Статті в журналах з теми "Solid state tunable lasers"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Solid state tunable lasers.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Solid state tunable lasers".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Abella, I. "Tunable solid-state lasers." IEEE Journal of Quantum Electronics 22, no. 1 (January 1986): 209. http://dx.doi.org/10.1109/jqe.1986.1072852.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Taylor, J. R. "Tunable Solid State Lasers." Optica Acta: International Journal of Optics 32, no. 12 (December 1985): 1450. http://dx.doi.org/10.1080/716099684.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Moulton, P. F. "Tunable solid-state lasers." Proceedings of the IEEE 80, no. 3 (March 1992): 348–64. http://dx.doi.org/10.1109/5.135352.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Henderson, B. "Tunable Solid-State Lasers II." Journal of Modern Optics 34, no. 11 (November 1987): 1399. http://dx.doi.org/10.1080/09500348714551291.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Henderson, B. "Tunable Solid-state Lasers II." Journal of Modern Optics 34, no. 12 (December 1987): 1511. http://dx.doi.org/10.1080/09500348714551421.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tyrer, John. "Tunable solid-state lasers II." Optics and Lasers in Engineering 9, no. 1 (January 1988): 69. http://dx.doi.org/10.1016/0143-8166(88)90033-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

TAGUCHI, Noboru, Masahiro IHARA, Masaki TSUNEKANE, Kin Pui CHAN, B. DEVARAJ, and Humio INABA. "Tunable Solid-state Laser. Application of Tunable Solid-State Lasers to Biophotonics Information Sensing." Review of Laser Engineering 23, no. 10 (1995): 864–73. http://dx.doi.org/10.2184/lsj.23.864.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Du, Zhenhua, Zonghua Hu, Yuzhao Li, Nguyen Tuan Anh, Xinhua Fu, Baozeng Li, and Junwen Bai. "Tunable Yb:GdCOB self-frequency-doubling cyan laser." Laser Physics Letters 21, no. 2 (January 10, 2024): 025001. http://dx.doi.org/10.1088/1612-202x/ad174f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract We report a solid-state laser-pumped Yb:GdO(BO3)3 (Yb:GdCOB) tunable self-frequency-doubling continuous wave (CW) cyan laser. By adjusting the pump power, a CW cyan laser emission was obtained with wavelengths shifting from 502 nm to 506 nm. The highest output power of 835 mW was achieved at an emission wavelength with an optical conversion efficiency of 5.8%. To the best of our knowledge, there have been no studies of the self-frequency-doubled Yb:GdCOB lasers at the cyan wavelength. This work provides a novel method to generate tunable solid-state lasers with a compact and simple structure.
9

YAMAGISHI, Kiyoshi, and Takafumi YAMAZAKI. "Tunable Solid-state Laser. Tunable Solid-State Laser Crystals." Review of Laser Engineering 23, no. 10 (1995): 814–21. http://dx.doi.org/10.2184/lsj.23.814.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

UEHARA, Kiyoji. "Tunable Solid-state Laser. Spectroscopy Experiments with Ti:sapphire Lasers." Review of Laser Engineering 23, no. 10 (1995): 858–63. http://dx.doi.org/10.2184/lsj.23.858.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

ISHIDA, Yuzo. "Development of Tunable Femtosecond Solid-State Lasers." Review of Laser Engineering 23, no. 11 (1995): 908–21. http://dx.doi.org/10.2184/lsj.23.908.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Payne, M. J. P. "Tunable Solid State Lasers for Remote Sensing." Optica Acta: International Journal of Optics 33, no. 9 (September 1986): 1096. http://dx.doi.org/10.1080/716099708.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Brauch, Uwe. "Selected papers on tunable solid-state lasers." Optics & Laser Technology 35, no. 7 (October 2003): 579–80. http://dx.doi.org/10.1016/s0030-3992(03)00082-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Jerrand, H. G. "Tunable solid state lasers for remote sensing." Optics & Laser Technology 19, no. 1 (February 1987): 48–49. http://dx.doi.org/10.1016/0030-3992(87)90015-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

PETRICEVIC, V., S. K. GAYEN, and R. R. ALFANO. "MAJOR BREAKTHROUGH IN TUNABLE SOLID-STATE LASERS." Optics News 14, no. 12 (December 1, 1988): 13. http://dx.doi.org/10.1364/on.14.12.000013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Sato, Hidetoshi, Norihito Saito, Kazuyuki Akagawa, Satoshi Wada, and Hideo Tashiro. "Electronically Tunable-Laser Light Sources for near Infrared Spectroscopy." Journal of Near Infrared Spectroscopy 11, no. 4 (August 2003): 295–308. http://dx.doi.org/10.1255/jnirs.375.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This review paper focuses primarily on the recent progress in the development of electronically-tuned solid-state lasers and their application in near infrared (NIR) absorption and Raman spectroscopies. It also discusses the expansion of the tunable range and the generation of ultrashort pulses. Electronic control of laser wavelengths using an acousto-optical tunable filter (AOTF) was developed to provide rapid, accurate and random access to numerous wavelengths offering a programmable monochromatic energy under computer control. In contrast to tunable diode lasers that are for specific gaseous spectroscopic analysis, this type of stable, widely-tunable lasers is suited for the measurement of both liquid and solid samples, including biological materials, materials that have broad and overlapping features over a wide spectral range. In addition, some preliminary applications are presented, together with the present status of other tunable light sources applicable for NIR spectroscopy.
17

IZAWA, Takao, and Nobuhiko SARUKURA. "Tunable Solid-state Laser. Full-Range Tunable Operation of a Tunable Solid-State Lasers Using Broad-band Low Loss Mirrors." Review of Laser Engineering 23, no. 10 (1995): 822–27. http://dx.doi.org/10.2184/lsj.23.822.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Jiao, Mingxing, Fei Jiang, Junhong Xing, Yun Liu, Tianhong Lian, Jianning Liu, and Guangtao Li. "Advances of Research on Dual-Frequency Solid-State Lasers for Synthetic-Wave Absolute-Distance Interferometry." Sensors 23, no. 6 (March 17, 2023): 3206. http://dx.doi.org/10.3390/s23063206.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Frequency-difference-stabilized dual-frequency solid-state lasers with tunable and large frequency difference have become an ideal light source for the high-accuracy absolute-distance interferometric system due to their stable multistage synthetic wavelengths. In this work, the advances in research on oscillation principles and key technologies of the different kinds of dual-frequency solid-state lasers are reviewed, including birefringent dual-frequency solid-state lasers, biaxial and two-cavity dual-frequency solid-state lasers. The system composition, operating principle, and some main experimental results are briefly introduced. Several typical frequency-difference stabilizing systems for dual-frequency solid-state lasers are introduced and analyzed. The main development trends of research on dual-frequency solid-state lasers are predicted.
19

BARNES, NORMAN P. "TUNABLE MID-INFRARED SOURCES USING SECOND-ORDER NONLINEARITIES." Journal of Nonlinear Optical Physics & Materials 01, no. 03 (July 1992): 639–72. http://dx.doi.org/10.1142/s0218199192000315.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Tunable mid-infrared sources can be created using crystals having second-order non-linearities and solid-state lasers operating in the near infrared. Such devices have already demonstrated large tuning ranges and high efficiency. Performance of these devices as well as their potential for higher output energies and narrow spectral bandwidth operation are analyzed in terms of nonlinear crystal properties and solid-state laser requirements.
20

Reisfeld, Renata, and Gunther Seybold. "Stable solid-state tunable lasers in the visible." Journal of Luminescence 48-49 (January 1991): 898–900. http://dx.doi.org/10.1016/0022-2313(91)90266-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Antsiferov, V. V. "High-power single-frequency tunable solid-state lasers." Technical Physics 43, no. 10 (October 1998): 1203–8. http://dx.doi.org/10.1134/1.1259155.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

YAMAGISHI, KIYOSHI. "Tunable solid-state laser." Nihon Kessho Gakkaishi 31, no. 2 (1989): 113–15. http://dx.doi.org/10.5940/jcrsj.31.113.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Zhang, Yuhang, Baojiu Chen, Xizhen Zhang, Jinsu Zhang, Sai Xu, Xiangping Li, Yichao Wang, et al. "Net Optical Gain Coefficients of Cu+ and Tm3+ Single-Doped and Co-Doped Germanate Glasses." Materials 15, no. 6 (March 14, 2022): 2134. http://dx.doi.org/10.3390/ma15062134.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Broadband tunable solid-state lasers continue to present challenges to scientists today. The gain medium is significant for realizing broadband tunable solid-state lasers. In this investigation, the optical gain performance for Tm3+ and Cu+ single-doped and co-doped germanate glasses with broadband emissions was studied via an amplified spontaneous emission (ASE) technique. It was found that the net optical gain coefficients (NOGCs) of Tm3+ single-doped glass were larger than those for Cu+ single-doped glass. When Tm3+ was introduced, the emission broadband width of Cu+-doped glass was effectively extended. Moreover, it was found that for the co-doped glass the NOGCs at the wavelengths for Tm3+ and Cu+ emissions were larger than those of Tm3+ and Cu+ single-doped glasses at the same wavelengths. In addition, the NOGC values of Tm3+ and Cu+ co-doped germanate glasses were of the same order of magnitude, and were maintained in a stable range at different wavelengths. These results indicate that the Tm3+ and Cu+ co-doped glasses studied may be a good candidate medium for broadband tunable solid-state lasers.
24

Kuznetsova, Rimma T., G. V. Mayer, Yu A. Manekina, E. N. Tel'minov, S. M. Arabei, T. A. Pavich, and Konstantin N. Solovyov. "Silicate-matrix active media for tunable solid-state lasers." Quantum Electronics 37, no. 8 (August 31, 2007): 760–64. http://dx.doi.org/10.1070/qe2007v037n08abeh013539.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Rambaldi, P., M. Douard, and J. P. Wolf. "New UV tunable solid-state lasers for lidar applications." Applied Physics B Laser and Optics 61, no. 1 (July 1995): 117–20. http://dx.doi.org/10.1007/bf01090981.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Hamja, A., R. Florentin, S. Chénais, and S. Forget. "Highly photo-stable, kHz-repetition-rate, diode pumped circulation-free liquid dye laser with thermal lens management." Applied Physics Letters 120, no. 11 (March 14, 2022): 113301. http://dx.doi.org/10.1063/5.0083867.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Liquid dye lasers have long been considered as ideal tunable laser sources in the visible range but are bulky, expensive, and require a complex system for dye circulation. Here, we present a system that relies on a low-cost blue laser diode as the pump source and a sealed dye cell with no flowing circuitry, resulting in a device that combines the convenience and size of a solid-state device with the stability of a liquid organic laser. A very high photo-stability is obtained (up to 1.2 × 109 pulses or 12 days at 1 kHz), which is five orders of magnitude higher than a solid-state dye laser operated in similar conditions. The number of pulses obtainable at low repetition rates is found to be limited by molecular self-diffusion and, hence, related to the total cuvette volume. In contrast, the repetition rate is limited to a few kHz, which suggests that thermal effects play a bigger role than triplet population effects. Thermal effects participate in the suppression of lasing through the buildup of a strong negative thermal lens; correcting the non-aberrant part of this thermal lens by resonator design enables the repetition rate to be pushed up to 14 kHz with possible further optimization. This work shows a route for building off-the-shelf, compact, low-cost, and convenient tunable pulsed lasers in the visible range that have superior stability over organic solid-state lasers.
27

Reena, V. N., H. Misha, G. S. Bhagyasree, and B. Nithyaja. "Enhanced photoluminescence and color tuning from Rhodamine 6G-doped sol–gel glass matrix via DNA templated CdS nanoparticles." AIP Advances 12, no. 10 (October 1, 2022): 105217. http://dx.doi.org/10.1063/5.0123529.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
High-performance organic solid-state lasers can be fabricated using a variety of host and luminophore combinations. Rhodamine 6G is a promising candidate for tunable solid-state laser materials. It may, however, degrade faster when exposed to light. Sol–gel is a technique for fabricating glasses at low temperatures that prevent organic dyes from degrading. This work investigates the effect of deoxyribonucleic acid-capped cadmium sulfide nanoparticles on the photoluminescence of Rhodamine 6G-doped sol–gel glass. The samples were characterized by absorption spectroscopy, scanning electron microscopy, and powder x-ray diffraction. The chromaticity studies of the samples were carried out to evaluate the Commission International d’Eclairage coordinates, color correlation temperature, and color purity values. The photoluminescence studies of Rhodamine 6G-doped sol–gel glasses show enhancement in intensity and tuning of emission wavelength in the presence of cadmium sulfide nanoparticles. The annealing temperature effect on the photoluminescence was also investigated. The studies and observations have revealed the possibility of using CdS-incorporated Rhodamine 6G-doped sol–gel-derived glass as a tunable material for organic solid-state lasers.
28

Petermann, K. "The role of excited-state absorption in tunable solid-state lasers." Optical and Quantum Electronics 22, S1 (July 1990): S199—S218. http://dx.doi.org/10.1007/bf02089010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Wang, Jiarui, Yaoyu Zhang, and Yongliang Li. "Quasi-three-level laser pumped Yb:GdCOB tunable laser from 1030 to 1036 nm." Laser Physics 34, no. 5 (March 27, 2024): 055002. http://dx.doi.org/10.1088/1555-6611/ad2dd0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract We report a quasi-three-level laser pumped Ca4GdO(BO3)3 (Yb:GdCOB) tunable laser based on the transition from the 2 F 5/2 level to the 2 F 7/2 level. By adjusting the 902 nm pump power, a continuous waves Yb:GdCOB laser was obtained with the near-infrared wavelengths shifting from 1030 nm to 1036 nm. The highest tuning power of 2.5 W was achieved with a slope efficiency of 19.9%. To our knowledge, it is the first tunable Yb:GdCOB laser to be realized by adjusting the pump power. This work provides a novel method to generate tunable solid-state lasers with a compact and simple structure.
30

ZHOU, WangLong, and Takatomo SASAKI. "Tunable Solid-state Laser. High-Efficiency Frequency Doubling of CW and Tunable Ti: sapphire Lasers." Review of Laser Engineering 23, no. 10 (1995): 838–45. http://dx.doi.org/10.2184/lsj.23.838.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Kück, S. "Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers." Applied Physics B 72, no. 5 (April 2001): 515–62. http://dx.doi.org/10.1007/s003400100540.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Huang, Feng, Qihong Lou, Tianyan Yu, Jingxing Dong, Bo Lei, and Yunrong Wei. "Tunable solid state UV laser." Optics & Laser Technology 33, no. 2 (March 2001): 111–15. http://dx.doi.org/10.1016/s0030-3992(00)00128-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Byer, R. "Foreword to the special issue on tunable solid-state lasers." IEEE Journal of Quantum Electronics 21, no. 10 (October 1985): 1567. http://dx.doi.org/10.1109/jqe.1985.1072546.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

LEDUC, M. "NOEDYMIUM SOLID STATE LASERS SLIGHTLY TUNABLE IN THE INFRA-RED." Le Journal de Physique Colloques 48, no. C7 (December 1987): C7–315—C7–316. http://dx.doi.org/10.1051/jphyscol:1987777.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Joubert, M. F., and R. Moncorgé. "Rare-earth doped crystals for UV tunable solid state lasers." Optical Materials 22, no. 2 (April 2003): 95–98. http://dx.doi.org/10.1016/s0925-3467(02)00352-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Reisfeld, R. "The state of art of solid state tunable lasers in the visible." Optical Materials 4, no. 1 (December 1994): 1–3. http://dx.doi.org/10.1016/0925-3467(94)90048-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Sun, Yijian, та Houping Xia. "Bi2Te3/Graphene Heterostructure as the Saturable Absorber for ~1.0 μm Passively Q-switched Solid State Pulsed Laser". Crystals 12, № 2 (2 лютого 2022): 222. http://dx.doi.org/10.3390/cryst12020222.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Due to the tunable nonlinear optical properties of the Bi2Te3/graphene heterostructure, stable solid state pulsed lasers based on the Bi2Te3/graphene saturable absorber have attracted intensive attention. In this work, the Bi2Te3/graphene heterostructure with good nonlinear absorption characteristics was synthesized by a self-assembly solvothermal route, and the optical saturable absorption properties of the saturable absorber were investigated. Owing to the large modulation depth of Bi2Te3 nanosheets and the high thermal conductivity of graphene, the Bi2Te3/graphene heterostructure saturable absorber shown good nonlinear saturable absorber performance and contributed the improved passively Q-switched Yb3+: GdAl3(BO3)4 pulsed laser when compared with that of the pure Bi2Te3 based Yb3+: GdAl3(BO3)4 laser, no matter pulse width or pulse energy. Our work demonstrates that the Bi2Te3/graphene heterostructure was a promising saturable absorber in ~1 μm solid-state pulsed lasers.
38

Wu, Guangda, Xiaoqin Yin, Pingzhang Yu, Mengdi Fan, Fapeng Yu, Shuzhen Fan, Zhengping Wang, and Xian Zhao. "Growth, spectral and laser properties of a Yb-doped strontium yttrium phosphate crystal with a disordered structure." CrystEngComm 23, no. 46 (2021): 8131–38. http://dx.doi.org/10.1039/d1ce01008e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A novel disordered crystal Yb:YSr3(PO4)3 is grown by the Czochralski method. Results indicate that it can be a promising candidate for ultrashort pulse generation and tunable broadband solid-state lasers.
39

MAEDA, Mitsuo, Tatsuo OKADA, and Yuji OKI. "Tunable Solid-state Laser. Expansion of Tunable Range of Pulsed Ti: sapphire Lasers by Nonlinear Optical Techniques." Review of Laser Engineering 23, no. 10 (1995): 828–37. http://dx.doi.org/10.2184/lsj.23.828.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

LUAN Kun-peng, 栾昆鹏, 于力 YU Li, 沈炎龙 SHEN Yan-long, 黄超 HUANG Chao, and 陶蒙蒙 TAO Meng-meng. "Widely tunable all-solid-state Cr∶LiSAF lasers with external cavities." Optics and Precision Engineering 23, no. 12 (2015): 3316–21. http://dx.doi.org/10.3788/ope.20152312.3316.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Duarte, F. J., and R. O. James. "Tunable solid-state lasers incorporating dye-doped, polymer– nanoparticle gain media." Optics Letters 28, no. 21 (November 1, 2003): 2088. http://dx.doi.org/10.1364/ol.28.002088.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Sennaroğlu, A. "Cr 4+ -doped tunable solid-state lasers in the near infrared." ARI - An International Journal for Physical and Engineering Sciences 51, no. 1 (September 29, 1998): 70–76. http://dx.doi.org/10.1007/s007770050035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Jiang, Y. G., R. W. Fan, H. Peng, Y. Q. Xia, and D. Y. Chen. "Tunable solid-state lasers based on PMMA doped with pyrromethene dyes." Laser Physics Letters 6, no. 3 (March 2009): 212–15. http://dx.doi.org/10.1002/lapl.200810125.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Charlton, A., I. T. McKinnie, M. A. Meneses-Nava, and T. A. King. "A Tunable Visible Solid State Laser." Journal of Modern Optics 39, no. 7 (July 1992): 1517–23. http://dx.doi.org/10.1080/09500349214551531.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Wada, S., H. Tashiro, Y. Urata, L. Thi Thi, A. Kasai, and K. Toyoda. "Two-stage Raman converter covering the whole infrared spectrum with tunable solid-state lasers." Applied Physics B Photophysics and Laser Chemistry 57, no. 6 (December 1993): 435–39. http://dx.doi.org/10.1007/bf00357388.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

ПАНЧЕНКО, Ю. Н., А. В. ПУЧИКИН, М. В. АНДРЕЕВ, И. Н. КОНОВАЛОВ, and Е. В. ГОРЛОВ. "Tunable alexandrite laser for lidar systems." Optika atmosfery i okeana 37, no. 4(423) (May 30, 2024): 275–78. http://dx.doi.org/10.15372/aoo20240401.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Развитие лазерных технологий приводит к повышению требований, предъявляемых к разрабатываемым лазерам, генерирующим узкополосное излучение с различными длинами волн. Повышается значимость использования перестраиваемых по длинам волн диодных и вибронных лазеров, имеющих широкополосные контуры усиления. В работе показана возможность формирования в твердотельном лазере на александрите высококогерентного излучения при использовании оригинального составного резонатора, включающего в себя дополнительный внешний дисперсионный резонатор. Приведены результаты экспериментальных исследований по определению условий формирования в таком резонаторе узкополосного (менее 20 пм) излучения с возможностью плавной перестройки длины волны генерации в спектральном диапазоне 740–780 нм. Продемонстрировано получение в александритовом лазере узкополосной генерации с энергией излучения 30 мДж и длительностью импульса 35 нс. Созданный компактный узкополосный александритовый лазер может эффективно заменять параметрические генераторы и Ti:Sapphire-лазеры в лидарных системах, работающих в диапазоне 700–850 нм. The development of laser technologies leads to high requirements for lasers being developed which generate narrow-band radiation with different wavelengths. In view of this, the importance of wavelength-tunable diode and vibronic lasers with broadband amplification circuits increases. The possibility of generating highly coherent radiation in a solid-state alexandrite laser using an original composite resonator which includes an additional external dispersive resonator has been demonstrated. The results of experimental studies of conditions for the generation of narrow-band (less than 20 pm) radiation in such a resonator with the possibility of smooth tuning of the lasing wavelength in the spectral range 740–780 nm are presented. Narrow-band lasing in an alexandrite laser with a radiation energy of 30 mJ and a pulse duration of 35 ns was demonstrated. The created compact narrow-band alexandrite laser can be an effective alternative to parametric oscillators (OPO) and Ti:Sapphire lasers in lidar systems operating in the spectral range 700–850 nm.
47

Zhai Ye, 翟晔, 范元媛 Fan Yuanyuan, 王倩 Wang Qian, and 周翊 Zhou Yi. "Solid-State Lasers with High Power Stability and Continuously Tunable Coherence Length." Chinese Journal of Lasers 41, no. 9 (2014): 0902012. http://dx.doi.org/10.3788/cjl201441.0902012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Chase, Lloyd L., and Stephen A. Payne. "New tunable solid-state lasers Cr^3+:LiCaAIF_6 and Cr^3+:LiSrAIF_6." Optics and Photonics News 1, no. 8 (August 1, 1990): 16. http://dx.doi.org/10.1364/opn.1.8.000016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Rutz, A., V. Liverini, R. Grange, M. Haiml, S. Schön, and U. Keller. "Parameter tunable GaInNAs saturable absorbers for mode locking of solid-state lasers." Journal of Crystal Growth 301-302 (April 2007): 570–74. http://dx.doi.org/10.1016/j.jcrysgro.2006.11.260.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

IZMAILOV, A. M., G. G. KUND, and A. G. ZHIGLINSKIY. "Development and investigation of tunable multicolour superbroadband solid state and dye lasers." Le Journal de Physique IV 04, no. C4 (April 1994): C4–613—C4–613. http://dx.doi.org/10.1051/jp4:19944163.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії