Добірка наукової літератури з теми "Spaceborne lida"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Spaceborne lida".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Spaceborne lida"

1

Liu, Qun, Xiaoyu Cui, Cédric Jamet, Xiaolei Zhu, Zhihua Mao, Peng Chen, Jian Bai, and Dong Liu. "A Semianalytic Monte Carlo Simulator for Spaceborne Oceanic Lidar: Framework and Preliminary Results." Remote Sensing 12, no. 17 (August 31, 2020): 2820. http://dx.doi.org/10.3390/rs12172820.

Повний текст джерела
Анотація:
Spaceborne lidar (light detection and ranging) is a very promising tool for the optical properties of global atmosphere and ocean detection. Although some studies have shown spaceborne lidar’s potential in ocean application, there is no spaceborne lidar specifically designed for ocean studies at present. In order to investigate the detection mechanism of the spaceborne lidar and analyze its detection performance, a spaceborne oceanic lidar simulator is established based on the semianalytic Monte Carlo (MC) method. The basic principle, the main framework, and the preliminary results of the simulator are presented. The whole process of the laser emitting, transmitting, and receiving is executed by the simulator with specific atmosphere–ocean optical properties and lidar system parameters. It is the first spaceborne oceanic lidar simulator for both atmosphere and ocean. The abilities of this simulator to characterize the effect of multiple scattering on the lidar signals of different aerosols, clouds, and seawaters with different scattering phase functions are presented. Some of the results of this simulator are verified by the lidar equation. It is confirmed that the simulator is beneficial to study the principle of spaceborne oceanic lidar and it can help develop a high-precision retrieval algorithm for the inherent optical properties (IOPs) of seawater.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ji, Jie, Chenbo Xie, Kunming Xing, Bangxin Wang, Jianfeng Chen, Liangliang Cheng, and Xu Deng. "Simulation of Compact Spaceborne Lidar with High-Repetition-Rate Laser for Cloud and Aerosol Detection under Different Atmospheric Conditions." Remote Sensing 15, no. 12 (June 10, 2023): 3046. http://dx.doi.org/10.3390/rs15123046.

Повний текст джерела
Анотація:
To provide references for the design of the lab’s upcoming prototype of the compact spaceborne lidar with a high-repetition-rate laser (CSLHRL), in this paper, the detection signal of spaceborne lidar was simulated by the measured signal of ground-based lidar, and then, the detection capability of spaceborne lidar under different atmospheric conditions was evaluated by means of the signal-to-noise ratio (SNR), volume depolarization ratio (VDR) and attenuated color ratio (ACR). Firstly, the Fernald method was used to invert the optical parameters of cloud and aerosol with the measured signal of ground-based lidar. Secondly, the effective signal of the spaceborne lidar was simulated according to the known atmospheric optical parameters and the parameters of the spaceborne lidar system. Finally, by changing the cumulative laser pulse number and atmospheric conditions, a simulation was carried out to further evaluate the detection performance of the spaceborne lidar, and some suggestions for the development of the system are given. The experimental results showed that the cloud layer and aerosol layer with an extinction coefficient above 0.3 km−1 could be easily obtained when the laser cumulative pulse number was 1000 and the vertical resolution was 15 m at night; the identification of moderate pollution aerosols and thick clouds could be easily identified in the daytime when the laser cumulative pulse number was 10,000 and the vertical resolution was 120 m.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhang, Zhenhua, Peng Chen, and Zhihua Mao. "SOLS: An Open-Source Spaceborne Oceanic Lidar Simulator." Remote Sensing 14, no. 8 (April 12, 2022): 1849. http://dx.doi.org/10.3390/rs14081849.

Повний текст джерела
Анотація:
In recent years, oceanic lidar has seen a wide range of oceanic applications, such as optical profiling and detecting bathymetry. Furthermore, spaceborne lidars, CALIOP and ICESat-2, designed for atmospheric and ice science applications, have been used for ocean backscattering retrievals, but, until now, there has been no spaceborne lidar specifically designed for ocean detection. There is a demand for an effective lidar simulator to study the detection potential capability of spaceborne oceanic lidar. In this study, an open-source spaceborne oceanic lidar simulator named SOLS was developed, which is available freely. Moreover, the maximum detectable depth and corresponding optimal wavelength for spaceborne lidar were analyzed at a global scale by using SOLS. The factors controlling detection limits of a spaceborne ocean profiling lidar in different cases were discussed. Then, the maximum detectable depths with different relative measurement errors and the influence of solar background radiance were estimated. Subsequently, the effects of laser and detector parameters on maximum detectable depths were studied. The relationship between the lidar detectable depth and the ocean mixed layer depth was also discussed. Preliminary results show that the maximum detectable depth could reach deeper than 120 m in the oligotrophic sea at low latitudes. We found that 490 nm is the optimal wavelength for most of the open seawater. For coastal water, 532 nm is a more suitable choice considering both the technical maturity and geophysical parameters. If possible, a lidar equipped with 440 nm could achieve the greatest depth in oligotrophic seawater in subtropical gyres north and south of the equator. The upper mixed layer vertical structure in most of the global open ocean is within the lidar maximum detectable depth. These results show that SOLS can help the design of future spaceborne oceanic lidar systems a lot.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yamamoto, Yasuji, Noritaka Tanioka, and Tadashi Imai. "The spaceborne lidar experiment." Acta Astronautica 39, no. 9-12 (November 1996): 687–95. http://dx.doi.org/10.1016/s0094-5765(97)00050-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Liu Dong, 刘东, 陈斯婕 Chen Sijie, 刘群 Liu Qun, 柯举 Ke Ju, 王南朝 Wang Nanchao, 孙颖姗 Sun Yingshan, 王帅博 Wang Shuaibo та ін. "星载环境探测激光雷达及其关键技术". Acta Optica Sinica 42, № 17 (2022): 1701001. http://dx.doi.org/10.3788/aos202242.1701001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Liu, Qun, Dong Liu, Jian Bai, Xiaoyu Cui, Yudi Zhou, Peituo Xu, Zhipeng Liu, and Xiaobin Wang. "The Nonlinear Effective Attenuation Coefficient of Spaceborne Oceanic Lidar Signal." EPJ Web of Conferences 237 (2020): 08022. http://dx.doi.org/10.1051/epjconf/202023708022.

Повний текст джерела
Анотація:
Multiple scattering is an inevitable effect in spaceborne oceanic lidar because of the large footprint size and the high optical density of seawater. The effective attenuation coefficient klidar in oceanic lidar equation, which indicates the influence of the multiple scattering effect on the formation of lidar returns, is an important parameter in the retrieval of inherent optical properties (IOPs) of seawater. In this paper, the nonlinearity of klidar and the relationships between klidar and the IOPs of seawater are investigated by solving the radiative transfer equation with an improved semianalytic Monte Carlo model. klidar is found to decrease exponentially with the increase of depth in homogeneous waters. klidar is given as an exponential function of depth and IOPs of seawater. The results in this paper can help to have a better understanding of the multiple scattering effect of spaceborne lidar and improve the retrieval accuracy of the IOPs of seawater using spaceborne lidar.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wan Yuan, 万渊, 陈菡 Cheng Han, 杜嘉旻 Du Jiamin, 孟洁 Meng Jie, 谢可迪 Xie Kedi, 王明建 Wang Mingjian, 马秀华 Ma Xiuhua, 刘继桥 Liu Jiqiao, 侯霞 Hou Xia та 陈卫标 Chen Weibiao. "星载激光雷达激光器热控技术研究". Chinese Journal of Lasers 50, № 14 (2023): 1401005. http://dx.doi.org/10.3788/cjl221567.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chu Jiaqi, 储嘉齐, 韩於利 Han Yuli, 孙东松 Sun Dongsong, 赵一鸣 Zhao Yiming та 刘恒嘉 Liu Hengjia. "星载多普勒测风激光雷达小型化光学接收机". Infrared and Laser Engineering 51, № 9 (2022): 20210831. http://dx.doi.org/10.3788/irla20210831.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Marenco, Franco, Gemma Halloran, and Mary Forsythe. "Operational use of spaceborne lidar datasets." EPJ Web of Conferences 176 (2018): 02009. http://dx.doi.org/10.1051/epjconf/201817602009.

Повний текст джерела
Анотація:
The Met Office plans to use space lidar datasets from CALIPSO, CATS, Aeolus and EarthCARE operationally in near real time (NRT), for the detection of aerosols. The first step is the development of NRT imagery for nowcasting of volcanic events, air quality, and mineral dust episodes. Model verification and possibly assimilation will be explored. Assimilation trials of Aeolus winds are also planned. Here we will present our first in-house imagery and our operational requirements.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Liao Shujun, 廖淑君, 郜海阳 Gao Haiyang, 寇蕾蕾 Kou Leilei, 康佳慧 Kang Jiahui, 卜令兵 Bu Lingbing та 王震 Wang Zhen. "星载激光雷达探测云与气溶胶的仿真模拟". Laser & Optoelectronics Progress 59, № 10 (2022): 1028001. http://dx.doi.org/10.3788/lop202259.1028001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Spaceborne lida"

1

Schleich, Anouk. "Apport du lidar spatial pour le développement de méthodes d'inventaire forestier multisource adaptées à la gestion durable des forêts dans un contexte de changement global." Electronic Thesis or Diss., Paris, AgroParisTech, 2024. http://www.theses.fr/2024AGPT0002.

Повний текст джерела
Анотація:
En France, la méthode de l'Inventaire Forestier National (IFN) répond à des besoins de politique publique aux échelles nationales et régionales. Sur des plus petits territoires, la précision est souvent insuffisante pour répondre aux besoins des activités de gestion. Les méthodes IFM peuvent répondre à ce besoin en combinant des données d'inventaire et des données de télédétection. La thèse vise à améliorer la précision de l'IFN à des échelles subrégionales à locales en intégrant les données du système lidar spatial GEDI dans des approches multisources.Cependant, cette intégration se heurte à un verrou majeur, lié à l'absence de correspondance spatiale entre les échantillons sur le terrain (placettes d'inventaire) et les empreintes GEDI. Par ailleurs, les données GEDI sont mal géoréférencées, ce qui complexifie leur intégration dans certaines approches d'IFM. Cette thèse se concentre sur ces problématiques et est divisée en trois parties principales.Premièrement, une méthode d'amélioration du géoréférencement de GEDI a été développée en se basant uniquement sur un modèle numérique de terrain (MNT) de référence à haute résolution spatiale. Cette méthode compare, pour une série de positions autour de la localisation indiquée dans les produits GEDI, les élévations du terrain des empreintes GEDI avec celles du MNT de référence, générant une carte d'écarts en fonction des décalages en X et Y. En utilisant un algorithme d'accumulation de flux sur cette carte, une position améliorée qui minimise l'écart avec le MNT est proposée pour chaque empreinte GEDI.Ensuite, deux approches d'utilisation des données GEDI avec les données de l'IFN ont été élaborées. Les zones d'étude se situent dans les Vosges et utilisent environ 500 placettes IFN et plus de 100,000 empreintes GEDI. La première approche est une approche d'échantillonnage double pour la stratification (2SS), reposant sur des variables communes entre GEDI et IFN, sans nécessiter de coïncidence spatiale entre les deux sources de données. Les approches 2SS reposent généralement sur des échantillons de données probabilistes, ce qui n'est a priori pas le cas de l'échantillonnage de GEDI. Ainsi, une analyse préliminaire a été nécessaire pour comprendre les caractéristiques spécifiques de l'échantillon des mesures GEDI. La pertinence de la variable commune choisie, la hauteur maximale des arbres, a également été vérifiée. Par rapport aux estimations basées uniquement sur les données IFN, l'approche 2SS a amélioré la variance des estimations de volume de 56%.La deuxième approche utilise un lien entre données GEDI et données IFN établi indirectement en utilisant les images Sentinel-2 et Sentinel-1, avec la méthode des k-plus proches voisins (kNN) combinée avec du bagging (bootstrap aggregation). Il s'agit de propager l'information des placettes terrain au niveau des empreintes GEDI pour densifier les placettes IFN en tirant parti des mesures de structure forestière GEDI, bien corrélées aux attributs forestiers d'intérêt (ex. le volume de bois). Tout d'abord, en utilisant un kNN-bagging, on cherche pour chaque placette IFN les empreintes GEDI ayant les caractéristiques les plus proches de celles du point IFN pour des variables de lien Sentinel, complétées ou non avec une variable de lien supplémentaire de hauteur. On estime ainsi l'ensemble des variables GEDI pour chaque placette IFN. Ensuite, un modèle de régression est établi par kNN-bagging pour estimer le volume de bois à partir des variables GEDI les mieux prédites à l'étape précédente et les variables Sentinel. Le volume est estimé au niveau de toutes les empreintes GEDI. La stratégie complétée par une variable de lien de hauteur a atteint un coefficient de détermination de 58%. Par la suite, sur la base du réseau dense de placettes avec volume ainsi obtenu, des méthodes standards d'estimation sur de petites surfaces (small area estimation) ou de cartographie haute résolution, pourront être implémentés
The thesis focuses on the contribution of spaceborne lidar to the development of Multisource Forest Inventory (MFI) methods. In France, the National Forest Inventory (NFI) method addresses the requirements of public policies at regional and national levels. However, on smaller territories, precision is often insufficient to meet the needs of management activities. MFI methods better address these needs by combining inventory data with remote sensing data. This thesis aims to improve NFI accuracy at sub-regional to local scales by integrating data from the spaceborne lidar GEDI into multisource approaches.Unfortunately, this integration is complicated due to the lack of spatial correspondence between field samples (inventory plots) and GEDI footprints. Additionally, GEDI data are poorly georeferenced, making them difficult to integrate into certain MFI approaches. This thesis focuses on these issues and is divided into three main parts.As a first step, a method for improving GEDI georeferencing, based on a high-resolution reference digital elevation model (DEM) was developed. This method compares, for a series of positions around the location indicated in the GEDI products, the ground elevations of the GEDI footprints with those of the reference DEM, generating an error map according to X and Y offsets. Using a flow accumulation algorithm on this error map, an improved position minimizing the distance from the DEM is proposed for each GEDI footprint.Next, two approaches for using GEDI data with NFI data were developed. The study sites are located in the Vosges and use ∼ 500 IFN plots and over 100,000 GEDI footprints.The first approach is a double sampling for stratification (2SS) approach, based on common variables between GEDI and NFI, without requiring spatial correspondence of the two data sources. 2SS approaches are generally based on probabilistic data samples, which is not a priori the case for GEDI's sampling pattern. Thus, a preliminary analysis was required to understand the characteristics of the spatial distribution of the GEDI sample. The relevance of the chosen common variable, i.e. the maximum tree height, was also verified. Compared with estimates based only on NFI data, the 2SS approach improved the variance of growing stock volume estimates by up to 56%.The second approach is based on a link between GEDI data and NFI data, established indirectly by using spatially exhaustive data sources, the Sentinel-2 and Sentinel-1 images. To establish the model linking the different data sources, we chose to use the k-nearest neighbor (kNN) method combined with bagging (bootstrap aggregation). The aim is to propagate information from field plots to GEDI footprints in order to "densify" NFI plots by taking advantage of GEDI forest structure measurements, which are well correlated with the forest attributes of interest (e.g. growing stock volume). First, for each NFI plot, we looked for the GEDI footprints with the characteristics of the Sentinel link variables, supplemented or not with a height link variable, that are closest to those of the NFI point. Using a kNN-bagging approach, the set of GEDI variables is therefore estimated for each NFI plot. Next, a regression model is established by kNN-bagging to estimate the volume using the best predicted GEDI variables from the previous step and the Sentinel variables. The volume is estimated at the level of all GEDI footprints. The strategy supplemented by a height link variable performed best and reached a coefficient of determination of 58%. Subsequently, using the resulting dense sample of volume plots, standard methods for small area estimation (scale of the municipality or district) or high-resolution volume mapping can be implemented
Стилі APA, Harvard, Vancouver, ISO та ін.
2

DeMello, John E. "Low-cost direct detect spaceborne LIDAR." Thesis, Monterey, California: Naval Postgraduate School, 2014. http://hdl.handle.net/10945/42606.

Повний текст джерела
Анотація:
Approved for public release; distribution is unlimited
LIDAR has widely been used to create very accurate 3-D models for use in a wide range of commercial, governmental and nonprofit applications. This thesis identifies how recent advancements in Nd:YAG fiber lasers and InGaAs GmAPDs could be applied to space-borne missions, enabling low-cost solutions that fulfill NASA’s ICESat-2 and United States Geological Survey (USGS) objectives. An analysis of launch vehicles, standard spacecraft buses and payload technologies identified three potential low-cost solutions: one hosted aboard Iridium and two onboard a BCP2000 commercial bus. These systems were evaluated using NASA’s mass-based and aperture-based cost models to provide a rough estimate of cost versus NASA’s CALIPSO, ICESat-1 and ICESat-2 missions. Preliminary analysis shows a potential for these new technologies to outperform any previous space-based LIDAR mission. At $55M, the Iridium-hosted solution is 1/16th the cost of ICESat-2 at roughly one-third its capability. Two other solutions were estimated at $216.6M and $370.586M and provided over 3X and 10X the estimated capability of ICESat-2, respectively. Both systems are anticipated to fulfill NASA’s ice sheet and vegetation objectives while delivering a return on investment of roughly $1B per year based on USGS’s analysis of advanced 3-D data for the United States.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tröbs, Michael. "Laser development and stabilization for the spaceborne interferometric gravitational wave detector LISA." [S.l. : s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=974983705.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tsui, Olivier W. L. "Integrating discrete-return scanning LiDAR and spaceborne RADAR to support aboveground biomass assessments." Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/44013.

Повний текст джерела
Анотація:
Forests are considered important reservoirs of organic carbon and have been identified as essential in moderating climate change. Measuring the amount of carbon stored in forests helps improve our understanding of the carbon budget and help with climate change adaptation strategies. Therefore, effective and accurate methods in characterizing changing forest cover and biomass densities are needed. Both LiDAR (light detection and ranging) and radar (radio detection and ranging) technologies can contribute towards the study of forest biomass but one sensor alone cannot provide all the information necessary to monitor forests. Understanding and investigating synergies between different remotely sensed data sets provides new and innovative opportunities to monitor forests. The overall objective reported in this thesis is to demonstrate novel methods to integrate two remotely sensed data sets (i.e., radar and LiDAR) for the application of biomass estimation. This research was divided into two main questions: (1) can shorter wavelength radar variables provide improved biomass estimates when combined with LiDAR data; and (2) can the use of space-borne radar extend aboveground biomass estimates over a larger area using spatial modeling methods. In the first study, relationships between biomass and biomass components with LiDAR and radar data were examined through regression analyses to determine the best combined parameters to estimate biomass. Results indicated that integrating radar variables to a LiDAR-derived model of aboveground biomass helped explain an additional 17.9% of the variability in crown biomass. This corresponded in an improvement in crown biomass estimates of 10% RMSE. Furthermore, InSAR coherence magnitudes from C-band and L-band radars provided the best estimate of aboveground biomass using radar alone. In the second study, aboveground biomass transects derived from plot-based field data and LiDAR, and wall-to-wall radar were spatially integrated using three kriging techniques. The results indicated the importance of correlation between primary and secondary variables when using these kriging approaches. Also a 1000 m distance between biomass transects, was found to provide reasonable compromise between ease of use, accuracy, and cost of obtaining LiDAR data for the study area. Insights into other opportunities for further development in spatial modeling techniques are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lieser, Maike Danielle [Verfasser]. "LISA optical bench development : experimental investigation of tilt-to-length coupling for a spaceborne gravitational wave detector / Maike Danielle Lieser." Hannover : Technische Informationsbibliothek (TIB), 2017. http://d-nb.info/1169964109/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lieser, Maike [Verfasser]. "LISA optical bench development : experimental investigation of tilt-to-length coupling for a spaceborne gravitational wave detector / Maike Danielle Lieser." Hannover : Technische Informationsbibliothek (TIB), 2017. http://d-nb.info/1169964109/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ballhorn, Uwe. "Airborne and spaceborne LiDAR data as a measurement tool for peatland topography, peat fire burn depth, and forest above ground biomass in Central Kalimantan, Indonesia." Diss., lmu, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-146579.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ballhorn, Uwe [Verfasser], and Florian [Akademischer Betreuer] Siegert. "Airborne and spaceborne LiDAR data as a measurement tool for peatland topography, peat fire burn depth, and forest above ground biomass in Central Kalimantan, Indonesia / Uwe Ballhorn. Betreuer: Florian Siegert." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2012. http://d-nb.info/1026211123/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Young, Alisa H. "The characterization of deep convection in the tropical tropopause layer using active and passive satellite observations." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41210.

Повний текст джерела
Анотація:
Several studies suggest that deep convection that penetrates the tropical tropopause layer may influence the long-term trends in lower stratospheric water vapor. This thesis investigates the relationship between penetrating deep convection and lower stratospheric water vapor variability using historical infrared (IR) observations. However, since infrared observations do not directly resolve cloud vertical structure and cloud top height, and there has been some debate on their usefulness to characterize penetrating deep convective clouds, CloudSat/Calipso and Aqua MODIS observations are first combined to understand how to best interpret IR observations of penetrating tops. The major findings of the combined CloudSat/Calipso and Aqua MODIS analysis show that penetrating deep convection predominantly occur in the western tropical Pacific Ocean. This finding is consistent with IR studies but is in contrast to previous radar studies where penetrating deep convective clouds predominantly occur over land regions such as equatorial Africa. Estimates on the areal extent of penetrating deep convection show that when using IR observations with a horizontal resolution of 10 km, about two thirds of the events are large enough to be detected. Evaluation of two different IR detection schemes, which includes cold cloud features/pixels and positive brightness temperature differences (+BTD), show that neither schemes completely separate between penetrating deep convection and other types of high clouds. However, the predominant fraction of +BTD distributions and cold cloud features/pixels ≤ 210 K is due to the coldest and highest penetrating tops as inferred from collocated IR and radar/lidar observations. This result is in contrast to previous studies that suggest the majority of cold cloud features/pixels ≤ 210 K are cirrus/anvil cloud fractions that coexist with deep convective clouds. Observations also show that a sufficient fraction of penetrating deep convective cloud tops occur in the extratropics. This provides evidence that penetrating deep convection should be documented as a pathway of stratospheric-tropospheric exchange within the extratropical region. Since the cold cloud feature/pixel ≤ 210 K approach was found to be a sufficient method to detect penetrating deep convection it was used to develop a climatology of the coldest penetrating deep convective clouds from GridSat observations covering years 1998-2008. The highest frequencies of the coldest penetrating deep convective clouds consistently occur in the western-central Pacific and Indian Ocean. Monthly frequency anomalies in penetrating deep convection were evaluated against monthly anomalies in lower stratospheric water vapor at 82 mb and show higher correlations for the western-central Pacific regions in comparison to the tropics. At a lag of 3 months, the combined western-central Pacific had a small but significant anticorrelation, where the largest amount of variance explained by the combined western-central Pacific region was 8.25%. In conjunction with anomalies in the 82 mb water vapor mixing ratios, decreasing trends for the 1998-2008 period were also observed for tropics, the western Pacific and Indian Ocean. Although none of these trends were significant at the 95% confidence level, decreases in the frequency of penetrating deep convection over the 1998-2008 shows evidence that could explain in part some of the 82 mb lower stratospheric water vapor variability.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Panglosse, Aymeric. "Modélisation pour la simulation et la prédiction des performances des photodiodes à avalanche en mode Geiger pour Lidars spatiaux." Thesis, Toulouse, ISAE, 2019. http://www.theses.fr/2019ESAE0046.

Повний текст джерела
Анотація:
Ce travail porte sur la modélisation pour la simulation et la prédiction desparamètres de performance des photodiodes à avalanche polarisée en mode Geiger en technologieCMOS, ou SPADs CMOS, pour Lidars spatiaux. Ce travail de thèse vise à développerune méthodologie basée sur : des modèles de la physique du semi-conducteur, des mesuresfournissant des informations sur le procédé technologique visé et des outils commerciaux desimulation. Ceci, dans le but de simuler les paramètres de performance des SPADs en serapprochant autant que possible de la réalité du procédé technologique afin d’améliorer lesprédictions. Des SPADs ont été conçues et caractérisées de manière à acquérir les paramètresde performances et les confronter aux résultats de simulation pour valider notre approche.De plus, la conception des SPADs s’est faite en regard des spécifications Lidar du CNESet d’Airbus Defence and Space en vue d’obtenir des structures permettant d’améliorer nosconnaissances en matière de : compréhension des mécanismes physiques, conception et méthodede caractérisation des SPADs CMOS. Ceci, dans l’intention d’étudier la possibilitéd’intégrer ces détecteurs dans leurs futurs systèmes Lidars spatiaux
This work focuses on modelling for simulation and prediction purposes ofCMOS SPADs performance parameters used in spaceborne Lidars. The innovative side ofthis work lies in a new methodology based on physical models for semiconductor devices,measurements performed on the targeted CMOS process and commercial simulation tools topredict CMOS SPADs performances. This method allows to get as close as possible to theprocess reality and to improve predictions. A set of SPAD has been designed and fabricated,and is used for measurements and model validation. SPAD design has been done with respectto CNES and Airbus Defence Space Lidar specification, in order to produce devices that willimprove our knowledge in terms of understanding of the involved physical mechanisms, SPADsdesign and test method, for a possible integration within their future spaceborne Lidars
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Spaceborne lida"

1

H, Kim Kyong, and Langley Research Center, eds. Development of mid-infrared solid state lasers for spaceborne lidar: Final report. [Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

United States. National Aeronautics and Space Administration., ed. Development of mid-infrared solid state lasers for spaceborne lidar: Progress report. Hampton, Va: Dept. of Physics, Hampton University, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

H, Kim Kyong, and Langley Research Center, eds. Development of mid-infrared solid state lasers for spaceborne lidar: Final report. [Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

United States. National Aeronautics and Space Administration., ed. Development of mid-infrared solid state lasers for spaceborne lidar: Progress report. Hampton, Va: Dept. of Physics, Hampton University, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

H, Kim Kyong, and Langley Research Center, eds. Development of mid-infrared solid state lasers for spaceborne lidar: Final report. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

H, Kim Kyong, and United States. National Aeronautics and Space Administration., eds. Development of mid-infrared solid state lasers for spaceborne lidar: Semiannual progress report. [Washington, DC: National Aeronautics and Space Administration, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

H, Kim Kyong, and United States. National Aeronautics and Space Administration., eds. Development of mid-infrared solid state lasers for spaceborne lidar: Semiannual progress report. [Washington, DC: National Aeronautics and Space Administration, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

D, Emmitt G., and United States. National Aeronautics and Space Administration., eds. The SPAce Readiness Coherent Lidar Experiment (SPARCLE) space shuttle mission. [Washington, DC: National Aeronautics and Space Administration, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

National Aeronautics and Space Administration (NASA) Staff. Development of Mid-Infrared Solid State Lasers for Spaceborne Lidar. Independently Published, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lidar performance analysis. [Washington, DC: National Aeronautics and Space Administration, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Spaceborne lida"

1

Lausch, Angela, Marco Heurich, Paul Magdon, Duccio Rocchini, Karsten Schulz, Jan Bumberger, and Doug J. King. "A Range of Earth Observation Techniques for Assessing Plant Diversity." In Remote Sensing of Plant Biodiversity, 309–48. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-33157-3_13.

Повний текст джерела
Анотація:
AbstractVegetation diversity and health is multidimensional and only partially understood due to its complexity. So far there is no single monitoring approach that can sufficiently assess and predict vegetation health and resilience. To gain a better understanding of the different remote sensing (RS) approaches that are available, this chapter reviews the range of Earth observation (EO) platforms, sensors, and techniques for assessing vegetation diversity. Platforms include close-range EO platforms, spectral laboratories, plant phenomics facilities, ecotrons, wireless sensor networks (WSNs), towers, air- and spaceborne EO platforms, and unmanned aerial systems (UAS). Sensors include spectrometers, optical imaging systems, Light Detection and Ranging (LiDAR), and radar. Applications and approaches to vegetation diversity modeling and mapping with air- and spaceborne EO data are also presented. The chapter concludes with recommendations for the future direction of monitoring vegetation diversity using RS.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Reitebuch, Oliver. "The Spaceborne Wind Lidar Mission ADM-Aeolus." In Atmospheric Physics, 815–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30183-4_49.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tagliente, M., G. Campiti, G. Brunetti, M. N. Armenise, and C. Ciminelli. "Spaceborne LiDAR for Debris Detection and Tracking." In Proceedings of SIE 2022, 172–77. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-26066-7_27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Marini, A., E. Armandillo, A. Culoma, and C. Norrie. "Spaceborne Lidar Activities at the European Space Agency." In Advances in Atmospheric Remote Sensing with Lidar, 209–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60612-0_52.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Endemann, M. "A Small Spaceborne Lidar for Atmospheric Backscatter Measurements." In Laser/Optoelektronik in der Technik / Laser/Optoelectronics in Engineering, 612–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82638-2_113.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wiegner, Matthias, Ulrich Oppel, Heike Krasting, Wolfgang Renger, Christoph Kiemle, and Martin Wirth. "Cirrus Measurements from a Spaceborne Lidar: Influence of Multiple Scattering." In Advances in Atmospheric Remote Sensing with Lidar, 189–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60612-0_47.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pelon, J., M. Doutriaux, V. Trouillet, P. H. Flamant, H. Letreut, and G. Sèze. "Expected Cirrus Cloud Climatology Improvement Using a Spaceborne Backscatter Lidar." In Advances in Atmospheric Remote Sensing with Lidar, 205–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60612-0_51.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Curran, R. J. "NASA Plans for Spaceborne Lidar: The Earth Observing System." In Tunable Solid State Lasers for Remote Sensing, 4–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-540-39765-6_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Franco, Noemi, Paolo Di Girolamo, Andreas Behrendt, Volker Wulfmeyer, Adolfo Comerón, Donato Summa, and David N. Whiteman. "Performance Simulation of a Spaceborne Raman Lidar for ATLAS." In Proceedings of the 30th International Laser Radar Conference, 699–705. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-37818-8_90.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Quenzel, H., and M. Kästner. "Potentials and Capabilities of a Spaceborne Backscatter Lidar for Meteorology." In Atmospheric Radiation, 645–52. Boston, MA: American Meteorological Society, 1987. http://dx.doi.org/10.1007/978-1-935704-18-8_94.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Spaceborne lida"

1

Sroga, J., and A. Rosenberg. "0.53 µm Incoherent Doppler Lidar: Current Status." In Laser and Optical Remote Sensing: Instrumentation and Techniques. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/lors.1987.wc19.

Повний текст джерела
Анотація:
Measurements of the atmospheric wind field have been shown by simulations to improve global numerical weather prediction (Atlas, et al., 1985) and several spaceborne lidar systems have been proposed to meet the global wind measurement requirements. Menzies (1986) has given a comparison of the relative performance of four potential spaceborne Doppler lidar systems utilizing either coherent (heterodyne) detection at 1.06 µm and 9-11 µm wavelengths or incoherent (direct) detection at 0.35 µm and 0.53 µm wavelengths. This paper describes a ground based, 0.53 µm incoherent Doppler lidar and presents preliminary results of atmospheric testing to demonstrate this incoherent Doppler lidar technique.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Krawczyk, R., JB Ghibaudo, JY Labandibar, D. Willetts, M. Vaughan, G. Pearson, M. Harris, et al. "ALADIN: an Atmospheric Laser Doppler Wind Lidar instrument for wind velocity measurements from space." In Coherent Laser Radar. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/clr.1995.mc3.

Повний текст джерела
Анотація:
ALADIN (standing for Atmospheric Laser Doppler Instrument), as a spaceborne Doppler wind lidar instrument, is intended to respond to the pressing need for an accurate wind field description at global scale for both meteorology and numerical weather prediction and climate applications. Such an active instrument will fulfill the gap existing between the present capability of sophisticated numerical models and the drastic lack of information they do require. It will also bring a full-size demonstration of the potential of spaceborne wind lidar in world meteorological and climate monitoring.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Voigtkaunder, Florian, and Guenter Czerwinski. "The Kaul-Samokhvalov-Balin-Samoilova approximation for spaceborne lidar returns." In Lidar Multiple Scattering Experiments, edited by Christian Werner, Ulrich G. Oppel, and Tom Rother. SPIE, 2003. http://dx.doi.org/10.1117/12.512344.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Werner, Christian, Ines Leike, Juergen Streicher, Werner Wergen, Viktor A. Banakh, and Igor N. Smalikho. "Spaceborne Doppler lidar perspectives." In Fifth International Symposium on Atmospheric and Ocean Optics, edited by Vladimir E. Zuev and Gennadii G. Matvienko. SPIE, 1999. http://dx.doi.org/10.1117/12.337037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cecchi, Giovanna. "Spaceborne Fluorescence Lidar Concept." In SpaceOps 2012. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-1294855.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Flamant, P. H., C. Loth, and A. Bouteyre. "The CNES-CNRS Ground-Based Infrared CO2 Lidar System." In Coherent Laser Radar. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/clr.1987.thb6.

Повний текст джерела
Анотація:
A ground-based coherent CO2 lidar system is under construction at LMD / CNRS-Ecole Polytechnique. The project is supported by CNES (the french space agency) for future spaceborne applications. The main goals of the mid-term program are twofold : 1) to develop and assess the technology for coherent lidar applications; 2) to conduct scientific studies such as backscatter and Doppler wind field measurements among others. The pulsed CO2 lidar is designed to acheive flexibility to be easily modified.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nimelman, M., J. Tripp, G. Bailak, and J. Bolger. "Spaceborne scanning lidar system (SSLS)." In Defense and Security, edited by Peter Tchoryk, Jr. and Brian Holz. SPIE, 2005. http://dx.doi.org/10.1117/12.604203.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Werner, Christian, W. Krichbaumer, and Gennadii G. Matvienko. "Spaceborne lidar for cloud monitoring." In Satellite Remote Sensing, edited by Christian Werner. SPIE, 1994. http://dx.doi.org/10.1117/12.195854.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Balin, Yuri S., Vladimir E. Mel'nikov, Alexander A. Tikhomirov, I. V. Znamenskii, Svetlana V. Samoilova, and Vladimir E. Zuev. "Spaceborne aerosol lidar BALKAN-1." In Satellite Remote Sensing, edited by Christian Werner. SPIE, 1994. http://dx.doi.org/10.1117/12.195856.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Royer, Michel, Rémy Charasse, and Thierry Midavaine. "NT n° 6539/95 Coherent laser detection and receivers for Doppler Wind lidars." In Coherent Laser Radar. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/clr.1995.pdp5.

Повний текст джерела
Анотація:
HF receiverssubsystems are under R&D in order to be implemented in laser wind sounder (LIDAR) for spaceborne polar platforms. The purpose is the study of the global change climate in tropics atmosphere by measuring continuously and world-wide wind speeds.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Spaceborne lida"

1

Gallon, Derek W., and John R. Hummel. Review of Inversion Techniques for Spaceborne Lidar Systems. Fort Belvoir, VA: Defense Technical Information Center, December 1986. http://dx.doi.org/10.21236/ada184164.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Letcher, Theodore, Kent Sparrow, and Sandra LeGrand. Establishing a series of dust event case studies for East Asia. Engineer Research and Development Center (U.S.), October 2023. http://dx.doi.org/10.21079/11681/47824.

Повний текст джерела
Анотація:
Dust aerosols have a wide range of effects on air quality, health, land-management decisions, aircraft operations, and sensor data interpretations. Therefore, the accurate simulation of dust plume initiation and transport is a priority for operational weather centers. Recent advancements have improved the performance of dust prediction models, but substantial capability gaps remain when forecasting the specific location and timing of individual dust events, especially extreme dust outbreaks. Operational weather forecasters and US Army Engineer Research and Development Center (ERDC) researchers established a series of reference case study events to enhance dust transport model evaluation. These reference case studies support research to improve modeled dust simulations, including efforts to increase simulation accuracy on when and where dust is lofted off the ground, dust aerosols transport, and dust-induced adverse air quality issues create hazardous conditions downstream. Here, we provide detailed assessments of four dust events for Central and East Asia. We describe the dust-event lifecycle from onset to end (or when dust transports beyond the area of interest) and the synoptic and mesoscale environ-mental conditions governing the process. Analyses of hourly reanalysis data, spaceborne lidar and aerosol optical depth retrievals, upper-air soundings, true-color satellite imagery, and dust-enhanced false-color imagery supplement the discussions.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії