Дисертації з теми "Sous-Groupes discrets des groupes de Lie"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-36 дисертацій для дослідження на тему "Sous-Groupes discrets des groupes de Lie".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Miquel, Sebastien. "Arithméticité de sous-groupes discrets contenant un réseau horosphérique." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS579/document.
Повний текст джерелаLet G be a real algebraic group of real rank at least 2 and P a parabolic subgroup of G. We prove that any discrete subgroup of G that intersects the unipotent radical of P in a lattice is an arithmetic lattice of G, except maybe when G=SO(2,4n+2) and P is the stabilizer of an isotropic 2-plane. This provide a partial answer to a conjecture of Margulis that was already studied by Hee Oh. We also study the case where G is a product of several rank 1 groups, generalising results of Selberg, Benoist and Oh
Quint, Jean-François. "Sous-groupes discrets des groupes de lie semi-simples reels et p-adiques." Paris 7, 2001. http://www.theses.fr/2001PA077142.
Повний текст джерелаGuichard, Olivier. "Déformations de sous-groupes discrets de groupes de rang un." Paris 7, 2004. http://www.theses.fr/2004PA077088.
Повний текст джерелаParreau, Anne. "Dégénérescences de sous-groupes discrets de groupes de Lie semisimples et actions de groupes sur des immeubles affines." Paris 11, 2000. http://www.theses.fr/2000PA112028.
Повний текст джерелаFléchelles, Balthazar. "Geometric finiteness in convex projective geometry." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM029.
Повний текст джерелаThis thesis is devoted to the study of geometrically finite convex projective orbifolds, following work of Ballas, Cooper, Crampon, Leitner, Long, Marquis and Tillmann. A convex projective orbifold is the quotient of a bounded, convex and open subset of an affine chart of real projective space (called a properly convex domain) by a discrete group of projective transformations that preserve it. We say that a convex projective orbifold is strictly convex if there are no non-trivial segments in the boundary of the convex subset, and round if in addition there is a unique supporting hyperplane at each boundary point. Following work of Cooper-Long-Tillmann and Crampon-Marquis, we say that a strictly convex orbifold is geometrically finite if its convex core decomposes as the union of a compact subset and of finitely many ends, called cusps, all of whose points have an injectivity radius smaller than a constant depending only on the dimension. Understanding what types of cusps may occur is crucial for the study of geometrically finite orbifolds. In the strictly convex case, the only known restriction on cusp holonomies, imposed by a generalization of the celebrated Margulis lemma proven by Cooper-Long-Tillmann and Crampon-Marquis, is that the holonomy of a cusp has to be virtually nilpotent. We give a complete characterization of the holonomies of cusps of strictly convex orbifolds and of those of round orbifolds. By generalizing a method of Cooper, which gave the only previously known example of a cusp of a strictly convex manifold with non virtually abelian holonomy, we build examples of cusps of strictly convex manifolds and round manifolds whose holonomy can be any finitely generated torsion-free nilpotent group. In joint work with M. Islam and F. Zhu, we also prove that for torsion-free relatively hyperbolic groups, relative P1-Anosov representations (in the sense of Kapovich-Leeb, Zhu and Zhu-Zimmer) that preserve a properly convex domain are exactly the holonomies of geometrically finite round manifolds.In the general case of non strictly convex projective orbifolds, no satisfactory definition of geometric finiteness is known at the moment. However, Cooper-Long-Tillmann, followed by Ballas-Cooper-Leitner, introduced a notion of generalized cusps in this context. Although they only require that the holonomy be virtually nilpotent, all previously known examples had virtually abelian holonomy. We build examples of generalized cusps whose holonomy can be any finitely generated torsion-free nilpotent group. We also allow ourselves to weaken Cooper-Long-Tillmann’s original definition by assuming only that the holonomy be virtually solvable, and this enables us to construct new examples whose holonomy is not virtually nilpotent.When a geometrically finite orbifold has no cusps, i.e. when its convex core is compact, we say that the orbifold is convex cocompact. Danciger-Guéritaud-Kassel provided a good definition of convex cocompactness for convex projective orbifolds that are not necessarily strictly convex. They proved that the holonomy of a convex cocompact convex projective orbifold is Gromov hyperbolic if and only if the associated representation is P1-Anosov. Using these results, Vinberg’s theory and work of Agol and Haglund-Wise about cubulated hyperbolic groups, we construct, in collaboration with S. Douba, T. Weisman and F. Zhu, examples of P1-Anosov representations for any cubulated hyperbolic group. This gives new examples of hyperbolic groups admitting Anosov representations
Battisti, Laurent. "Variétés toriques à éventail infini et construction de nouvelles variétés complexes compactes : quotients de groupes de Lie complexes et discrets." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4714/document.
Повний текст джерелаIn this thesis we study certain classes of complex compact non-Kähler manifolds. We first look at the class of Kato surfaces. Given a minimal Kato surface S, D the divisor consisting of all rational curves of S and ϖ : Š ͢ S the universal covering of S, we show that Š \ϖ-1 (D) is a Stein manifold. LVMB manifolds are the second class of non-Kähler manifolds that we study here. These complex compact manifolds are obtained as quotient of an open subset U of Pn by a closed Lie subgroup G of (C*)n of dimension m. We reformulate this procedure by replacing U by the choice of a subfan of the fan of Pn and G by a suitable vector subspace of R^{n}. We then build new complex compact non Kähler manifolds by combining a method of Sankaran and the one giving LVMB manifolds. Sankaran considers an open subset U of a toric manifold whose quotient by a discrete group W is a compact manifold. Here, we endow some toric manifold Y with the action of a Lie subgroup G of (C^{*})^{n} such that the quotient X of Y by G is a manifold, and we take the quotient of an open subset of X by a discrete group W similar to Sankaran's one.Finally, we consider OT manifolds, another class of non-Kähler manifolds, and we show that their algebraic dimension is 0. These manifolds are obtained as quotient of an open subset of C^{m} by the semi-direct product of the lattice of integers of a finite field extension K over Q and a subgroup of units of K well-chosen
Guilloux, Antonin. "Equirepartition dans les espaces homogènes." Phd thesis, Université Paris Sud - Paris XI, 2007. http://tel.archives-ouvertes.fr/tel-00372220.
Повний текст джерелаSmilga, Ilia. "Pavages de l'espace affine." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112298/document.
Повний текст джерелаFor every odd positive integer d, we construct a fundamental domain for the action on the 2d+1-dimensional space of certain groups of affine transformations which are free, nonabelian, act properly discontinuously and have linear part Zariski-dense in SO(d+1,d). Next for every semisimple noncompact real Lie group G, we construct a group of affine transformations of its Lie algebra g which is free, nonabelian, acts properly discontinuously and has linear part Zariski-dense in Ad G. Finally, we give some results about the local behavior of harmonic functions on the Sierpinski triangle restricted to a side of the triangle
Liu, Gang. "Restriction des séries discrètes de SU(2,1) à un sous-groupe exponentiel maximal et à un sous-groupe de Borel." Poitiers, 2011. http://nuxeo.edel.univ-poitiers.fr/nuxeo/site/esupversions/dab97901-6f8a-472a-8233-561a354976b7.
Повний текст джерелаIn this thesis we decompose in irreducibles the restriction of a discrete series representation of SU(2,1) to a maximal exponential solvable or a Borel subgroup and we interpret our results in the framework of the orbit method, hamiltonian geometry and "Spinc" quantization. In particular, we check that admissibility, which means that the restriction decomposes discretely in irreducibles, each one appearing with finite multiplicity, is equivalent to the compacity of the reduced spaces and we show that the multiplicities are related to the quantization of the reduced spaces
Saxcé, Nicolas de. "Sous-groupes boréliens des groupes de Lie." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112179.
Повний текст джерелаGiven a Lie group G, we investigate the possible Hausdorff dimensions for a measurable subgroup of G. If G is a connected nilpotent Lie group, we construct measurable subgroups of G having arbitrary Hausdorff dimension, whereas if G is compact semisimple, we show that a proper measurable subgroup of G cannot have Hausdorff dimension arbitrarily close to the dimension of G
Breuillard, Emmanuel. "Marches aléatoires, equirépartition et sous-groupes denses dans les groupes de Lie." Paris 11, 2003. http://www.theses.fr/2003PA112295.
Повний текст джерелаThis dissertation consists of two relatively independent parts. The first part, more probabilistic in nature, deals with random walks on Lie groups and especially with equidistribution properties of random walks after a very large time. Chapter 2 is devoted to the study of equidistribution of finitely supported symmetric walks on nilpotent Lie groups. In Chapter 3, we prove a local limit theorem for product of random matrices in the Heisenberg group and we obtain a probabilistic equivalent of Ratner's equidistribution theorem for unipotent random walks on homogeneous spaces. Chapter 4 is independent and entirely devoted to the local limit theorem on R^d with a study of the speed of convergence. The second part, of a more algebraic fiavor, deals with dense free subgroups of real and p-adic Lie groups. We show a topological version of Tits' alternative asserting that any subgroup of GL(n. K), where k is a local field, contains either a relatively open solvable subgroup, or a relatively dense free subgroup. We then provide several applications of this theorem to the theory of profinite groups, of amenable actions and of Riemannian foliations
Perron, Stéphanie. "Les groupes cycliques discrets d'isométries du bidisque." Mémoire, Université de Sherbrooke, 2015. http://hdl.handle.net/11143/7517.
Повний текст джерелаLoisel, Benoit. "Sur les sous-groupes profinis des groupes algébriques linéaires." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX024/document.
Повний текст джерелаIn this thesis, we are interested in the profinite and pro-p subgroups of a connected linear algebraic group defined over a local field. In the first chapter, we briefly summarize the Bruhat-Tits theory and introduce the notations necessary for this work. In the second chapter we find conditions equivalent to the existence of maximal compact subgroups of any connected linear algebraic group G defined over a local field K. In the third chapter, we obtain a conjugacy theorem of the maximal pro-p subgroups of G(K) when G is reductive. We describe these subgroups, more and more precisely, assuming successively that G is semi-simple, then simply connected, then quasi-split in addition. In the fourth chapter, we are interested in the pro-p presentations of a maximal pro-p subgroup of the group of rational points of a quasi-split semi-simple algebraic group G defined over a local field K. More specifically, we compute the minimum number of generators of a maximal pro-p subgroup. We obtain a formula which is linear in the rank of a certain root system, which depends on the ramification of the minimal extension L=K which splits G, thus making explicit the contributions of the Lie theory and of the arithmetic of the base field
Melzi, Di Cusano Camillo. "Sous-laplacien avec un drift sur les groupes de lie nilpotents." Paris 6, 2001. http://www.theses.fr/2001PA066338.
Повний текст джерелаPaupert, Julien. "Configurations de lagrangiens, domaines fondamentaux et sous-groupes discrets de PU (2,1)." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2005. http://tel.archives-ouvertes.fr/tel-00011502.
Повний текст джерела$PU(2,1)$, groupe des isométries holomorphes de l'espace hyperbolique complexe de dimension (complexe) 2. On s'intéresse en particulier aux groupes engendrés par des transformations elliptiques, i.e. ayant un point fixe dans cet espace.
Les deux fils conducteurs de ce travail sont d'une part l'utilisation des sous-espaces lagrangiens (ou plans réels) ainsi que des réflexions associées (des involutions antiholomorphes), et de l'autre
l'étude et la compréhension des exemples de réseaux de $PU(2,1)$
construits par Mostow en 1980.
Thirion, Xavier. "Sous-groupes discrets de SL(d,R) et équidistribution dans les espaces symétriques." Tours, 2007. http://www.theses.fr/2007TOUR4006.
Повний текст джерелаIn the first part, we consider a class of groups, called Ping-Pong groups on the projective space of Rd, and we prove a few properties of these groups. Then, we study the transfert operators that we associate to these groups. We deduce the asymptotic behaviour of the orbital function. In the second part, we study the asymptotic repartition of the orbit of a group in a symmetric space of SL(d,R). We introduce and study a Radon's measure, invariant with respect to the Weyl chambers' flow. We deduce the asymptotic behaviour of the orbital function of the lattices of SL(d,R) and the Ping-Pong groups of the flag space of Rd
Gaye, Masseye. "Sous-groupes discrets de PU(2,1) engendrés par n réflexions complexes et déformation." Paris 6, 2008. http://www.theses.fr/2008PA066596.
Повний текст джерелаTanasa, Adrian. "Sous-algèbres de Lie de l'algèbre de Weyl : Algèbres de Lie d'ordre 3 et elurs applications à la supersymétrie cubique." Mulhouse, 2005. http://www.theses.fr/2005MULH0794.
Повний текст джерелаIn the first part we present the Weyl algebra and our results concerning its finite-dimensional Lie subalgebras. The second part is devoted to a more exotic algebraic structure, the Lie algebra of order 3. We set the basis of a theory of deformations and contractions of these algebraic structures. We then concentrate on a particular such Lie algebra of order 3 which extends in a non-trivial way the Poincaré algebra, this extension being different of the supersymmetric extension. We then focus on the construction of a field theoretical model based on this algebra, the cubic supersymetry (3SUSY). For this purpose we obtain bosonic multiplets with whom we construct invariant Lagrangians. We then study the compatibility between this new symmetry and the abelian gauge symmetry. Furthermore, the analyse of possible interactions shows that interactions terms are not allowed by the 3SUSY invariance. Finally we establish results regarding the extension in arbitrary dimensions of our model
David-Guillou, Emilie. "Multiplicateurs de Hörmander-Mihlin sur certains groupes de Lie résolubles non-unimodulaires." Paris 6, 2003. http://www.theses.fr/2003PA066082.
Повний текст джерелаOhayon, Jonathan. "Quantification des sous-algèbres de Lie coisotropes." Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20040/document.
Повний текст джерелаThe aim of this thesis is the study of quantization of coisotropic Lie subalgebras of Lie bialgebras.A coisotropic Lie subalgebra of a Lie bialgebra is a Lie subalgebra which is also a Lie coideal. The problem of quantization of coisotropic Lie subalgebra was set forth by V. Drinfeld, in his study of quantization of Poisson homogeneous spaces G/C. These problems are closely related to the duality principle established by N. Ciccoli and F. Gavarini.In this thesis, we search for an answer to this quantization problem in different settings. Firstly, we show that a quantization exists for simple Lie bialgebras by constructing a quantization of examples provided by M. Zambon. We then establish a link between the quantization which we constructed and a classification of subalgebras right coideals established by I. Heckenberger and S. Kolb. Secondly, we find an obstruction to the quantization in the universal setting by using a third-order quantization constructed by V. Drinfeld. We show that this obstruction vanishes in the examples studied earlier. Finally, we generalize a result of P. Etingof and D. Kazhdan on the quantization of poisson homogeneous spaces, linked to Lagrangian Lie subalgebras of Drinfeld's double
Dahamna, Khaled. "Classification des algèbres de Lie sous-riemanniennes et intégrabilité des équations géodésiques associées." Phd thesis, INSA de Rouen, 2011. http://tel.archives-ouvertes.fr/tel-00769931.
Повний текст джерелаMaillard, Jean-Marie. "Intégrabilité, série discrète des groupes de Lorentz et transformation de Weyl des distributions tempérées." Dijon, 1986. http://www.theses.fr/1986DIJOS025.
Повний текст джерелаBoyer, Adrien. "Sur certains aspects de la propriété RD pour des représentations sur les bords de Poisson-Furstenberg." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4723.
Повний текст джерелаWe study property RD in terms of decay of matrix coefficients for unitary representations. We focus our attention on unitary representations arising from action of Lie groups and discrete groups of isometries of a CAT(-1) space on their appropriate boundary. We use some techniques of harmonic analysis, and ergodic theory to start a new approach of Valette's conjecture
Kouki, Sami. "Étude des restrictions des séries discrètes de certains groupes résolubles et algébriques." Thesis, Poitiers, 2014. http://www.theses.fr/2014POIT2257/document.
Повний текст джерелаLet G be a connected solvable Lie group and H a closed connected subgroup with Lie algebra g and h respectively. We denote g* (resp. h*) the dual of g (resp. h). The aim of my thesis is to study the restriction of a discrete series π of G, associated with a coadjoint orbit Ω C g* to H. If the restriction of π to H can be decomposed in to a direct sum of representations of H with finite multiplicities, we say that π is H-admissible. Let Pg,n : Ω → h* denote the restriction map. My objective is to show the following conjecture due to Michel Duflo : 1. The representation π i s H-admissible if and only if the moment application Pg,n is proper on the image. 2. If π is H-admissible, and if T is a discrete series of H then it s multiplicity in the restriction of π to H must be calculated by « quantifying » the corresponding reduced space (that is compact in this case). In this thesis, we provide a positive response to this conjecture in two situations, namely when: (i) G is exponential solvable Lie group. (ii) G is the semi direct product of a compact torus and the Heisenberg group and H is a connected algebraic subgroup
Feneuil, Joseph. "Analyse harmonique sur les graphes et les groupes de Lie : fonctionnelles quadratiques, transformées de Riesz et espaces de Besov." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAM040/document.
Повний текст джерелаThis thesis is devoted to results in real harmonic analysis in discrete (graphs) or continuous (Lie groups) geometric contexts.Let $\Gamma$ be a graph (a set of vertices and edges) equipped with a discrete laplacian $\Delta=I-P$, where $P$ is a Markov operator.Under suitable geometric assumptions on $\Gamma$, we show the $L^p$ boundedness of fractional Littlewood-Paley functionals. We introduce $H^1$ Hardy spaces of functions and of $1$-differential forms on $\Gamma$, giving several characterizations of these spaces, only assuming the doubling property for the volumes of balls in $\Gamma$. As a consequence, we derive the $H^1$ boundedness of the Riesz transform. Assuming furthermore pointwise upper bounds for the kernel (Gaussian of subgaussian upper bounds) on the iterates of the kernel of $P$, we also establish the $L^p$ boundedness of the Riesz transform for $10$, $1\leq p\leq+\infty$ and $1\leq q\leq +\infty$.These results hold for polynomial as well as for exponential volume growth of balls
Marquis, Ludovic. "Les pavages en géométrie projective de dimension 2 et 3." Phd thesis, Université Paris Sud - Paris XI, 2009. http://tel.archives-ouvertes.fr/tel-00428902.
Повний текст джерелаDamers, Julien. "Lie groups applied to localisation of mobile robots." Electronic Thesis or Diss., Brest, École nationale supérieure de techniques avancées Bretagne, 2022. http://www.theses.fr/2022ENTA0007.
Повний текст джерелаWith the development of offshore activities, the costs of maintenance and monitoring of offshore plants in terms of crew members, boats, and money have greatly increased and are still growing dramatically. This encouraged the development of autonomous underwater vehicles (AUV). These are still very expensive because of the numerous high-end sensors they need to embark on to accomplish their missions. Thus their number is relatively low. Therefore research is made to develop low-cost AUVs that could be produced in a larger amount to perform the same missions. This thesis comes within the scope of this research field. One of the main problems when dealing with AUVs is the localisation of the vehicle which will be the one addressed throughout this work. To tackle it, we present a new guaranteed integration method, which is more robust to the uncertainties on the initial condition than the ones currently available, based on Lie symmetries. This method is first presented through different simple theoretical examples. We then apply it to a localisation problem in a robotic context
Leicht, Karl. "Structures kählériennes sur T*G dont la forme symplectique sous-jacente est la forme standard." Thesis, Lille 1, 2013. http://www.theses.fr/2013LIL10111.
Повний текст джерелаLet G be a connected Lie group. We show that every complex structure on the total space TG of the tangent bundle of G which is left invariant and such that an orbit with respect to the left translation action is totally real, is induced by a smooth immersion of TG into the complexifixed group of G. For G compact and connected, we also characterize the right invariant complex structures and the biinvariant complex structures on the total space T*G of the cotangent bundle of G which, combined with the tautological symplectic structure, endow T*G with a Kaehler structure. Finally, we study the Ricci curvature of these Kaehler structures
Hafassa, Boutheina. "Deux problèmes de contrôle géométrique : holonomie horizontale et solveur d'esquisse." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS017/document.
Повний текст джерелаWe study two problems arising from geometric control theory. The Problem I consists of extending the concept of horizontal holonomy group for affine manifolds. More precisely, we consider a smooth connected finite-dimensional manifold M, an affine connection ∇ with holonomy group H∇ and ∆ a smooth completely non integrable distribution. We define the ∆-horizontal holonomy group H∆∇ as the subgroup of H∇ obtained by ∇-parallel transporting frames only along loops tangent to ∆. We first set elementary properties of H∆∇ and show how to study it using the rolling formalism. In particular, it is shown that H∆∇ is a Lie group. Moreover, we study an explicit example where M is a free step-two homogeneous Carnot group with m≥2 generators, and ∇ is the Levi-Civita connection associated to a Riemannian metric on M, and show in this particular case that H∆∇ is compact and strictly included in H∇ as soon as m≥3. The Problem II is studying the modeling of the problem of solver sketch. This problem is one of the steps of a CAD/CAM software. Our goal is to achieve a well founded mathematical modeling and systematic the problem of solver sketch. The next step is to understand the convergence of the algorithm, to improve the results and to expand the functionality. The main idea of the algorithm is to replace first the points of the space of spheres by displacements (elements of the group) and then use a Newton's method on Lie groups obtained. In this thesis, we classified the possible displacements of the groups using the theory of Lie groups. In particular, we distinguished three sets, each set containing an object type: the first one is the set of points, denoted Points, the second is the set of lines, denoted Lines, and the third is the set of circles and lines, we note that ∧. For each type of object, we investigated all the possible movements of groups, depending on the desired properties. Finally, we propose to use the following displacement of groups for the displacement of points, the group of translations, which acts transitively on Lines ; for the lines, the group of translations and rotations, which is 3-dimensional and acts transitively (globally but not locally) on Lines ; on lines and circles, the group of anti-translations, rotations and dilations which has dimension 4 and acts transitively (globally but not locally) on ∧
Ferte, Damien. "Dynamique topologique d'une action de groupe sur un espace homogène : exemples d'actions unipotente et diagonale." Phd thesis, Université Rennes 1, 2003. http://tel.archives-ouvertes.fr/tel-00007213.
Повний текст джерелаOstellari, Patrick. "Estimations globales du noyau de la chaleur." Phd thesis, Université Henri Poincaré - Nancy I, 2003. http://tel.archives-ouvertes.fr/tel-00004080.
Повний текст джерелаHoarau, Emma. "Mise en évidence de la brisure de symétrie des schémas numériques pour l'aérodynamique et développement de schémas préservant ces symétries." Paris 6, 2009. http://www.theses.fr/2009PA066650.
Повний текст джерелаAl, Bassit Lama. "Structures mécaniques à modules sphériques optimisées pour un robot médical de télé-échographie mobile." Phd thesis, Université d'Orléans, 2005. http://tel.archives-ouvertes.fr/tel-00555543.
Повний текст джерелаKoufany, Khalid. "Analyse et géométrie des domaines bornés symétriques." Habilitation à diriger des recherches, Université Henri Poincaré - Nancy I, 2006. http://tel.archives-ouvertes.fr/tel-00138557.
Повний текст джерелаEn particulier, nous passons en revue des résultats sur l'indice de Maslov, de Souriau et d'Arnold-Leray. Nous étudions aussi certaines propriétés de contractions et de compressions de ces espaces.
Le prolongement de la série discrète holomorphe est une partie importante du programme de Gelfand-Gindikin. Dans ce contexte, nous étudions les espaces de Hardy des fonctions holomorphes sur certains domaines Stein. Nous donnons en particulier le lien qui existe entre ces espaces de Hardy et les espaces de Hardy classiques des fonctions holomorphes sur les espaces hermitiens symétriques.
En dernier lieu, nous étudions la conjecture de Helgason pour la frontière de Shilov des espaces hermitiens symétriques. Plus précisément, nous caractérisons l'image par de la transformation de Poisson des hyperfonctions et des fonctions $L^p$ sur la frontière de Shilov.
Larouche, Michelle. "Brisure de symétrie par la réduction des groupes de Lie simples à leurs sous-groupes de Lie réductifs maximaux." Thèse, 2012. http://hdl.handle.net/1866/9105.
Повний текст джерелаIn this work, we exploit properties well known for weight systems of representations to define them for individual orbits of the Weyl groups of simple Lie algebras, and we extend some of these properties to orbits of non-crystallographic Coxeter groups. Points of an orbit of a finite Coxeter group G are considered as vertices of a polytope (G-polytope) centered at the origin of a real n-dimensional Euclidean space. Products and symmetrized powers of G-polytopes are introduced and their decomposition into the sums of G-polytopes is described. Several invariants of G-polytopes are found. The orbits of Weyl groups of simple Lie algebras of all types are reduced to the union of orbits of the Weyl groups of maximal reductive subalgebras of the algebra. Matrices transforming points of the orbits of the algebra into points of subalgebra orbits are listed for all cases n<=8 and for many infinite series of algebra-subalgebra pairs. Numerous examples of branching rules are shown. Finally, we present a new, uniform and comprehensive description of centralizers of the maximal regular subgroups in compact simple Lie groups of all types and ranks. Explicit formulas for the action of such centralizers on irreducible representations of the simple Lie algebras are given and shown to have application to computation of the branching rules with respect to these subalgebras.
Hakova, Lenka. "Families of orthogonal functions defined by the Weyl groups of compact Lie groups." Thèse, 2012. http://hdl.handle.net/1866/9089.
Повний текст джерелаSeveral families of multivariable special functions, called orbit functions, are defined in the context of Weyl groups of compact simple Lie groups/Lie algebras. These functions have been studied for almost a century now because of their relation to characters of irreducible representations of Lie algebras, their symmetries and orthogonalities. Our main interest is the description of discrete orthogonality relations and their corresponding discrete transforms which allow the applications of orbit functions in the processing of multidimensional data. This description is provided for the Weyl group of different lengths of root, in particular groups of rank 2 for so-called $E-$orbit functions and of rank 3 for all the other families of special functions.