Добірка наукової літератури з теми "Spatial mode demultiplexing"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Spatial mode demultiplexing".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Spatial mode demultiplexing":

1

Liñares, Jesús, Xesús Prieto-Blanco, Carlos Montero-Orille, and Vicente Moreno. "Spatial mode multiplexing/demultiplexing by Gouy phase interferometry." Optics Letters 42, no. 1 (December 22, 2016): 93. http://dx.doi.org/10.1364/ol.42.000093.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tsang, Mankei. "Subdiffraction incoherent optical imaging via spatial-mode demultiplexing." New Journal of Physics 19, no. 2 (February 28, 2017): 023054. http://dx.doi.org/10.1088/1367-2630/aa60ee.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Len, Yink Loong, Chandan Datta, Michał Parniak, and Konrad Banaszek. "Resolution limits of spatial mode demultiplexing with noisy detection." International Journal of Quantum Information 18, no. 01 (January 31, 2020): 1941015. http://dx.doi.org/10.1142/s0219749919410156.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We consider the problem of estimating the spatial separation between two mutually incoherent point light sources using the super-resolution imaging technique based on spatial mode demultiplexing (SPADE) with noisy detectors. We show that in the presence of noise, the resolution of the measurement is limited by the signal-to-noise ratio (SNR) and the minimum resolvable spatial separation has a characteristic dependence of [Formula: see text]. Several detection techniques, including direct photon counting, as well as homodyne and heterodyne detection are considered.
4

Bulow, Henning. "Optical-Mode Demultiplexing by Optical MIMO Filtering of Spatial Samples." IEEE Photonics Technology Letters 24, no. 12 (June 2012): 1045–47. http://dx.doi.org/10.1109/lpt.2012.2193565.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hansen, L. M., L. Carosini, L. Jehle, F. Giorgino, R. Houvenaghel, M. Vyvlecka, J. C. Loredo, and P. Walther. "Single-active-element demultiplexed multi-photon source." Optica Quantum 1, no. 1 (September 28, 2023): 1. http://dx.doi.org/10.1364/opticaq.1.000001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Temporal-to-spatial mode demultiplexing routes non-simultaneous events of the same spatial mode to distinct output trajectories. This technique has now been widely adopted, because it gives access to higher-number multi-photon states when exploiting solid-state quantum emitters. However, implementations so far have required an always-increasing number of active elements and are therefore rapidly facing resource constraints. Here, we propose and demonstrate a demultiplexing approach that uses only a single active element for routing to, in principle, an arbitrary number of outputs. We employ our device in combination with a high-efficiency single-photon source based on a quantum dot, and measure up to eight demultiplexed highly indistinguishable single photons. We discuss the practical limitations of our approach, and describe in which conditions it can be used to demultiplex, e.g., tens of outputs. Our scheme thus provides a path for the preparation of resource-efficient larger-scale multi-photon sources.
6

Hansen, L. M., L. Carosini, L. Jehle, F. Giorgino, R. Houvenaghel, M. Vyvlecka, J. C. Loredo, and P. Walther. "Single-active-element demultiplexed multi-photon source." Optica Quantum 1, no. 1 (September 28, 2023): 1. http://dx.doi.org/10.1364/opticaq.494643.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Temporal-to-spatial mode demultiplexing routes non-simultaneous events of the same spatial mode to distinct output trajectories. This technique has now been widely adopted, because it gives access to higher-number multi-photon states when exploiting solid-state quantum emitters. However, implementations so far have required an always-increasing number of active elements and are therefore rapidly facing resource constraints. Here, we propose and demonstrate a demultiplexing approach that uses only a single active element for routing to, in principle, an arbitrary number of outputs. We employ our device in combination with a high-efficiency single-photon source based on a quantum dot, and measure up to eight demultiplexed highly indistinguishable single photons. We discuss the practical limitations of our approach, and describe in which conditions it can be used to demultiplex, e.g., tens of outputs. Our scheme thus provides a path for the preparation of resource-efficient larger-scale multi-photon sources.
7

Chrostowski, Andrzej, Rafał Demkowicz-Dobrzański, Marcin Jarzyna, and Konrad Banaszek. "On super-resolution imaging as a multiparameter estimation problem." International Journal of Quantum Information 15, no. 08 (December 2017): 1740005. http://dx.doi.org/10.1142/s0219749917400056.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We consider the problem of characterizing the spatial extent of a composite light source using the super-resolution imaging technique based on mode demultiplexing when the centroid of the source is not known precisely. We show that the essential features of this problem can be mapped onto a simple qubit model for joint estimation of a phase shift and a dephasing strength.
8

Sun, Chunlei, Wenhao Wu, Yu Yu, Guanyu Chen, Xinliang Zhang, Xia Chen, David J. Thomson, and Graham T. Reed. "De-multiplexing free on-chip low-loss multimode switch enabling reconfigurable inter-mode and inter-path routing." Nanophotonics 7, no. 9 (August 28, 2018): 1571–80. http://dx.doi.org/10.1515/nanoph-2018-0053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractSwitching and routing are critical functionalities for a reconfigurable bandwidth-dense optical network, and great efforts had been made to accommodate mode-division multiplexing technology. Although the reconfigurable routing for spatial-mode groups between different optical paths was realized recently, a demultiplexing-switching-multiplexing process is necessary. Here we present a simplified and compact on-chip 2×2 multimode switch that can be easily upgradable to a larger scale. Fully and reconfigurable routing between not only optical paths but also spatial modes is achieved. To obtain a low loss multimode processing, a novel structure free from demultiplexing and re-multiplexing operations is adopted. The switch enables minimum and maximum insertion losses of 0.3 and 1.2 dB, with a compact footprint of 433 μm×433 μm and low crosstalk of <−16.6 dB for all channels. It is further extended to two types of 4×4 switch fabrics with cross-bar and ring-bus architectures, as demonstrations of high-level integration. System characterization with 32 Gb/s high-speed modulated signals is also carried out, reaching up to 256 Gb/s aggregate throughput. These results verify a general solution of 2×2 multimode switch for reconfigurable inter-mode and inter-path routing applicable in large-scale and high-density multimode optical network.
9

Serebryannikov, Andriy E., Diana C. Skigin, Guy A. E. Vandenbosch, and Ekmel Ozbay. "Multifunctional blazed gratings for multiband spatial filtering, retroreflection, splitting, and demultiplexing based on C2 symmetric photonic crystals." Journal of Applied Physics 131, no. 22 (June 14, 2022): 223101. http://dx.doi.org/10.1063/5.0093989.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The concept of multifunctional reflection-mode gratings that are based on rod-type photonic crystals (PhCs) with [Formula: see text] symmetry is introduced. The specific modal properties lead to the vanishing dependence of the first-negative-order maximum on the angle of incidence and the nearly sinusoidal redistribution of the incident-wave energy between zero order (specular reflection) and first negative diffraction order (deflection) at frequency variation. These features are key enablers of diverse functionalities and the merging of different functionalities into one structure. The elementary functionalities, of which multifunctional scenarios can be designed, include but are not restricted to multiband spatial filtering, multiband splitting, retroreflection, and demultiplexing. The proposed structures are capable of multifunctional operation in the case of a single polychromatic incident wave or multiple mono-/polychromatic waves incident at different angles. The generalized demultiplexing is possible in the case of several polychromatic waves. The aforementioned deflection properties yield merging demultiplexing with splitting in one functionality. In turn, it may contribute to more complex multifunctional scenarios. Finally, the proposed PhC gratings are studied in transmissive configuration, in which they show some unusual properties.
10

Shimizu, Shimpei, Atsushi Okamoto, Fumiya Mizukawa, Kazuhisa Ogawa, Akihisa Tomita, Taketoshi Takahata, Satoshi Shinada, and Naoya Wada. "Spatial mode demultiplexing technique using angularly multiplexed volume holograms with a phase plate." Japanese Journal of Applied Physics 56, no. 9S (August 8, 2017): 09NA05. http://dx.doi.org/10.7567/jjap.56.09na05.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Spatial mode demultiplexing":

1

Rouvière, Clémentine. "Experimental parameter estimation in incoherent images via spatial-mode demultiplexing." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La résolution des systèmes d'imagerie optique a été historiquement limitée par la diffraction et la limite de Rayleigh a longtemps été considérée comme insurmontable. Des techniques de super-résolution ont été développées pour aller au-delà de cette limite, mais elles sont adaptées spécifiquement à chaque contexte et atteindre une résolution sub-Rayleigh demeure très difficile. En examinant les problèmes d'imagerie à travers le prisme de la théorie d'estimation de paramètre, il est possible de comprendre les contraintes intrinsèques aux approches traditionnelles de super-résolution et de déterminer une méthode optimale, basée sur la détection d'intensité dans la base de modes d'Hermite-Gauss. Dans cette thèse, nous avons mis en place cette approche fournie par la métrologie quantique pour estimer la séparation entre deux sources incohérentes et nous avons atteint une sensibilité cinq ordres de grandeur au-delà du critère de Rayleigh. Avec notre dispositif expérimental, basé sur un démultiplexeur en modes spatiaux, nous avons étudié des scènes avec des sources à haut et bas flux de photons. En portant une attention particulière à l'exactitude et à la sensibilité des mesures, nous démontrons que le démultiplexage en modes spatiaux est particulièrement adapté pour effectuer des estimations de séparations sub-Rayleigh. Ce travail ouvre la voie à l'amélioration de la sensibilité des mesures dans des scènes optiques plus complexes se rapprochant de réelles situations d'imagerie
Historically, the resolution of optical imaging systems was dictated by diffraction, and the Rayleigh criterion was long considered an unsurpassable limit. In superresolution microscopy, this limit is overcome by manipulating the emission properties of the object. However, in passive imaging, when sources are uncontrolled, reaching sub-Rayleigh resolution remains a challenge. Here, we implement a quantum-metrology-inspired approach for estimating the separation between two incoherent sources, achieving a sensitivity five orders of magnitude beyond the Rayleigh limit. Using a spatial mode demultiplexer, we examine scenes with bright and faint sources, through intensity measurements in the Hermite-Gauss basis. Analysing sensitivity and accuracy over an extensive range of separations, we demonstrate the remarkable effectiveness of demultiplexing for sub-Rayleigh separation estimation. These results effectively render the Rayleigh limit obsolete for passive imaging

Тези доповідей конференцій з теми "Spatial mode demultiplexing":

1

Wagner, Kelvin H., and Michael Brand. "Spatial-Spectral Holographic Mode Demultiplexing, Dispersion Compensation, and Routing." In 2023 International Conference on Photonics in Switching and Computing (PSC). IEEE, 2023. http://dx.doi.org/10.1109/psc57974.2023.10297130.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wagner, K. H. "Mode group demultiplexing and modal dispersion compensation using spatial-spectral holography." In 2013 IEEE Photonics Society Summer Topical Meeting Series. IEEE, 2013. http://dx.doi.org/10.1109/phosst.2013.6614467.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Haoshuo Chen and T. Koonen. "Scalable Multi-segment Phase Mask for Spatial Power Splitting and Mode Division Demultiplexing." In 39th European Conference and Exhibition on Optical Communication (ECOC 2013). Institution of Engineering and Technology, 2013. http://dx.doi.org/10.1049/cp.2013.1581.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Stepniak, Grzegorz. "A single spatial 2D phase filter for channel demultiplexing in mode diversity multiplexing." In 2011 Second Asian Himalayas International Conference on Internet (AH-ICI). IEEE, 2011. http://dx.doi.org/10.1109/ahici.2011.6113933.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Quelene, Jean-Baptiste, Tangi Le Guennic, Arnaud Rigny, Romain Cotillard, Guillaume Labroille, and Guillaume Laffont. "Spatial Mode Demultiplexing of Femtoecond-Inscribed Fiber Bragg Grating in Multi-Mode Fibers for High Temperature Sensing." In Optical Fiber Sensors. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ofs.2023.th6.72.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We report interrogation of one Fiber Bragg Grating sensor inscribed in Multi-Mode fiber with 45-mode spatial demultiplexer as well as monitoring of fifteen modes of nine different wavelength groups at temperatures steps up to 1000 °C.
6

Liang, Kevin, S. A. Wadood, and A. N. Vamivakas. "Effects of Partial Coherence on Quantum-Inspired Superresolution." In Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/fio.2022.fm1c.2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Quantum Fisher information calculations show that partially coherent objects may exhibit greater precision for parameter estimation. This implies an advantage in recent quantum-inspired superresolution techniques, including spatial-mode demultiplexing.
7

Schlichtholz, Konrad, Tomasz Linowski, Mattia Walschaers, Nicolas Treps, Łukasz Rudnicki, and Giacomo Sorelli. "Practical Tests for Sub-Rayleigh Source Discrimination with Imperfect Demultiplexers." In Quantum 2.0. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/quantum.2023.qth3a.6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We show that quantum-optimal tests for discriminating between one and two light sources via spatial-mode demultiplexing become as good as flipping a coin in the presence of arbitrarily small imperfections, and we develop practical alternatives.
8

Sakamoto, Takahide, Toshimasa Umezawa, Guo-Wei Lu, Koichi Akahane, Atsushi Matsumoto, Atsushi Kanno, Naokatsu Yamamoto, and Tetsuya Kawanishi. "Spatial Coherent Matched Detection Using High-Speed Two Dimensional Photo-Diode Array for Full-Channel Demultiplexing and Demodulation of Mode-Division-Multiplexed Signals." In 2017 European Conference on Optical Communication (ECOC). IEEE, 2017. http://dx.doi.org/10.1109/ecoc.2017.8346130.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Woodward, T. K., A. L. Lentine, K. W. Goossen, J. A. Walker, B. T. Tseng, S. P. Hui, J. Lothian, and R. E. Leibenguth. "Demultiplexing 2.48 Gb/s Optical Signals with a Lower-Speed Clocked-Sense-Amplifier-Based Hybrid CMOS/MQW Receiver Array." In Spatial Light Modulators. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/slmo.1997.smd.3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The optoelectronic multiplexing and demultiplexing of data is a common operation on optical communication links, and one that is becoming more important as these links become increasingly prevalent. These operations permit multiple electronic data streams to be combined onto and removed from a single optical link, taking advantage of the high link-bandwidth available. Demultiplexing places particularly stringent demands on optoelectronic components. In this paper, we describe a method for demultiplexing optical data that utilizes clocked-optical receivers. This method permits the extraction of signals without the need for optoelectronic circuits operating at the full multiplexed-data rate, provided synchronization and timing information are available.
10

Chen, Haoshuo, Nicolas K. Fontaine, Yuanhang Zhang, Mikael Mazur, Juan Carlos Alvarado-Zacarias, Roland Ryf, David T. Neilson, Guifang Li, Rodrigo Amezcua-Correa, and Joel Carpenter. "Optical Broadcasting and Steering by Demultiplexing Incoherent Spatial Modes." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/ofc.2020.th4b.7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії