Добірка наукової літератури з теми "Sous-Groupes discrets des groupes de Lie"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Sous-Groupes discrets des groupes de Lie".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Sous-Groupes discrets des groupes de Lie"
Paulin, Frédéric. "Dégénérescence de sous-groupes discrets des groupes de Lie semi-simples." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 324, no. 11 (June 1997): 1217–20. http://dx.doi.org/10.1016/s0764-4442(99)80402-9.
Повний текст джерелаSAMBARINO, A. "Hyperconvex representations and exponential growth." Ergodic Theory and Dynamical Systems 34, no. 3 (January 25, 2013): 986–1010. http://dx.doi.org/10.1017/etds.2012.170.
Повний текст джерелаMacias-Virgós, E. "Sous-groupes denses des groupes de Lie nilpotents." Illinois Journal of Mathematics 35, no. 4 (December 1991): 607–17. http://dx.doi.org/10.1215/ijm/1255987674.
Повний текст джерелаRobart, Thierry. "Sur L'Intégrabilité des Sous–Algèbres de lie en Dimension Infinie." Canadian Journal of Mathematics 49, no. 4 (August 1, 1997): 820–39. http://dx.doi.org/10.4153/cjm-1997-042-7.
Повний текст джерелаQuint, J. F. "Cones Limites des Sous-groupes Discrets des Groupes Reductifs sur un Corps Local." Transformation Groups 7, no. 3 (September 1, 2002): 247–66. http://dx.doi.org/10.1007/s00031-002-0013-2.
Повний текст джерелаQuint, J. F. "Divergence exponentielle des sous-groupes discrets en rang supérieur." Commentarii Mathematici Helvetici 77, no. 3 (September 1, 2002): 563–608. http://dx.doi.org/10.1007/s00014-002-8352-0.
Повний текст джерелаChoucroun, Francis M. "Sous-groupes discrets des groupes p-adiques de rang un et arbres de Bruhat-Tits." Israel Journal of Mathematics 93, no. 1 (December 1996): 195–219. http://dx.doi.org/10.1007/bf02761103.
Повний текст джерелаRoy, Damien. "Sous-groupes minimaux des groupes de Lie commutatifs réels, et applications arithmétiques." Acta Arithmetica 56, no. 3 (1990): 257–69. http://dx.doi.org/10.4064/aa-56-3-257-269.
Повний текст джерелаSaloff-Coste, L., and D. W. Stroock. "Opérateurs uniformément sous-elliptiques sur les groupes de Lie." Journal of Functional Analysis 98, no. 1 (May 1991): 97–121. http://dx.doi.org/10.1016/0022-1236(91)90092-j.
Повний текст джерелаGaye, Masseye. "Sous-groupes discrets de PU(2,1) engendrés par n réflexions complexes et Déformation." Geometriae Dedicata 137, no. 1 (September 20, 2008): 27–61. http://dx.doi.org/10.1007/s10711-008-9285-6.
Повний текст джерелаДисертації з теми "Sous-Groupes discrets des groupes de Lie"
Miquel, Sebastien. "Arithméticité de sous-groupes discrets contenant un réseau horosphérique." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS579/document.
Повний текст джерелаLet G be a real algebraic group of real rank at least 2 and P a parabolic subgroup of G. We prove that any discrete subgroup of G that intersects the unipotent radical of P in a lattice is an arithmetic lattice of G, except maybe when G=SO(2,4n+2) and P is the stabilizer of an isotropic 2-plane. This provide a partial answer to a conjecture of Margulis that was already studied by Hee Oh. We also study the case where G is a product of several rank 1 groups, generalising results of Selberg, Benoist and Oh
Quint, Jean-François. "Sous-groupes discrets des groupes de lie semi-simples reels et p-adiques." Paris 7, 2001. http://www.theses.fr/2001PA077142.
Повний текст джерелаGuichard, Olivier. "Déformations de sous-groupes discrets de groupes de rang un." Paris 7, 2004. http://www.theses.fr/2004PA077088.
Повний текст джерелаParreau, Anne. "Dégénérescences de sous-groupes discrets de groupes de Lie semisimples et actions de groupes sur des immeubles affines." Paris 11, 2000. http://www.theses.fr/2000PA112028.
Повний текст джерелаFléchelles, Balthazar. "Geometric finiteness in convex projective geometry." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM029.
Повний текст джерелаThis thesis is devoted to the study of geometrically finite convex projective orbifolds, following work of Ballas, Cooper, Crampon, Leitner, Long, Marquis and Tillmann. A convex projective orbifold is the quotient of a bounded, convex and open subset of an affine chart of real projective space (called a properly convex domain) by a discrete group of projective transformations that preserve it. We say that a convex projective orbifold is strictly convex if there are no non-trivial segments in the boundary of the convex subset, and round if in addition there is a unique supporting hyperplane at each boundary point. Following work of Cooper-Long-Tillmann and Crampon-Marquis, we say that a strictly convex orbifold is geometrically finite if its convex core decomposes as the union of a compact subset and of finitely many ends, called cusps, all of whose points have an injectivity radius smaller than a constant depending only on the dimension. Understanding what types of cusps may occur is crucial for the study of geometrically finite orbifolds. In the strictly convex case, the only known restriction on cusp holonomies, imposed by a generalization of the celebrated Margulis lemma proven by Cooper-Long-Tillmann and Crampon-Marquis, is that the holonomy of a cusp has to be virtually nilpotent. We give a complete characterization of the holonomies of cusps of strictly convex orbifolds and of those of round orbifolds. By generalizing a method of Cooper, which gave the only previously known example of a cusp of a strictly convex manifold with non virtually abelian holonomy, we build examples of cusps of strictly convex manifolds and round manifolds whose holonomy can be any finitely generated torsion-free nilpotent group. In joint work with M. Islam and F. Zhu, we also prove that for torsion-free relatively hyperbolic groups, relative P1-Anosov representations (in the sense of Kapovich-Leeb, Zhu and Zhu-Zimmer) that preserve a properly convex domain are exactly the holonomies of geometrically finite round manifolds.In the general case of non strictly convex projective orbifolds, no satisfactory definition of geometric finiteness is known at the moment. However, Cooper-Long-Tillmann, followed by Ballas-Cooper-Leitner, introduced a notion of generalized cusps in this context. Although they only require that the holonomy be virtually nilpotent, all previously known examples had virtually abelian holonomy. We build examples of generalized cusps whose holonomy can be any finitely generated torsion-free nilpotent group. We also allow ourselves to weaken Cooper-Long-Tillmann’s original definition by assuming only that the holonomy be virtually solvable, and this enables us to construct new examples whose holonomy is not virtually nilpotent.When a geometrically finite orbifold has no cusps, i.e. when its convex core is compact, we say that the orbifold is convex cocompact. Danciger-Guéritaud-Kassel provided a good definition of convex cocompactness for convex projective orbifolds that are not necessarily strictly convex. They proved that the holonomy of a convex cocompact convex projective orbifold is Gromov hyperbolic if and only if the associated representation is P1-Anosov. Using these results, Vinberg’s theory and work of Agol and Haglund-Wise about cubulated hyperbolic groups, we construct, in collaboration with S. Douba, T. Weisman and F. Zhu, examples of P1-Anosov representations for any cubulated hyperbolic group. This gives new examples of hyperbolic groups admitting Anosov representations
Battisti, Laurent. "Variétés toriques à éventail infini et construction de nouvelles variétés complexes compactes : quotients de groupes de Lie complexes et discrets." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4714/document.
Повний текст джерелаIn this thesis we study certain classes of complex compact non-Kähler manifolds. We first look at the class of Kato surfaces. Given a minimal Kato surface S, D the divisor consisting of all rational curves of S and ϖ : Š ͢ S the universal covering of S, we show that Š \ϖ-1 (D) is a Stein manifold. LVMB manifolds are the second class of non-Kähler manifolds that we study here. These complex compact manifolds are obtained as quotient of an open subset U of Pn by a closed Lie subgroup G of (C*)n of dimension m. We reformulate this procedure by replacing U by the choice of a subfan of the fan of Pn and G by a suitable vector subspace of R^{n}. We then build new complex compact non Kähler manifolds by combining a method of Sankaran and the one giving LVMB manifolds. Sankaran considers an open subset U of a toric manifold whose quotient by a discrete group W is a compact manifold. Here, we endow some toric manifold Y with the action of a Lie subgroup G of (C^{*})^{n} such that the quotient X of Y by G is a manifold, and we take the quotient of an open subset of X by a discrete group W similar to Sankaran's one.Finally, we consider OT manifolds, another class of non-Kähler manifolds, and we show that their algebraic dimension is 0. These manifolds are obtained as quotient of an open subset of C^{m} by the semi-direct product of the lattice of integers of a finite field extension K over Q and a subgroup of units of K well-chosen
Guilloux, Antonin. "Equirepartition dans les espaces homogènes." Phd thesis, Université Paris Sud - Paris XI, 2007. http://tel.archives-ouvertes.fr/tel-00372220.
Повний текст джерелаSmilga, Ilia. "Pavages de l'espace affine." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112298/document.
Повний текст джерелаFor every odd positive integer d, we construct a fundamental domain for the action on the 2d+1-dimensional space of certain groups of affine transformations which are free, nonabelian, act properly discontinuously and have linear part Zariski-dense in SO(d+1,d). Next for every semisimple noncompact real Lie group G, we construct a group of affine transformations of its Lie algebra g which is free, nonabelian, acts properly discontinuously and has linear part Zariski-dense in Ad G. Finally, we give some results about the local behavior of harmonic functions on the Sierpinski triangle restricted to a side of the triangle
Liu, Gang. "Restriction des séries discrètes de SU(2,1) à un sous-groupe exponentiel maximal et à un sous-groupe de Borel." Poitiers, 2011. http://nuxeo.edel.univ-poitiers.fr/nuxeo/site/esupversions/dab97901-6f8a-472a-8233-561a354976b7.
Повний текст джерелаIn this thesis we decompose in irreducibles the restriction of a discrete series representation of SU(2,1) to a maximal exponential solvable or a Borel subgroup and we interpret our results in the framework of the orbit method, hamiltonian geometry and "Spinc" quantization. In particular, we check that admissibility, which means that the restriction decomposes discretely in irreducibles, each one appearing with finite multiplicity, is equivalent to the compacity of the reduced spaces and we show that the multiplicities are related to the quantization of the reduced spaces
Saxcé, Nicolas de. "Sous-groupes boréliens des groupes de Lie." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112179.
Повний текст джерелаGiven a Lie group G, we investigate the possible Hausdorff dimensions for a measurable subgroup of G. If G is a connected nilpotent Lie group, we construct measurable subgroups of G having arbitrary Hausdorff dimension, whereas if G is compact semisimple, we show that a proper measurable subgroup of G cannot have Hausdorff dimension arbitrarily close to the dimension of G
Книги з теми "Sous-Groupes discrets des groupes de Lie"
Jones, H. F. Groups, representations, and physics. Bristol, England: A. Hilger, 1990.
Знайти повний текст джерелаJones, H. F. Groups, Representations and Physics. Taylor & Francis Group, 2020.
Знайти повний текст джерелаJones, H. F. Groups, Representations and Physics. Taylor & Francis Group, 2020.
Знайти повний текст джерелаJones, H. F. Groups, Representations and Physics. Taylor & Francis Group, 2020.
Знайти повний текст джерелаGroups, Representations and Physics. Taylor & Francis Group, 1998.
Знайти повний текст джерелаGroups, representations, and physics. 2nd ed. Bristol: Insitute of Physics Pub., 1998.
Знайти повний текст джерелаЧастини книг з теми "Sous-Groupes discrets des groupes de Lie"
Serre, Jean-Pierre. "Sous-groupes Finis des Groupes de Lie." In Springer Collected Works in Mathematics, 637–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-41978-2_42.
Повний текст джерелаBorel, Armand. "Sous-groupes discrets de groupes p-adiques à covolume borné." In Springer Collected Works in Mathematics, 182–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-41240-0_12.
Повний текст джерелаDuflo, Michel, and Michèle Vergne. "Familles cohérentes sur les groupes de Lie semi-simples et restriction aux sous-groupes compacts maximaux." In Lie Theory and Geometry, 167–215. Boston, MA: Birkhäuser Boston, 1994. http://dx.doi.org/10.1007/978-1-4612-0261-5_6.
Повний текст джерела