Зміст
Добірка наукової літератури з теми "Soudage par friction et mélange (FSW)"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Soudage par friction et mélange (FSW)".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Дисертації з теми "Soudage par friction et mélange (FSW)"
Pereira, Gomes Maurilio. "Investigation on the corrosion mechanisms of pure magnesium and the effect of friction stir welding (FSW) on the corrosion resistance of aluminium alloy 2524-T3." Thesis, Sorbonne université, 2021. http://www.theses.fr/2021SORUS531.
Повний текст джерелаA parallel study was developed regarding the corrosion mechanism of pure magnesium. It has been the subject of a considerable amount of work, and despite its ubiquity and history, it remains controversial. This is mainly due to the presence of the negative difference effect (NDE), which increases hydrogen formation when the magnesium is biased on the anodic domain. We was performed a detailed analysis of the electrochemical impedance spectra obtained for the Mg electrode during immersion in a sodium sulfate solution. A model was proposed which took into account the presence of: (i) a thin oxide film (MgO) which progressively covered the Mg electrode surface, (ii) film-free areas where the Mg dissolution occurs in two consecutive steps, (iii) a thick layer of corrosion products (Mg(OH)2), (iv) an adsorbed intermediate Mg_ads^+ which is responsible for the chemical reaction allowing the NDE to be explained. From the impedance data analyses, various parameters were extracted such as the thin oxide film thickness, the resistivity at the metal/oxide film interface and at the oxide film/electrolyte interface, the active surface area as a function of the exposure time to the electrolyte, the thickness of the thick Mg(OH)2 layer and the kinetic constants of the electrochemical reactions
Lorrain, Olivier. "Analyses expérimentales et numériques du procédé de soudage par friction malaxage fsw." Paris, ENSAM, 2010. https://pastel.archives-ouvertes.fr/pastel-00515112.
Повний текст джерелаThe Friction Stir Welding (FSW) is a solid state welding process, without melting. The weld is fabricated thanks to the action of tool made of a shoulder and a pin, positioned at the interface of the two pieces to be welded. The tool as two roles : heating of the material by friction of the shoulder, mixing of the material due to the pin. This thesis work is made within the partnership between Arts et Métiers ParisTech and Institut de Soudure. Its goal is to develop a FSW simulation model in order to decrease experimental trials required to optimize the process. Therefore, some points have been treated in this manuscript. Experimental analysis of thermal cycles and material movements in the case of unthreaded tools has been carried out. This situation allows (1) to make the comparison with numerical simulation easier and (2) to be in the case of worn tools. Formulations (lagrangian, eulerian, ALE) analysis in order to choose the more appropriate to take material flow into account has allowed to select an eulerian formulation (implemented in the FLUENT software) to estimate thermal and kinematical fields in the steady state. The set up of the numerical model in the FLUENT software is presented. We have studied the influence of numerical parameters on the results and proposed an identification strategy for some parameters which are not reachable experimentally. A detailed comparison between our experimental results and the ones from our simulations have been performed with success. The study of the influence of the process parameters (feed rate, rotating speed) and of the pin geometry on the kinematical and thermal fields has highlighted the link between velocity field and the presence of tunnel type defects
Robe, Hugo. "Apports à la compréhension du soudage FSW hétérogène d’alliages d’aluminium par une approche expérimentale et numérique." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEE005/document.
Повний текст джерелаThe lightweight structures optimisation is one of the main topics in transportation industry. It can be achieved by optimisation of materials as well as induced assembly process. As a solid-state process, Friction Stir Welding (FSW) allows to produce dissimilar materials joining while avoiding fusion defects. This work focused on the dissimilar welding of aluminium alloys from 2xxx (Al-Cu-Mg-Ag) and 7xxx (Al-Zn-Mg) series in an industrial context. Joints characterizations were conducted at multiple scales to understand parameters impact on material flow, joint morphology, and performances. They have shown large heterogeneities in the microstructure as well as the global and local mechanical behaviour. Whatever the welding parameters used, good mechanical performance has been reached. A specific softened zone has been detected in the 7xxx alloy’s HAZ which caused fracture during transverse tensile test. Significant metallurgical evolution induced by thermal cycles mainly explains these phenomena.On the other hand, simulation works were also conducted to simulate the welding process in similar material configuration. The finite elements model integrates, for the first time, the real and complex tool design (thread, flats…). Complex geometry can be used by coupling with a specific moving mesh technique. This numerical development completely overcomes the consequent mesh distortion often encountered in FSW simulation. The current model presents good sensitivity and robustness for several welding conditions and materials. It also demonstrates an excellent correlation between experimental and numerical thermal fields while revealing the predictive aspect of the model
Dorbane, Abdelhakim. "Caractérisation mécanique et microstructurale d’un soudage hétérogène par friction malaxage de tôles en alliage d’aluminium et de magnésium." Thesis, Lille 1, 2016. http://www.theses.fr/2016LIL10012/document.
Повний текст джерелаThis study is part of a research project initiated by Texas A&M University in Qatar and the American University of Beirut on characterizing the mechanical and microstructural properties of friction sit welded bimetallic joints. The current researched work focused on two of the materials proposed in the initial project, namely, the 6061-T6 aluminum alloy (Al) and an AZ31B magnesium alloy (Mg). Therefore, the purpose of this investigation is to optimize the friction stir welding parameters of similar and dissimilar materials in the aim to improve the mechanical properties of welded structures. The preliminary work focused on the investigation of the microstructural and mechanical properties of the two studied base materials. In what followed, the properties of the welded parts were studied by analyzing the influence of the temperature and the strain rate via monotonous tensile tests and by analyzing the microstructural and textural properties
Bousquet, Emilie. "Durabilité des assemblages soudés stir welding (FSW) : corrélation entre microstructure et sensibilité à la corrosion." Thesis, Bordeaux 1, 2011. http://www.theses.fr/2011BOR14295/document.
Повний текст джерелаIn order to lighten aircraft structures, welded joints are more and more considered to replace riveted joints. The Friction Stir welding process is the appropriate solution to join without addition of outer material and in semi-solid phase. Similar and dissimilar welded joints of 2XXX (Al-Cu-Mg and Al-Cu-Li) and 7XXX (Al-Zn-Cu) aluminium alloys were studied. Corrosion sensitivity of these welds and their stress corrosion cracking were evaluated with a multiscale approach. For this, first, normalized corrosion tests were performed; then, a finer analysis was carried out using local electrochemical techniques which allows to quantitate the reactivity of the different weld zones. In other hand, a microstructural analysis allowed to explain corrosion behaviours of each weld zone. We showed localized corrosion phenomena were restricted in the similar FSW joints because of microstructural heterogeneities whereas attack in dissimilar welds was more homogeneous under the effect of macroscopic galvanic coupling
Tchein, Gnofam Jacques. "Étude des couplages thermomécaniques et microstructuraux d’un alliage de titane au cours du soudage FSW." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0344/document.
Повний текст джерелаFriction Stir Welding (FSW) is a solid state welding process used today in the aerospace, naval and rail transport sectors. It has the advantage of providing welds with better mechanical properties than fusion welding processes. Most of studies carried out on this process concern aluminum alloys. This work focuses on the study of thermomechanical and metallurgical phenomena during FSW of the Ti-6Al-4V alloy. The influence of the initial microstructure on the mechanical properties and the final microstructure is studied through an experimental study. The HAZ and TMAZ of the welds are very thin and the welds didn’t present any weak zone. The genesis of the microstructure during the process has been identified and is made up with three main steps: α → β phase change, continuous dynamic recrystallization of the β phase and formation of α grains within the recrystallized β grains. In order to set up a model to predict the microstructure in the weld nugget, hot torsion tests were performed to determine the rheological properties of TA6V. These tests also made it possible to set up an analytical behavior law of Ti-6Al-4V. The velocity fields during FSW are formulated analytically from the equations of fluid mechanics and thermal fields are determined numerically from a eulerian formulation
Truant, Xavier. "Etude et modélisation du comportement mécanique de panneaux de structure soudés par friction-malaxage (FSW)." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEM043/document.
Повний текст джерелаThe Friction Stir Welding (FSW) process generally induces a critical hardness decrease inside the welded joint. To design aeronautical structure welded by FSW in fatigue, it is then necessary to know the impact of this hardness drop on the constitutive behaviour of the junction. In this study, the hardening structural aluminium alloy 2198-T8 is considered.A fatigue lifetime assessment loop of a welded structure is implemented. It integrates a calculations and experiments coupling which is used to model the structure’s mechanical behaviour. The gradient mechanical behaviour of the weldment is initially studied.Monotonic and cyclic mechanical tests are carried out to room temperature. Digital Image Correlation (DIC) is used to measure local displacement fields around the junction. Based on this experimental data, mechanical parameters for a constitutive model are identified on a volume element, zone by zone across the welded joint. In parallel, a quantification of the T1 (Al2CuLi) strengthening precipitates is realized in different region of the joint with a Transmission Electron Microscope. A connection between the microstructure evolution and the mechanical parameters is researched. The gradient mechanical behaviour of the joint is assessed on a 3D structure by Finite Element Analysis. Furthermore, fatigue tests are carried out on uniaxial and multiaxial loadings welded specimen. Thanks to the mechanical behaviour model and the fatigue lifetime measured, a damage model is used to predict the fatigue lifetime and the crack initiation zone for a welded structure which is subjected to higher multiaxial loads
Tongne, Amèvi. "Étude expérimentale et numérique du procédé de soudage FSW (Friction Stir Welding). Analyse microstructurale et modélisation thermomécanique des conditions de contact outil/matière transitoires." Thesis, Saint-Etienne, EMSE, 2014. http://www.theses.fr/2014EMSE0768/document.
Повний текст джерелаFriction Stir Welding is a solid state joining process developed for transport applications as aerospace and naval. Since its introduction, a large number of investigations have been carried out but the process is not fully controlled. This work including experimental section in which welds have been generated by trigonal tool. The microstructure of these welds has been correlated with the material flow during the process. By understanding the material flow, the transient thermofluid model developed in the second section has been significantly enriched. This modeled has been developed for predicting the microstructure of the weld, especially, the "onion rings". Finally, the occurrence of "onion rings" has been correlated with the maximal strain rate reached by any particle in the weld seam, simulated by the model. However, the velocity has been refined at the vicinity of the tool through the trigonal pin modelling. This was helpful to move the material not only by friction but also by obstacle at the interaction tool/material. The above approach should enable, in this work layout, a better local thermomechanical description and consequently microstructural
Legrand, Valentine. "Modélisation des processus de précipitation et prédiction des propriétés mécaniques résultantes dans les alliages d’aluminium à durcissement structural : Application au soudage par Friction Malaxage (FSW) de tôles AA2024." Thesis, Paris, ENMP, 2015. http://www.theses.fr/2015ENMP0090/document.
Повний текст джерелаIn the aeronautic industry, the friction stir welding (FSW) process is seen as an interesting option to lighten aircraft structure by replacing the standard riveting technology used to join parts. Numerical simulation is chosen to improve understanding of the different mechanisms occurring during FSW. The aluminum alloy studied is an AA2024-T3 grade. Its mechanical properties mainly derive from structural hardening mechanisms. An accurate model of precipitate evolution is essential to define hardness profile of the weld. The chosen simulation has to be robust and time-efficient in order to be suitable for the FSW process modeling. It must consider the two families of precipitates (GPB zones and S phase) and model nucleation, growth and coarsening phenomena. A PSD model is chosen and coupled with thermodynamic equilibrium calculations. To define the growth kinetics of precipitates, an exact analytical solution is extended to a multi-component alloy. Knowing the distribution of precipitates size, the mechanical properties are defined based on an empirical model. The amount and properties of phases are initialized through non-isothermal DSC calibration and comparison between experimental heat flux and simulated one. Isothermal test is selected to establish the link between precipitation state and mechanical properties. The model is applied to the simulation of microstructural evolution in FSW in order to predict the final properties of the weld. Thermal changes are determined through the use of a macroscopic model developed during a twin project within the Chair Daher. Numerical results are compared with instrumented experiments and show a good estimate of hardness. The experimental profiles are found, as well as the characteristics of the different areas. This validates the approach and its efficiency to simulate the evolution of the precipitation process
Genevois, Cécile. "Genèse des microstructures lors du soudage par friction malaxage d'alliages d'aluminium de la série 2000 & 5000 et comportement mécanique résultant." Phd thesis, Grenoble INPG, 2004. http://tel.archives-ouvertes.fr/tel-00008244.
Повний текст джерела