Статті в журналах з теми "Solvation energies"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Solvation energies.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Solvation energies".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Tanner, Dennis D., Natasha Deonarian, and Abdelmajid Kharrat. "Electron affinities and Marcus reorganization energies. A correlation between gas phase electron affinities and solution phase redox potentials." Canadian Journal of Chemistry 67, no. 1 (January 1, 1989): 171–75. http://dx.doi.org/10.1139/v89-028.

Повний текст джерела
Анотація:
Redox potentials determined by cyclic voltammetry were used in conjunction with published electron affinities to determine the solvation energies for series of three classes of compounds: substituted benzoquinones, substituted nitrobenzenes, and polynuclear aromatic hydrocarbons. Excellent linear correlations were obtained between the measured electron affinities and the E0 of the substrates. The calculated electron affinities, EA (E0), were computed using the average solvation energies for the three classes of compounds, and were found to be in excellent agreement with the measured values. The nitrobenzenes and quinones had one solvation energy, while the aromatic hydrocarbons were correlated with a significantly different value. The solvation energy of a variety of compounds could also be related to their Marcus reorganization energiesλ(0), by a linear plot with a high correlation coefficient. From simple electrochemical measurements of similar compounds, either electron affinities or Marcus λ(0) values can be estimated. Keywords: electron affinities, Marcus reorganization energies, cyclic voltammetry.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Arnett, Edward M. "Solvation energies of organic ions." Journal of Chemical Education 62, no. 5 (May 1985): 385. http://dx.doi.org/10.1021/ed062p385.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nhan, Pham Le, and Nguyen Tien Trung. "THEORETICAL EVALUATION OF THE pKa VALUES OF 5-SUBSTITUED URACIL DERIVATIVES." Vietnam Journal of Science and Technology 55, no. 6A (April 23, 2018): 63. http://dx.doi.org/10.15625/2525-2518/55/6a/12365.

Повний текст джерела
Анотація:
Density functional theory (DFT) calculations using numerical basis sets were employed to predict the solvation energies, Gibbs free energies and pKa values of a series of 5-substituted uracil derivatives. Obtained results show that solvation energies are not significantly different between DFT methods using the numerical (DNP) and Gaussian basis set (aug-cc-pVTZ). It is noteworthy that the independent and suitable solvation energy of proton of -258.6 kcal/mol has been proposed for the evaluation of pKa values in conjunction with the numerical basis set. In addition, the calculated pKa values suggest that the anti-conformation of 5-formyluracil is the most stable form in the aqueous solution.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pola, Martina, Michal A. Kochman, Alessandra Picchiotti, Valentyn I. Prokhorenko, R. J. Dwayne Miller, and Michael Thorwart. "Linear photoabsorption spectra and vertical excitation energies of microsolvated DNA nucleobases in aqueous solution." Journal of Theoretical and Computational Chemistry 16, no. 04 (April 4, 2017): 1750028. http://dx.doi.org/10.1142/s0219633617500286.

Повний текст джерела
Анотація:
Employing density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations in combination with the semiclassical nuclear ensemble method, we have simulated the photoabsorption spectra of the four canonical DNA nucleobases in aqueous solution. In order to model the effects of solvation, for each nucleobase, a number of solvating water molecules were explicitly included in the simulations, and additionally, the bulk solvent was represented by a continuous polarizable medium. We find that the effect of the solvation shell in general is significant, and its inclusion improves the realism of the spectral simulations. The involvement of lone electron pairs in the hydrogen bonding with the solvating water molecules has the effect of systematically increasing the energies of vertical excitation into the [Formula: see text]-type states. Apart from a systematic blue shift of around [Formula: see text][Formula: see text]eV observed in the absorption peaks, the calculated photoabsorption spectra reproduce the measured ones with good accuracy. The photoabsorption spectra are dominated by excited states with [Formula: see text] and partial [Formula: see text] character. No low-energy charge transfer states are observed with the use of the CAM-B3LYP and M06-2X functionals.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Huang, David M., Phillip L. Geissler, and David Chandler. "Scaling of Hydrophobic Solvation Free Energies†." Journal of Physical Chemistry B 105, no. 28 (July 2001): 6704–9. http://dx.doi.org/10.1021/jp0104029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jalan, Amrit, Robert W. Ashcraft, Richard H. West, and William H. Green. "Predicting solvation energies for kinetic modeling." Annual Reports Section "C" (Physical Chemistry) 106 (2010): 211. http://dx.doi.org/10.1039/b811056p.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pathak, Yashaswi, Siddhartha Laghuvarapu, Sarvesh Mehta, and U. Deva Priyakumar. "Chemically Interpretable Graph Interaction Network for Prediction of Pharmacokinetic Properties of Drug-Like Molecules." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 01 (April 3, 2020): 873–80. http://dx.doi.org/10.1609/aaai.v34i01.5433.

Повний текст джерела
Анотація:
Solubility of drug molecules is related to pharmacokinetic properties such as absorption and distribution, which affects the amount of drug that is available in the body for its action. Computational or experimental evaluation of solvation free energies of drug-like molecules/solute that quantify solubilities is an arduous task and hence development of reliable computationally tractable models is sought after in drug discovery tasks in pharmaceutical industry. Here, we report a novel method based on graph neural network to predict solvation free energies. Previous studies considered only the solute for solvation free energy prediction and ignored the nature of the solvent, limiting their practical applicability. The proposed model is an end-to-end framework comprising three phases namely, message passing, interaction and prediction phases. In the first phase, message passing neural network was used to compute inter-atomic interaction within both solute and solvent molecules represented as molecular graphs. In the interaction phase, features from the preceding step is used to calculate a solute-solvent interaction map, since the solvation free energy depends on how (un)favorable the solute and solvent molecules interact with each other. The calculated interaction map that captures the solute-solvent interactions along with the features from the message passing phase is used to predict the solvation free energies in the final phase. The model predicts solvation free energies involving a large number of solvents with high accuracy. We also show that the interaction map captures the electronic and steric factors that govern the solubility of drug-like molecules and hence is chemically interpretable.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Palmer, Bentley J., та Ross H. Hill. "The energetics of the oxidative addition of trisubstituted silanes to photochemically generated (η5-C5R5)Mn(CO)2". Canadian Journal of Chemistry 74, № 11 (1 листопада 1996): 1959–67. http://dx.doi.org/10.1139/v96-223.

Повний текст джерела
Анотація:
The rates for the oxidative addition reaction of trisubstituted silanes (Et3SiH, Et2MeSiH, EtMe2SiH, Et2SiH2) to photochemically generated (η5-C5R5)Mn(CO)2 (R5 = H5, Me5, H4Me) species have been measured for the temperature range 70–125 K. The reactions were carried out in either neat silane or a 50/50, by volume, mixture of methylcyclohexane and silane. The activation energies, determined using Arrhenius law, varied from 2 to 35 kj/mol. The kinetic data fit an isokinetic relationship with an isokinetic temperature of 102 ± 6 K. The results are interpreted in terms of a variation in the loss of solvation prior to the oxidative addition. When the solvating molecule is methylcyclohexane, then loss of the solvent molecule precedes oxidative addition. In cases where solvation is by the silane, the incomplete loss of this silane precedes the oxidative addition. Key words: mechanism, oxidative addition, solvation.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tachikawa, Hiroto, Anders Lund, and Masaaki Ogasawara. "A model calculation on structures and excitation energies of the hydrated electron." Canadian Journal of Chemistry 71, no. 1 (January 1, 1993): 118–24. http://dx.doi.org/10.1139/v93-017.

Повний текст джерела
Анотація:
Model calculations were made on the hydrated electron by using the ab initio MO method combined with the MR-SD-Cl method and the coupled cluster theory. The models used in the calculations were water clusters denoted by [e−(H2O)n(H2O)m], where n = 2,3,4, and 6 for the first solvation shell and m = 0–28 for the second and third solvation shells. In these model calculations, the interactions between the excess electron and the water molecules in the first solvation shell are explicitly calculated by ab initio MO methods and the water molecules in the second and third solvation shells were represented by the fractional charges obtained at the MP2/D95V** level. The stabilization energies and the solvation radius r(e−–O), in terms of the distance between the center of the cavity and an oxygen atom of the surrounding water molecules, increased monotonically with the number of water molecules in the first solvation shell. On the other hand, the first excitation energy was not dependent on the number of water molecules in solvation shells, but constant, with the value of ca. 2.0 eV. On the basis of the present calculations, we suggest that (1) the energetic stability of excess electrons depends on both short-range interaction and long-range interaction, (2) the first excitation energy is critically affected by only the short-range interactions, and the excitation is theoretically attributed to the1s→2p transition of the excess electron.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chan, Hue Sun, and Ken A. Dill. "SOLVATION: HOW TO OBTAIN MICROSCOPIC ENERGIES FROM PARTITIONING AND SOLVATION EXPERIMENTS." Annual Review of Biophysics and Biomolecular Structure 26, no. 1 (June 1997): 425–59. http://dx.doi.org/10.1146/annurev.biophys.26.1.425.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Gray, Corinne M., Karthikeyan Saravanan, Guofeng Wang, and John A. Keith. "Quantifying solvation energies at solid/liquid interfaces using continuum solvation methods." Molecular Simulation 43, no. 5-6 (January 27, 2017): 420–27. http://dx.doi.org/10.1080/08927022.2016.1273525.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Bhattacharyya, Ranjana, and S. C. Lahiri. "Determination of Basicities of Organic Solvents and Absolute Electrode Potentials (E0-Values) of Monovalent Ions in Organic Solvents based on Absolute Values of Gibbs Energies of Solvation of Single Ions." Zeitschrift für Physikalische Chemie 218, no. 5 (May 1, 2004): 515–50. http://dx.doi.org/10.1524/zpch.218.5.515.30502.

Повний текст джерела
Анотація:
AbstractSingle ion Gibbs energies of monovalent ions in fourteen solvents (water, methanol, NMF, PC, ethanol, n-propanol, iso-propanol, n-butanol, t-butanol, ethylene glycol, acetone, THF, 1,4-dioxan, acetonitrile) with or without (ion–dipole, ion–induced dipole, ion–quadrupole) interactions were determined. The basicity of the solvents was determined from the absolute values of ΔG0solvation(H+) or ΔG0solution(H+) based on single standard state utilising the modified Born equation suggested by Lahiri. The method involves no arbitrary assumptions. A single scale for the absolute electrode potentials (E0 values) has been determined based on calculated Gibbs energies of solvation or solution of single ions. Appropriation of Gibbs energies of solvation of electrolytes into single ion values is not possible. Gibbs energies of formation of electrolytes in solvents must be taken into consideration. Stabilisation energies of electrolytes (MX) in solvents akin to lattice energies in solids were determined.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Maruyama, Yutaka, and Ayori Mitsutake. "Structural Stability Analysis of Proteins Using End-to-End Distance: A 3D-RISM Approach." J 5, no. 1 (February 14, 2022): 114–25. http://dx.doi.org/10.3390/j5010009.

Повний текст джерела
Анотація:
The stability of a protein is determined from its properties and surrounding solvent. In our previous study, the total energy as a sum of the conformational and solvation free energies was demonstrated to be an appropriate energy function for evaluating the stability of a protein in a protein folding system. We plotted the various energies against the root mean square deviation, required as a reference structure. Herein, we replotted the various energies against the end-to-end distance between the N- and C-termini, which is not a required reference and is experimentally measurable. The solvation free energies for all proteins tend to be low as the end-to-end distance increases, whereas the conformational energies tend to be low as the end-to-end distance decreases. The end-to-end distance is one of interesting measures to study the behavior of proteins.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Kyselka, Petr, Zdeněk Havlas, and Ivo Sláma. "Ion solvation by dipolar aprotic solvents. An ab initio study." Collection of Czechoslovak Chemical Communications 52, no. 1 (1987): 6–13. http://dx.doi.org/10.1135/cccc19870006.

Повний текст джерела
Анотація:
The paper deals with the solvation of Li+, Be2+, Na+, Mg2+, and Al3+ ions in dimethyl sulphoxide, dimethylformamide, acetonitrile, and water. The ab initio quantum chemical method was used to calculate the solvation energies, molecular structures, and charge distributions for the complexes water···ion, acetonitrile···ion, dimethyl sulphoxide···ion, and dimethylformamide···ion. The interaction energies were corrected for the superposition error. Complete geometry optimization was performed for the complex water···ion. Some generalizations are made on the basis of the results obtained.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Abraham, Raymond J., Brian D. Hudson, Mark W. Kermode, and J. Roger Mines. "A general calculation of molecular solvation energies." Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 84, no. 6 (1988): 1911. http://dx.doi.org/10.1039/f19888401911.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Giesen, David J., Christopher J. Cramer, and Donald G. Truhlar. "Entropic Contributions to Free Energies of Solvation." Journal of Physical Chemistry 98, no. 15 (April 1994): 4141–47. http://dx.doi.org/10.1021/j100066a038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Fonseca, Teresa, Branka M. Ladanyi, and James T. Hynes. "Solvation free energies and solvent force constants." Journal of Physical Chemistry 96, no. 10 (May 1992): 4085–93. http://dx.doi.org/10.1021/j100189a032.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Fifen, Jean Jules, Mama Nsangou, Zoubeida Dhaouadi, Ousmanou Motapon, and Nejm-Eddine Jaidane. "Solvation Energies of the Proton in Methanol." Journal of Chemical Theory and Computation 9, no. 2 (January 22, 2013): 1173–81. http://dx.doi.org/10.1021/ct300669v.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Contreras, Renato R., and Arie J. Aizman. "Ion solvation energies from density functional theory." International Journal of Quantum Chemistry 40, S25 (1991): 281–88. http://dx.doi.org/10.1002/qua.560400828.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Steinmann, Stephan N., Philippe Sautet, and Carine Michel. "Solvation free energies for periodic surfaces: comparison of implicit and explicit solvation models." Physical Chemistry Chemical Physics 18, no. 46 (2016): 31850–61. http://dx.doi.org/10.1039/c6cp04094b.

Повний текст джерела
Анотація:
A strategy based on molecular mechanics free energy of perturbation, seeded by quantum mechanics, is presented to take solvation energies into account in the context of periodic, solid–liquid interfaces.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Achazi, Andreas J., Doreen Mollenhauer, and Beate Paulus. "First principle investigation of the linker length effects on the thermodynamics of divalent pseudorotaxanes." Beilstein Journal of Organic Chemistry 11 (May 8, 2015): 687–92. http://dx.doi.org/10.3762/bjoc.11.78.

Повний текст джерела
Анотація:
The Gibbs energies of association (Gibbs free (binding) energies) for divalent crown-8/ammonium pseudorotaxanes are determined by investigating the influence of different linkers onto the binding. Calculations are performed with density functional theory including dispersion corrections. The translational, rotational and vibrational contributions are taken into account and solvation effects including counter ions are investigated by applying the COSMO-RS method, which is based on a continuum solvation model. The calculated energies agree well with the experimentally determined ones. The shortest investigated linker shows an enhanced binding strength due to electronic effects, namely the dispersion interaction between the linkers from the guest and the host. For the longer linkers this ideal packing is not possible due to steric hindrance.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Contreras, Renato, and Gilles Klopman. "Quantum mechanical calculation of thermodynamic functions of solvation of ammonium ions in water." Canadian Journal of Chemistry 63, no. 7 (July 1, 1985): 1746–49. http://dx.doi.org/10.1139/v85-293.

Повний текст джерела
Анотація:
The application of an extended version of the generalized Born formula including dielectric saturation effects, implemented within the SCF-CNDO/2 approximation, provides a complete set of data concerning the thermodynamics of solvation of some ammonium ions in water. The calculated free energies of solvation are in good agreement with experimental data. An estimation of the entropy and enthalpy of solvation is also given and satisfactory qualitative trends are obtained.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Tomaník, Lukáš, Eva Muchová, and Petr Slavíček. "Solvation energies of ions with ensemble cluster-continuum approach." Physical Chemistry Chemical Physics 22, no. 39 (2020): 22357–68. http://dx.doi.org/10.1039/d0cp02768e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Malloum, Alhadji, Jean Jules Fifen, and Jeanet Conradie. "Solvation energies of the proton in methanol revisited and temperature effects." Physical Chemistry Chemical Physics 20, no. 46 (2018): 29184–206. http://dx.doi.org/10.1039/c8cp05823g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Ho, Junming. "Are thermodynamic cycles necessary for continuum solvent calculation of pKas and reduction potentials?" Physical Chemistry Chemical Physics 17, no. 4 (2015): 2859–68. http://dx.doi.org/10.1039/c4cp04538f.

Повний текст джерела
Анотація:
Continuum solvent calculations of pKas and reduction potentials usually entail the use of a thermodynamic cycle to express the reaction free energy in terms of gas phase energies and free energies of solvation.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Chan, K. W., Y. Wu, and Z. F. Liu. "Solvation and electronic structures of M+Ln, with M+ = Mg+ and Ca+, L = H2O, CH3OH, and NH3, and n = 1–6." Canadian Journal of Chemistry 85, no. 10 (October 1, 2007): 873–84. http://dx.doi.org/10.1139/v07-103.

Повний текст джерела
Анотація:
The solvation clusters M+(L)n, with a singly charged alkaline earth cation Mg+ or Ca+ as the solute and with water, methanol, or ammonia as the solvent, are studied systematically in the size range n = 1–6, to compare the variations in the solvation interactions. For clusters with n ≤ 3, the energies and structural values are compared in details, with both the MP2 and B3LYP methods. For clusters with n ≥ 4, the solute–solvent and solvent–solvent interaction energies are calculated to explain the relative stability among various isomeric structures, and the contrast in both solvent and electron distribution among these cluster series. Thermal stabilities for these clusters are also examined by ab initio molecular dynamics simulations at finite temperature.Key words: solvation clusters, ab initio calculations, solute–solvent interactions, size-dependent effects.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Paik, Dooam, Hankyul Lee, Hyungjun Kim та Jeong-Mo Choi. "Thermodynamics of π–π Interactions of Benzene and Phenol in Water". International Journal of Molecular Sciences 23, № 17 (29 серпня 2022): 9811. http://dx.doi.org/10.3390/ijms23179811.

Повний текст джерела
Анотація:
The π–π interaction is a major driving force that stabilizes protein assemblies during protein folding. Recent studies have additionally demonstrated its involvement in the liquid–liquid phase separation (LLPS) of intrinsically disordered proteins (IDPs). As the participating residues in IDPs are exposed to water, π–π interactions for LLPS must be modeled in water, as opposed to the interactions that are often established at the hydrophobic domains of folded proteins. Thus, we investigated the association of free energies of benzene and phenol dimers in water by integrating van der Waals (vdW)-corrected density functional theory (DFT) and DFT in classical explicit solvents (DFT-CES). By comparing the vdW-corrected DFT and DFT-CES results with high-level wavefunction calculations and experimental solvation free energies, respectively, we established the quantitative credibility of these approaches, enabling a reliable prediction of the benzene and phenol dimer association free energies in water. We discovered that solvation influences dimer association free energies, but not significantly when no direct hydrogen-bond-type interaction exists between two monomeric units, which can be explained by the enthalpy–entropy compensation. Our comprehensive computational study of the solvation effect on π–π interactions in water could help us understand the molecular-level driving mechanism underlying the IDP phase behaviors.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Casillas, Lizet, Vahe M. Grigorian, and Tyler Luchko. "Identifying Systematic Force Field Errors Using a 3D-RISM Element Counting Correction." Molecules 28, no. 3 (January 17, 2023): 925. http://dx.doi.org/10.3390/molecules28030925.

Повний текст джерела
Анотація:
Hydration free energies of small molecules are commonly used as benchmarks for solvation models. However, errors in predicting hydration free energies are partially due to the force fields used and not just the solvation model. To address this, we have used the 3D reference interaction site model (3D-RISM) of molecular solvation and existing benchmark explicit solvent calculations with a simple element count correction (ECC) to identify problems with the non-bond parameters in the general AMBER force field (GAFF). 3D-RISM was used to calculate hydration free energies of all 642 molecules in the FreeSolv database, and a partial molar volume correction (PMVC), ECC, and their combination (PMVECC) were applied to the results. The PMVECC produced a mean unsigned error of 1.01±0.04kcal/mol and root mean squared error of 1.44±0.07kcal/mol, better than the benchmark explicit solvent calculations from FreeSolv, and required less than 15 s of computing time per molecule on a single CPU core. Importantly, parameters for PMVECC showed systematic errors for molecules containing Cl, Br, I, and P. Applying ECC to the explicit solvent hydration free energies found the same systematic errors. The results strongly suggest that some small adjustments to the Lennard–Jones parameters for GAFF will lead to improved hydration free energy calculations for all solvent models.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Remsing, Richard C., Shule Liu, and John D. Weeks. "Long-ranged contributions to solvation free energies from theory and short-ranged models." Proceedings of the National Academy of Sciences 113, no. 11 (February 29, 2016): 2819–26. http://dx.doi.org/10.1073/pnas.1521570113.

Повний текст джерела
Анотація:
Long-standing problems associated with long-ranged electrostatic interactions have plagued theory and simulation alike. Traditional lattice sum (Ewald-like) treatments of Coulomb interactions add significant overhead to computer simulations and can produce artifacts from spurious interactions between simulation cell images. These subtle issues become particularly apparent when estimating thermodynamic quantities, such as free energies of solvation in charged and polar systems, to which long-ranged Coulomb interactions typically make a large contribution. In this paper, we develop a framework for determining very accurate solvation free energies of systems with long-ranged interactions from models that interact with purely short-ranged potentials. Our approach is generally applicable and can be combined with existing computational and theoretical techniques for estimating solvation thermodynamics. We demonstrate the utility of our approach by examining the hydration thermodynamics of hydrophobic and ionic solutes and the solvation of a large, highly charged colloid that exhibits overcharging, a complex nonlinear electrostatic phenomenon whereby counterions from the solvent effectively overscreen and locally invert the integrated charge of the solvated object.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Chialvo, Ariel A., and Oscar D. Crisalle. "Solvent and H/D Isotopic Substitution Effects on the Krichevskii Parameter of Solutes: A Novel Approach to Their Accurate Determination." Liquids 2, no. 4 (December 15, 2022): 474–503. http://dx.doi.org/10.3390/liquids2040028.

Повний текст джерела
Анотація:
We establish a direct route for the accurate determination of the solvent effect on the Krichevskii parameter of a solute, based solely on the contrasting solvation behavior of the solute in the desired solvent relative to that of the reference solvent, i.e., in terms of the distinct solvation Gibbs free energies of the solute and the corresponding Krichevskii parameters of an ideal gas solute in the pair of solvents. First, we illustrate the proposed approach in the determination of the H/D−solvent effect on the Krichevskii parameter of gaseous solutes in aqueous solutions, when the solvents are different isotopic forms (isotopomers) of water, and then, by generalizing the approach to any pair of solvents. For that purpose, we (a) identify the links between the standard solvation Gibbs free energy of the i−solute in the two involved solvent environments and the resulting Krichevskii parameters, (b) discuss the fundamentally based linear behavior between the Krichevskii parameter and the standard solvation Gibbs free energy of the i−solute in an α−solvent, and interpret two emblematic cases of solutions involving either an ideal gas solute or an i−solute behaving identically as the solvating species, as well as (c) provide a novel microstructural interpretation of the solvent effect on the Krichevskii parameter according to a rigorous characterization of the critical solvation as described by a finite unambiguous structure making/breaking parameter Siα∞(SR) of the i−solute in the pair of α−solvents.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Yang, Jiyoung, Matthias J. Knape, Oliver Burkert, Virginia Mazzini, Alexander Jung, Vincent S. J. Craig, Ramón Alain Miranda-Quintana, Erich Bluhmki, and Jens Smiatek. "Artificial neural networks for the prediction of solvation energies based on experimental and computational data." Physical Chemistry Chemical Physics 22, no. 42 (2020): 24359–64. http://dx.doi.org/10.1039/d0cp03701j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

García-Iriepa, Cristina, Madjid Zemmouche, Miguel Ponce-Vargas, and Isabelle Navizet. "The role of solvation models on the computed absorption and emission spectra: the case of fireflies oxyluciferin." Physical Chemistry Chemical Physics 21, no. 8 (2019): 4613–23. http://dx.doi.org/10.1039/c8cp07352j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Lim, Hyuntae, and YounJoon Jung. "Delfos: deep learning model for prediction of solvation free energies in generic organic solvents." Chemical Science 10, no. 36 (2019): 8306–15. http://dx.doi.org/10.1039/c9sc02452b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

CHAUDHARI, AJAY, and SHYI-LONG LEE. "MICROHYDRATION OF HYDRONIUM ION AND ZÜNDEL ION: A MANY-BODY ANALYSIS APPROACH." Journal of Theoretical and Computational Chemistry 09, supp01 (January 2010): 177–87. http://dx.doi.org/10.1142/s0219633610005475.

Повний текст джерела
Анотація:
Studying the solvation of an extra proton is important for understanding the proton transfer mechanism in polymer electrolyte membrane fuel cell. We study the interaction of hydronium ion and Zündel ion with water molecules in their first solvation shell using density functional method. A many-body analysis approach has been used to know the contribution of many-body energies to the binding energy of the hydronium ion–(water)3 and Zündel ion–(water)4 hydrogen bonded complex. It was observed that not only two-body energies but three-body and four-body energies also contribute significantly to the binding energy of the hydronium ion–(water)3 and Zündel ion–(water)4 complexes. The binding energy for the former is -32.14 kcal/mol whereas that for the latter is -48.48 kcal/mol. The percentage contributions of the many-body energies to the binding energies for these complexes are reported. The contribution from the relaxation energy to the binding energy of hydronium ion–(water)3 and Zündel ion–(water)4 complexes is 6% and 4.58%, respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Giesen, David J., Joey W. Storer, Christopher J. Cramer, and Donald G. Truhlar. "General Semiempirical Quantum Mechanical Solvation Model for Nonpolar Solvation Free Energies. n-Hexadecane." Journal of the American Chemical Society 117, no. 3 (January 1995): 1057–68. http://dx.doi.org/10.1021/ja00108a023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Ahmed, Alauddin, and Stanley I. Sandler. "Temperature-Dependent Physicochemical Properties and Solvation Thermodynamics of Nitrotoluenes from Solvation Free Energies." Journal of Chemical & Engineering Data 60, no. 1 (December 23, 2014): 16–27. http://dx.doi.org/10.1021/je500413a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Reynolds, L., J. A. Gardecki, S. J. V. Frankland, M. L. Horng, and M. Maroncelli. "Dipole Solvation in Nondipolar Solvents: Experimental Studies of Reorganization Energies and Solvation Dynamics†." Journal of Physical Chemistry 100, no. 24 (January 1996): 10337–54. http://dx.doi.org/10.1021/jp953110e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Bensberg, Moritz, Paul L. Türtscher, Jan P. Unsleber, Markus Reiher, and Johannes Neugebauer. "Solvation Free Energies in Subsystem Density Functional Theory." Journal of Chemical Theory and Computation 18, no. 2 (January 5, 2022): 723–40. http://dx.doi.org/10.1021/acs.jctc.1c00864.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Miller, Jennifer L., and Peter A. Kollman. "Solvation Free Energies of the Nucleic Acid Bases." Journal of Physical Chemistry 100, no. 20 (January 1996): 8587–94. http://dx.doi.org/10.1021/jp9605358.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Brem, Rachel, Hue Sun Chan, and Ken A. Dill. "Extracting Microscopic Energies from Oil-Phase Solvation Experiments." Journal of Physical Chemistry B 104, no. 31 (August 2000): 7471–82. http://dx.doi.org/10.1021/jp0003297.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Genheden, Samuel, Jacob Kongsted, Pär Söderhjelm, and Ulf Ryde. "Nonpolar Solvation Free Energies of Protein−Ligand Complexes." Journal of Chemical Theory and Computation 6, no. 11 (September 28, 2010): 3558–68. http://dx.doi.org/10.1021/ct100272s.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Malinsky, Joseph, Alex Karpov, and Anne-Marie Sapse. "Solvation energies of planar and pseudo-planar molecules." Structural Chemistry 1, no. 6 (November 1990): 543–46. http://dx.doi.org/10.1007/bf00674130.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Chamberlin, Adam C., David G. Levitt, Christopher J. Cramer, and Donald G. Truhlar. "Modeling Free Energies of Solvation in Olive Oil." Molecular Pharmaceutics 5, no. 6 (October 17, 2008): 1064–79. http://dx.doi.org/10.1021/mp800059u.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Hummer, Gerhard, Lawrence R. Pratt, and Angel E. García. "Multistate Gaussian Model for Electrostatic Solvation Free Energies." Journal of the American Chemical Society 119, no. 36 (September 1997): 8523–27. http://dx.doi.org/10.1021/ja971148u.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

de Souza, Luís E. S., and Dor Ben‐Amotz. "Hard fluid model for molecular solvation free energies." Journal of Chemical Physics 101, no. 11 (December 1994): 9858–63. http://dx.doi.org/10.1063/1.467951.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Klamt, Andreas, and Michael Diedenhofen. "Calculation of Solvation Free Energies with DCOSMO-RS." Journal of Physical Chemistry A 119, no. 21 (February 10, 2015): 5439–45. http://dx.doi.org/10.1021/jp511158y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Jalan, Amrit, Robert W. Ashcraft, Richard H. West, and William H. Green. "ChemInform Abstract: Predicting Solvation Energies for Kinetic Modeling." ChemInform 41, no. 45 (October 14, 2010): no. http://dx.doi.org/10.1002/chin.201045263.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Akpe, Victor, Timothy J. Biddle, Christian Madu, Christopher L. Brown, Tak H. Kim, and Ian E. Cock. "A Computational Comparative Study for the Spectroscopic Evaluation of Triazine Derivative Dyes in Implicit Solvation Model Systems Using Semi-Empirical and Time-Dependent Density Functional Theory Approaches." Australian Journal of Chemistry 74, no. 12 (2021): 856. http://dx.doi.org/10.1071/ch21196.

Повний текст джерела
Анотація:
The spectroscopic data for a range of cyclopenta-[d][1,2,3]-triazine derivative dyes have been evaluated using various standard computational approaches. Absorption data of these dyes were obtained using the ZINDO/S semi-empirical model for vertical excitation energies of structures optimised with the AM1, PM3, and PM6 methods. These studies were conducted under vacuum and solution states using the polarisation continuum model (PCM) for implicit solvation in the linear response model. The accuracy, along with the modest computational costs of using the ZINDO/S prediction, combined with the PM3 optimisation method for absorption data was reliable. While a higher computational cost is required for the time-dependent density functional theory (TDDFT), this method offers a reliable method for calculating both the absorption and emission data for the dyes studied (using vertical and adiabatic excitation energies, respectively) via state-specific solvation. This research demonstrates the potential of computational approaches utilising solvation in evaluating the spectroscopic properties of dyes in the rational design of fluorescent probes.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Barry, Stephen D., Gail A. Rickard, M. Jake Pushie, and Arvi Rauk. "The affinity of HGGG, GHGG, GGHG, and GGGH peptides for copper(II) and the structures of their complexes — An ab initio study." Canadian Journal of Chemistry 87, no. 7 (July 2009): 942–53. http://dx.doi.org/10.1139/v09-034.

Повний текст джерела
Анотація:
The structures and relative free energies in aqueous solution of the Cu(II) complexes of the “histidine walk” peptides, AcHGGGNH2, AcGHGGNH2, AcGGHGNH2, and AcGGGHNH2, were determined as a function of pH. Numerous structures of each species were found by gaseous- and solution-phase geometry optimization at the B3LYP/6–31G(d) level, and the effect of solvation estimated by the IEFPCM continuum solvation model. Free energies of solvation of the ionic species are large and favour structures with an extended peptide chain. In all Cu(II)–peptide complexes, deprotonation of two amide groups occurs readily at or below pH 7. In each system, the most abundant species at pH 7 is a neutral 1:1 complex with N3O1 coordination pattern. Binding in the forward direction toward the C terminus is preferred. The results are compared to recent experimental spectroscopic and potentiometric studies on related systems. Alternative explanations are offered for some of the experimental observations.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Cornell, Wendy D., Piotr Cieplak, Christopher I. Bayly, and Peter A. Kollman. "Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation." Journal of the American Chemical Society 115, no. 21 (October 1993): 9620–31. http://dx.doi.org/10.1021/ja00074a030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії