Статті в журналах з теми "Solid-state mechanisms"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Solid-state mechanisms.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Solid-state mechanisms".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Akchurin, M. Sh, R. M. Zakalyukin, and A. A. Kaminskii. "Laser ceramics: Mechanisms of solid-state reactions." Doklady Physics 57, no. 7 (July 2012): 259–61. http://dx.doi.org/10.1134/s1028335812070038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Martin, D. J., L. G. A. Potts, and V. A. Heslop. "Reaction Mechanisms in Solid-State Anaerobic Digestion." Process Safety and Environmental Protection 81, no. 3 (May 2003): 171–79. http://dx.doi.org/10.1205/095758203765639870.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Martin, D. J., L. G. A. Potts, and V. A. Heslop. "Reaction Mechanisms in Solid-State Anaerobic Digestion." Process Safety and Environmental Protection 81, no. 3 (May 2003): 180–88. http://dx.doi.org/10.1205/095758203765639889.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Harris, Peter J. F. "Solid state growth mechanisms for carbon nanotubes." Carbon 45, no. 2 (February 2007): 229–39. http://dx.doi.org/10.1016/j.carbon.2006.09.023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Khanin, Ya I. "Mechanisms of nonstationary behavior of solid-state lasers." Journal of the Optical Society of America B 5, no. 5 (May 1, 1988): 889. http://dx.doi.org/10.1364/josab.5.000889.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Worzala, H. "Topotaxy and structural mechanisms of solid state reactions." Solid State Ionics 39, no. 1-2 (June 1990): 9–16. http://dx.doi.org/10.1016/0167-2738(90)90022-j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lundström, Ingemar. "Approaches and mechanisms to solid state based sensing." Sensors and Actuators B: Chemical 35, no. 1-3 (September 1996): 11–19. http://dx.doi.org/10.1016/s0925-4005(96)02006-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Treheux, D., P. Lourdin, B. Mbongo, and D. Juve. "Metal-ceramic solid state bonding: Mechanisms and mechanics." Scripta Metallurgica et Materialia 31, no. 8 (October 1994): 1055–60. http://dx.doi.org/10.1016/0956-716x(94)90526-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Feltz, A., and A. Martin. "Solid-state reactivity and mechanisms in oxide systems." Reactivity of Solids 2, no. 4 (February 1987): 291–305. http://dx.doi.org/10.1016/0168-7336(87)80001-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Feltz, A., and A. Martin. "Solid-state reactivity and mechanisms in oxide systems." Reactivity of Solids 2, no. 4 (February 1987): 307–13. http://dx.doi.org/10.1016/0168-7336(87)80002-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Feltz, A., and M. Jäger. "Solid-state reactivity and mechanisms in oxide systems." Reactivity of Solids 6, no. 2-3 (December 1988): 119–28. http://dx.doi.org/10.1016/0168-7336(88)80055-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Feltz, A., J. Töpfer, and U. Schulz. "Solid state reactivity and mechanisms in oxide systems." Journal of Thermal Analysis 39, no. 2 (February 1993): 249–61. http://dx.doi.org/10.1007/bf01981738.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Chang, Liuquan (Lucy), and Michael J. Pikal. "Mechanisms of protein stabilization in the solid state." Journal of Pharmaceutical Sciences 98, no. 9 (September 2009): 2886–908. http://dx.doi.org/10.1002/jps.21825.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

SUMITA, Shigekazu. "Diffusion Mechanisms of Aluminum Oxide during Solid State Sintering." Journal of Society of Materials Engineering for Resources of Japan 6, no. 2 (1993): 77–92. http://dx.doi.org/10.5188/jsmerj.6.2_77.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Leung, Chelsea, Kyle Briggs, Marie-Pier Laberge, Smile Peng, Matthew Waugh, and Vincent Tabard-Cossa. "Mechanisms of solid-state nanopore enlargement under electrical stress." Nanotechnology 31, no. 44 (August 12, 2020): 44LT01. http://dx.doi.org/10.1088/1361-6528/aba86e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Young, Nigel A. "Chapter 26. Mechanisms and kinetics in the solid state." Annual Reports Section "A" (Inorganic Chemistry) 95 (1999): 507–33. http://dx.doi.org/10.1039/a805982i.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Mendelovici, E. "Solid-state transformation mechanisms of associated minerals to aluminosilicates." Journal of Thermal Analysis 48, no. 1 (January 1997): 141–44. http://dx.doi.org/10.1007/bf01978973.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Catlow, C. R. A. "Defect processes and migration mechanisms in solid state ionics." Materials Science and Engineering: B 12, no. 4 (February 1992): 375–82. http://dx.doi.org/10.1016/0921-5107(92)90009-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Young, Nigel A. "ChemInform Abstract: Mechanisms and Kinetics in the Solid State." ChemInform 31, no. 8 (June 10, 2010): no. http://dx.doi.org/10.1002/chin.200008276.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Ovid'ko, I. A. "On mechanisms for solid state amorphizing transformations in metallic materials." Journal of Physics D: Applied Physics 24, no. 12 (December 14, 1991): 2190–95. http://dx.doi.org/10.1088/0022-3727/24/12/009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Cooper, Daniel R., and Julian M. Allwood. "Influence of Diffusion Mechanisms in Aluminium Solid-state Welding Processes." Procedia Engineering 81 (2014): 2147–52. http://dx.doi.org/10.1016/j.proeng.2014.10.300.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Barbour, J. C., J. W. Braithwaite, and A. F. Wright. "Determination of solid-state sulfidation mechanisms in ion-implanted copper." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 175-177 (April 2001): 382–87. http://dx.doi.org/10.1016/s0168-583x(00)00682-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Janeiro, Patricia, and Ana?Maria?Oliveira Brett. "Solid State Electrochemical Oxidation Mechanisms Of Morin in Aqueous Media." Electroanalysis 17, no. 9 (May 2005): 733–38. http://dx.doi.org/10.1002/elan.200403155.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Anselmi-Tamburini, U., P. Ghigna, G. Spinolo, and G. Flor. "Solid state synthesis of YBa2Cu3O7−x: Mechanisms of BaCuO2 formation." Journal of Physics and Chemistry of Solids 52, no. 5 (January 1991): 715–21. http://dx.doi.org/10.1016/0022-3697(91)90173-w.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

WEN, SHULIN. "MECHANISM OF SOLID STATE REACTION FROM 2212 TO 2223 IN BSCCO STUDIED BY HREM." Modern Physics Letters B 05, no. 08 (April 10, 1991): 597–606. http://dx.doi.org/10.1142/s0217984991000721.

Повний текст джерела
Анотація:
Two mechanisms of solid state reaction from 2212 to 2223 in Bi-Sr-Ca-Cu-O have been investigated and are elucidated in this paper. The first mechanism is related to nucleation of 2223 phase in a liquid matrix with the composition of Bi 2 SrCaCu 2 O +Ca 2 CuO 3+ CuO and subsequent growth. The second mechanism is related to intragrain reaction in which only two layers of atoms (a Ca layer and a CuO layer) are required to move into the 2212 structure forming the 2223 structure. To study the mechanisms of such a solid state reaction may be very important for the preparation of pure 2223 phase in Bi-Sr-Ca-Cu-O .
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Raj, Thinal, Fazida Hanim Hashim, Aqilah Baseri Huddin, Mohd Faisal Ibrahim, and Aini Hussain. "A Survey on LiDAR Scanning Mechanisms." Electronics 9, no. 5 (April 30, 2020): 741. http://dx.doi.org/10.3390/electronics9050741.

Повний текст джерела
Анотація:
In recent years, light detection and ranging (LiDAR) technology has gained huge popularity in various applications such as navigation, robotics, remote sensing, and advanced driving assistance systems (ADAS). This popularity is mainly due to the improvements in LiDAR performance in terms of range detection, accuracy, power consumption, as well as physical features such as dimension and weight. Although a number of literatures on LiDAR technology have been published earlier, not many has been reported on the state-of-the-art LiDAR scanning mechanisms. The aim of this article is to review the scanning mechanisms employed in LiDAR technology from past research works to the current commercial products. The review highlights four commonly used mechanisms in LiDAR systems: Opto-mechanical, electromechanical, micro-electromechanical systems (MEMS), and solid-state scanning. The study reveals that electro-mechanical scanning is the most prominent technology in use today. The commercially available 1D time of flight (TOF) LiDAR instrument is currently the most attractive option for conversion from 1D to 3D LiDAR system, provided that low scanning rate is not an issue. As for applications with low size, weight, and power (SWaP) requirements, MEMS scanning is found to be the better alternative. MEMS scanning is by far the more matured technology compared to solid-state scanning and is currently given great emphasis to increase its robustness for fulfilling the requirements of ADAS applications. Finally, solid-state LiDAR systems are expected to fill in the gap in ADAS applications despite the low technology readiness in comparison to MEMS scanners. However, since solid-state scanning is believed to have superior robustness, field of view (FOV), and scanning rate potential, great efforts are given by both academics and industries to further develop this technology.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Hatzell, Kelsey. "(Invited, Digital Presentation) Chemo-Mechanics in Lithium Metal Solid State Batteries." ECS Meeting Abstracts MA2022-01, no. 37 (July 7, 2022): 1634. http://dx.doi.org/10.1149/ma2022-01371634mtgabs.

Повний текст джерела
Анотація:
Transportation accounts for 23% of energy-related carbon dioxide emissions and electrification is a pathway toward ameliorating these growing challenges. All solid state batteries could potentially address the safety and driving range requirements necessary for widespread adoption of electric vehicles. However, the power densities of all-solid state batteries are limited because of ineffective ion transport at solid|solid interfaces. New insight into the governing physics that occur at intrinsic and extrinsic interfaces are critical for developing engineering strategies for the next generation of energy dense batteries. However, buried solid|solid interfaces are notoriously difficult to observe with traditional bench-top and lab-scale experiments. Understanding material transformations within these interfaces is critical for assessing failure onset and growth mechanisms in solid electrolytes is necessary for high performance solid-state batteries. While phenomenological understanding of failure mechanisms in garnet solid electrolytes exist, limited experimental validation is available. Herein, we examine the two predominant failure mechanisms observed in lithium metal solid state batteries: (1) filament formation, and (2) isolated lithium plating. We combine a suite of ex situ diagnostic techniques with in situ x-ray imaging to probe material transformation and chemo-mechanics and lithium metal-solid-electrolyte interfaces. Operating conditions as well as material processing conditions are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Jang, J. W., J. K. Lin, D. R. Frear, T. Y. Lee, and K. N. Tu. "Ripening-assisted void formation in the matrix of lead-free solder joints during solid-state aging." Journal of Materials Research 22, no. 4 (April 2007): 826–30. http://dx.doi.org/10.1557/jmr.2007.0131.

Повний текст джерела
Анотація:
Void formation in lead-free solder joints, away from the joint interface, has been observed after solid-state aging. These voids are attached to intermetallic precipitates in the solder matrix, especially to those that are adjacent to the layered intermetallic at the joint interface. Two potential void formation mechanisms are discussed. The mechanism proposed to describe void formation is that a flux of vacancies is created due to volume contraction during solid-state reaction. The ripening process among the intermetallics also assists this process. Using the suggested mechanisms, the void size was estimated. This phenomenon differs from the classical Kirkendall void formation because it is a nonequilibrium state of void formation and stress generation.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Newnham, Robert E. "Molecular Mechanisms in Smart Materials." MRS Bulletin 22, no. 5 (May 1997): 20–34. http://dx.doi.org/10.1557/s0883769400033170.

Повний текст джерела
Анотація:
The following is an edited version of the David Turnbull Lectureship address, given by recipient Robert E. Newnham at the 1996 MRS Fall Meeting. Newnham received the lectureship for “pioneering the field of ceramic composites for electronic and optical applications, and in recognition of a distinguished career of guiding students, lecturing, and writing.” Newnham is the Alcoa Professor of Solid State Science at The Pennsylvania State University.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Song, Bowen, Antonio Bertei, Xin Wang, Samuel J. Cooper, Enrique Ruiz-Trejo, Ridwanur Chowdhury, Renaud Podor, and Nigel P. Brandon. "Unveiling the mechanisms of solid-state dewetting in Solid Oxide Cells with novel 2D electrodes." Journal of Power Sources 420 (April 2019): 124–33. http://dx.doi.org/10.1016/j.jpowsour.2019.02.068.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Kaupp, Gerd. "Solid-state photochemistry: new approaches based on new mechanistic insights." International Journal of Photoenergy 3, no. 2 (2001): 55–62. http://dx.doi.org/10.1155/s1110662x01000071.

Повний текст джерела
Анотація:
The application of atomic force microscopy (AFM) to solid-state photodimerizations revealed previously unexpected long-range molecular movements in the initial stages (phase rebuilding) and in the final stages (phase transformation and disintegration) of reaction. The consequences for the new understanding of solid-state photochemistry are discussed. The 4.2 Å criterion of organic topochemistry lacks a real basis and is not applicable to regular photolyses, even under tail irradiation conditions for instance ofα-cinnamic acid or inE/Z-isomerizations in the crystal bulk. The experimental observation of molecular movements in reacting crystals requires more elaborate use of X-ray structural data by invoking the molecular packing. If a crystal keeps its outer form upon photolysis this does not necessarily indicate a topotactic transformation, and submicroscopically resolved AFM investigations are in order. The applications of molecular movements or non-photoreactivities due to the prevention of movements by 3D-interlocked packing have numerous applications. Thus, amorphous solids or inclusion compounds may enable the movements in these cases. Hitherto puzzlingE/Z-photoisomerizations in the crystalline state can now be mechanistically understood. In some cases even rotational mechanisms can be modelled in combination with the movements. In others the space saving twist mechanism is the only choice. The benefits of the new solid-state mechanisms for crystal engineering, photochromism, mixed crystals, absolute asymmetric syntheses, and preparative photochemistry derive from its experimental basis. Numerous presumed puzzles from the postulate of minimal atomic and molecular movement vanish in a straightforward manner.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Satta, Jessica, Alberto Casu, Daniele Chiriu, Carlo Maria Carbonaro, Luigi Stagi, and Pier Carlo Ricci. "Formation Mechanisms and Phase Stability of Solid-State Grown CsPbI3 Perovskites." Nanomaterials 11, no. 7 (July 14, 2021): 1823. http://dx.doi.org/10.3390/nano11071823.

Повний текст джерела
Анотація:
CsPbI3 inorganic perovskite is synthesized by a solvent-free, solid-state reaction, and its structural and optical properties can be deeply investigated using a multi-technique approach. X-ray Diffraction (XRD) and Raman measurements, optical absorption, steady-time and time-resolved luminescence, as well as High-Resolution Transmission Electron Microscopy (HRTEM) imaging, were exploited to understand phase evolution as a function of synthesis time length. Nanoparticles with multiple, well-defined crystalline domains of different crystalline phases were observed, usually surrounded by a thin, amorphous/out-of-axis shell. By increasing the synthesis time length, in addition to the pure α phase, which was rapidly converted into the δ phase at room temperature, a secondary phase, Cs4PbI6, was observed, together with the 715 nm-emitting γ phase.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Hamann, Thomas. "Charge Transport and Transfer Mechanisms for Solid State Metal Complex Systems." ECS Meeting Abstracts MA2020-01, no. 11 (May 1, 2020): 878. http://dx.doi.org/10.1149/ma2020-0111878mtgabs.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Forbeaux, I., J. M. Themlin, A. Charrier, F. Thibaudau, and J. M. Debever. "Solid-state graphitization mechanisms of silicon carbide 6H–SiC polar faces." Applied Surface Science 162-163 (August 2000): 406–12. http://dx.doi.org/10.1016/s0169-4332(00)00224-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Ma, Jun, Bingbing Chen, Longlong Wang, and Guanglei Cui. "Progress and prospect on failure mechanisms of solid-state lithium batteries." Journal of Power Sources 392 (July 2018): 94–115. http://dx.doi.org/10.1016/j.jpowsour.2018.04.055.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Thompson, L. "Solid-state NMR studies of the structure and mechanisms of proteins." Current Opinion in Structural Biology 12, no. 5 (October 1, 2002): 661–69. http://dx.doi.org/10.1016/s0959-440x(02)00374-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Banerjee, Srikumar, and Harish Donthula. "Understanding mechanisms of solid-state phase transformations by probing nuclear materials." Journal of Nuclear Materials 501 (April 2018): 143–61. http://dx.doi.org/10.1016/j.jnucmat.2017.11.024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Akhtar, N., R. Janes, and M. J. Parker. "Solid-state kinetics and reaction mechanisms for the formation of Y2Cu2O5." Journal of Materials Science 31, no. 12 (June 1996): 3053–56. http://dx.doi.org/10.1007/bf00354648.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Fernandes, Manuel Antonio, Sanaz Khorasani, Delbert S. Botes, and Demetrius C. Levendis. "Feedback mechanisms in single-crystal-to-single-crystal solid-state reactions." Acta Crystallographica Section A Foundations and Advances 73, a2 (December 1, 2017): C851. http://dx.doi.org/10.1107/s205327331708723x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

CATLOW, C. R. A. "ChemInform Abstract: Defect Processes and Migration Mechanisms in Solid State Ionics." ChemInform 23, no. 25 (August 21, 2010): no. http://dx.doi.org/10.1002/chin.199225334.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Galwey, Andrew K. "Solid state reaction kinetics, mechanisms and catalysis: a retrospective rational review." Reaction Kinetics, Mechanisms and Catalysis 114, no. 1 (September 14, 2014): 1–29. http://dx.doi.org/10.1007/s11144-014-0770-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Lando, J. B., D. Day, and V. Enkelmann. "Molecular mechanisms in the formation of polydiacetylenes in the solid state." Journal of Polymer Science: Polymer Symposia 65, no. 1 (March 8, 2007): 73–78. http://dx.doi.org/10.1002/polc.5070650109.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

MANN, S., and C. C. PERRY. "ChemInform Abstract: Solid-State Bioinorganic Chemistry: Mechanisms and Models of Biomineralization." ChemInform 22, no. 50 (August 22, 2010): no. http://dx.doi.org/10.1002/chin.199150342.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Nilsson, Emelie J., Tania K. Lind, Dieter Scherer, Tatyana Skansberger, Kell Mortensen, Johan Engblom, and Vitaly Kocherbitov. "Mechanisms of crystallisation in polysorbates and sorbitan esters." CrystEngComm 22, no. 22 (2020): 3840–53. http://dx.doi.org/10.1039/d0ce00236d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Ma, Ya Zhu, and Feng Liu. "The Kinetic Description for Solid State Phase Transformation." Advanced Materials Research 123-125 (August 2010): 591–94. http://dx.doi.org/10.4028/www.scientific.net/amr.123-125.591.

Повний текст джерела
Анотація:
The progress of solid-state phase transformation can be subdivided into three overlapping mechanisms: nucleation, growth, and impingement. On the basis of an analytical phase transformation model, the maximum in the transformation rate of an isothermal solid-state transformation has been evaluated. Then, the mode of nucleation, growth and impingement, and the separate activation energies for nucleation and growth can be determined. Finally, application in the crystallization kinetics of amorphous alloy was described.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Patel, Vinay, Peter Kruse, and Ponnambalam Ravi Selvaganapathy. "Solid State Sensors for Hydrogen Peroxide Detection." Biosensors 11, no. 1 (December 25, 2020): 9. http://dx.doi.org/10.3390/bios11010009.

Повний текст джерела
Анотація:
Hydrogen peroxide (H2O2) is a key molecule in numerous physiological, industrial, and environmental processes. H2O2 is monitored using various methods like colorimetry, luminescence, fluorescence, and electrochemical methods. Here, we aim to provide a comprehensive review of solid state sensors to monitor H2O2. The review covers three categories of sensors: chemiresistive, conductometric, and field effect transistors. A brief description of the sensing mechanisms of these sensors has been provided. All three sensor types are evaluated based on the sensing parameters like sensitivity, limit of detection, measuring range and response time. We highlight those sensors which have advanced the field by using innovative materials or sensor fabrication techniques. Finally, we discuss the limitations of current solid state sensors and the future directions for research and development in this exciting area.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Zakharov, Boris A., and Elena V. Boldyreva. "High pressure: a complementary tool for probing solid-state processes." CrystEngComm 21, no. 1 (2019): 10–22. http://dx.doi.org/10.1039/c8ce01391h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Yamada, Ichiro, Kazumasa Kaneko, and Makoto Takayanagi. "Disturbance Compensation Control in Media-Handling System." Journal of Robotics and Mechatronics 3, no. 4 (August 20, 1991): 334–39. http://dx.doi.org/10.20965/jrm.1991.p0334.

Повний текст джерела
Анотація:
Mass storage systems (MSS) equipped with automatic media-handling mechanisms have become widely used in the field of information processing, and higher speed of media handling is desired. This paper investigates faster media handling achieved by using an observer to compensate for disturbances such as solid friction and inertia variations. First, two disturbance observers are introduced in the handling mechanisms. One is an adaptive observer of nonlinear characteristics of solid friction. The other is a constant disturbance observer. These observers can estimate solid friction as well as state variables such as velocity. In addition, by using these disturbance observers to estimate the state and to test the positioning control of a media-handling mechanism, the effectiveness of the observers is confirmed. It is also shown that a disturbance observer can be used to compensate for inertia variations.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Li, Deyu, Scott T. Huxtable, Alexis R. Abramson, and Arun Majumdar. "Thermal Transport in Nanostructured Solid-State Cooling Devices." Journal of Heat Transfer 127, no. 1 (January 1, 2005): 108–14. http://dx.doi.org/10.1115/1.1839588.

Повний текст джерела
Анотація:
Low-dimensional nanostructured materials are promising candidates for high efficiency solid-state cooling devices based on the Peltier effect. Thermal transport in these low-dimensional materials is a key factor for device performance since the thermoelectric figure of merit is inversely proportional to thermal conductivity. Therefore, understanding thermal transport in nanostructured materials is crucial for engineering high performance devices. Thermal transport in semiconductors is dominated by lattice vibrations called phonons, and phonon transport is often markedly different in nanostructures than it is in bulk materials for a number of reasons. First, as the size of a structure decreases, its surface area to volume ratio increases, thereby increasing the importance of boundaries and interfaces. Additionally, at the nanoscale the characteristic length of the structure approaches the phonon wavelength, and other interesting phenomena such as dispersion relation modification and quantum confinement may arise and further alter the thermal transport. In this paper we discuss phonon transport in semiconductor superlattices and nanowires with regards to applications in solid-state cooling devices. Systematic studies on periodic multilayers called superlattices disclose the relative importance of acoustic impedance mismatch, alloy scattering, and crystalline imperfections at the interfaces. Thermal conductivity measurements of mono-crystalline silicon nanowires of different diameters reveal the strong effects of phonon-boundary scattering. Experimental results for Si/SiGe superlattice nanowires indicate that different phonon scattering mechanisms may disrupt phonon transport at different frequencies. These experimental studies provide insight regarding the dominant mechanisms for phonon transport in nanostructures. Finally, we also briefly discuss Peltier coolers made from nanostructured materials that have shown promising cooling performance.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Li, Shiqi, and Tianyang Ma. "Dynamic performance fluctuation of solid-lubricated rotating mechanism for intermittent operation caused by launch vibration load." Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 232, no. 4 (July 3, 2017): 401–14. http://dx.doi.org/10.1177/1350650117716371.

Повний текст джерела
Анотація:
Space mechanism is the key to success of long-term space missions. The service life of solid-lubricated space mechanisms is affected by various mechanical loads before in-orbit operation, among which the load caused by the launch vibration is the most severe one. Dynamic performance is an indication of the operating state of solid-lubricated mechanisms. The fluctuation of dynamic performances caused by the load of launch vibration is an unanswered but important question. In this paper, the fluctuation of dynamic performances of solid-lubricated rotating mechanisms for intermittent operation was studied by means of experiments and theoretical analyses. One group of rotating mechanisms for intermittent operation with solid-lubricated ball bearings were subjected to sine sweep tests and random vibration tests, followed by continuous operation test. The dynamic performance of mechanisms was obtained throughout all tests. The other group of mechanisms were studied with continuous operation test only for comparing the effects of vibration on the dynamic performance of mechanisms. At the same time, the sample moments of the dynamic performance of mechanisms were calculated and analyzed. The contact stress in the vibration tests was calculated by the Hertz theory. The fluctuation of the dynamic performances of solid-lubricated rotating mechanisms for intermittent operation caused by the load of launch vibration was then concluded with further discussion.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії