler, Christopher W. "Why We Need to Pay Attention to Psychometric Function Slopes." In Vision Science and its Applications. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/vsia.1997.sud.2.
Повний текст джерелаGenack, Azriel Z. "Optical transmission in disordered media." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/oam.1986.fs1.
Повний текст джерелаRocha, Andreia, Bruna Bellaver, Luiza Machado, Carolina Soares, Pâmela C. L. Ferreira, Samuel Greggio Gianina T. Venturin, Jaderson C. da Costa, Diogo O. Souza, and Eduardo R. Zimmer. "TEMPORAL CHANGES IN ASTROCYTES ON A TRANSGENIC RAT MODEL OF AD." In XIII Meeting of Researchers on Alzheimer's Disease and Related Disorders. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1980-5764.rpda023.
Повний текст джерелаWei, Xile, Dong Lin, Lihui Cai, Meili Lu, Jiang Wang, and Bin Deng. "Characterization of Spatial Temporal Dynamic of Brain Network in Disorder of Consciousness via Community Analysis." In 2020 39th Chinese Control Conference (CCC). IEEE, 2020. http://dx.doi.org/10.23919/ccc50068.2020.9189127.
Повний текст джерелаCronin-Golomb, Alice, S. Corkin, and J. H. Growdon. "Alzheimer’s disease: a disorder of the precortical visual system?" In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/oam.1986.tut1.
Повний текст джерелаIwai, T., and J. C. Dainty. "Pathlength Distribution Function of Dynamic Multiple Light Backscattering in Dense Disordered Media." In Photon Correlation and Scattering. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/pcs.1992.tub3.
Повний текст джерелаЗвіти організацій з теми "Spatial-temporal disorders"
Grumstrup, Erik. Final Technical Report: Photoconversion in Disordered Semiconductors: Spatial, Spectral, and Temporal Insights through Nonlinear Microscopy. Office of Scientific and Technical Information (OSTI), November 2022. http://dx.doi.org/10.2172/1897590.
Повний текст джерелаHowes, F. A., and D. L. Stein. Studies of spatial and temporal disorder in macroscopic systems. Final report, April 1, 1993--May 31, 1998. Office of Scientific and Technical Information (OSTI), June 1998. http://dx.doi.org/10.2172/621902.
Повний текст джерела