Добірка наукової літератури з теми "SOLAR CHIMNEY DRYING SYSTEM"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "SOLAR CHIMNEY DRYING SYSTEM".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "SOLAR CHIMNEY DRYING SYSTEM"
Maia, Cristiana Brasil, and Janaína de Oliveira Castro Silva. "CFD Analysis of a Small-Scale Solar Chimney Exposed to Ambient Crosswind." Sustainability 14, no. 22 (November 16, 2022): 15208. http://dx.doi.org/10.3390/su142215208.
Повний текст джерелаFirfiris, Vasileios K., Zoi D. Kaffe, Sotirios D. Kalamaras, Antonios A. Lithourgidis, Anastasia G. Martzopoulou, and Thomas A. Kotsopoulos. "A Prototype Passive Solar Drying System: Exploitation of the Solar Chimney Effect for the Drying of Potato and Banana." Applied Sciences 12, no. 22 (November 19, 2022): 11784. http://dx.doi.org/10.3390/app122211784.
Повний текст джерелаMurti, Made Ricki, and Chan Woo Park. "Transient Thermal Efficiency of Natural Hybrid Dryer System on Chimney Height Variation of Exhaust Moist Air." Applied Mechanics and Materials 776 (July 2015): 461–69. http://dx.doi.org/10.4028/www.scientific.net/amm.776.461.
Повний текст джерелаGebremicheal, Gedion Habtay, Janos Buzas, and István Farkas. "Performance Evaluation of Solar Air Collector by Chimney Effect for Drying Applications." Acta Technologica Agriculturae 24, no. 4 (December 1, 2021): 159–65. http://dx.doi.org/10.2478/ata-2021-0027.
Повний текст джерелаSikarwar, Nitin, and Amit Agrawal. "Experimental Investigation and Performance Analysis of a Solar Dryer Using Advanced Heat Transfer Materials." International Journal for Research in Applied Science and Engineering Technology 11, no. 6 (June 30, 2023): 4754–65. http://dx.doi.org/10.22214/ijraset.2023.54530.
Повний текст джерелаHussain Al-Kayiem, Tadahmun Ahmed Yassen, and Sundus Al-Azawiey. "Thermal Analysis of Tilapia Fish Drying by Hybrid Solar Thermal Drying System." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 90, no. 1 (December 25, 2021): 115–29. http://dx.doi.org/10.37934/arfmts.90.1.115129.
Повний текст джерелаIrwansyah, Irwansyah, Leopold Oscar Nelwan, and Dyah Wulandani. "Desain dan Uji Kinerja Alat pengering Hybrid Dengan Efek Cerobong Tipe Tumpukan untuk Pengeringan Biji Kopi Arabika." Jurnal Keteknikan Pertanian 7, no. 3 (April 1, 2020): 163–70. http://dx.doi.org/10.19028/jtep.07.3.163-170.
Повний текст джерелаAlonge, A. F., and O. O. Oniya. "An Indirect Passive Solar Dryer for Drying." Advanced Materials Research 367 (October 2011): 517–24. http://dx.doi.org/10.4028/www.scientific.net/amr.367.517.
Повний текст джерелаKADE SURIADI, I. GUSTI AGUNG, and MADE RICKI MURTI. "KESETIMBANGAN ENERGI TERMAL DAN EFISIENSI TRANSIENT PENGERING ALIRAN ALAMI MEMANFAATKAN KOMBINASI DUA ENERGI." Jurnal Teknik Industri 12, no. 1 (March 30, 2012): 34. http://dx.doi.org/10.22219/jtiumm.vol12.no1.34-40.
Повний текст джерелаChen, Wei, and Man Qu. "Analysis of the heat transfer and airflow in solar chimney drying system with porous absorber." Renewable Energy 63 (March 2014): 511–18. http://dx.doi.org/10.1016/j.renene.2013.10.006.
Повний текст джерелаДисертації з теми "SOLAR CHIMNEY DRYING SYSTEM"
Spencer, Scott. "An experimental investigation of a solar chimney natural ventilation system." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ59298.pdf.
Повний текст джерелаLi, Y. "Thermal performance analysis of a PCM combined solar chimney system for natural ventilation and heating/cooling." Thesis, Coventry University, 2013. http://curve.coventry.ac.uk/open/items/0bca9412-8b49-4d3c-84e5-453e315d4c6b/1.
Повний текст джерелаJACONELLI, LIVIO, and PALM KIM JACONELLI. "A THERMAL NETWORK MODEL FOR AN EVAPORATIVE COOLING SYSTEM COMBINED WITH A SOLAR CHIMNEY." Thesis, KTH, Energiteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-192670.
Повний текст джерелаThe purpose of this study is to, through thermal network modelling and coupled heat and mass transfer analysis, investigate the cooling process of an evaporation fridge combined with a solar chimney. The solar chimney is connected to the evaporation fridge in an attempt to increase the airflow, around the evaporation fridge, and the cooling capacity. Steady state and transient regimes are simulated in the software MATLAB. The findings indicate that utilizing a solar chimney for the stated purposes will increase the cooling potential of the evaporation fridge. The solar chimney is able to produce a satisfactory air flow velocity of more than 0.5 m/s. With an ambient temperature of 30 C°, relative humidity at 40 % and an air flow rate of 0.5 m/s the evaporation fridge maintains a 25 % lower storage temperature compared to the ambient temperature.
Talele, Suraj H. "A Performance Analysis of Solar Chimney Passive Ventilation System in the Unt Zero Energy Lab." Thesis, University of North Texas, 2013. https://digital.library.unt.edu/ark:/67531/metadc499996/.
Повний текст джерелаSerem, Vincent Kipyego Arap. "Forced air solar system for drying of Arabica coffee in Kenya." Thesis, McGill University, 1987. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63902.
Повний текст джерелаBeviss-Challinor, Lauren Margaret. "Design, build and test a passive thermal system for a loft : a roof solar chimney application for South African weather conditions." Thesis, Stellenbosch : Stellenbosch University, 2007. http://hdl.handle.net/10019.1/348.
Повний текст джерелаENGLISH: The design, construction and testing of a passive thermal system, a roof solar chimney, for a loft is considered. Unlike conventional solar chimneys the solar collector is constructed from corrugated iron roof sheets with the aim that it can be integrated into existing buildings at a lower cost or used in low cost housing developments. The main objective of the study was to determine the feasibility of such low-cost design to regulate thermal conditions in a loft, that is heating the loft during winter and enhancing natural ventilation during summer, by carrying out an experimental and analytical study. The results obtained from the experimental study showed that for winter the solar chimney, having a channel width, depth and length of 0.7 m, 0.1 m and 1.8 m respectively and with a peal solar radiation of 850 W/m², heated the room air 5°C higher than the ambient temperature during the hottest periods of the day, which is only marginally better than a loft with conventional roof insulation. At night, it was found that reverse airflow occurred through the chimney, cooling the loft down to ambient temperature, due to radiation heat loss from the roof collector to the night sky. For summer operation, the experimental data showed that the chimney was able to maintain the loft at ambient temperature and the analytical study found that the chimney was able to enhance natural ventilation effectively, reaching air exchange rate of 6.6 per hour for the 4.6 m³ volume space. It was also found that the chimney’s performance dropped rapidly and significantly during periods of low solar radiation and at night. A sensitivity analysis illustrated that for both summer and winter operation, the size, tilt angle and absorptivity of the roof collector greatly effected the efficiency and mass flow rates of the system, agreeing well with other literature. These results prove that this low cost solar chimney cooling design was feasible to enhance natural ventilation mainly during hot summer conditions with high solar radiation. Compared to a loft with only conventional roof insulation, the chimney did not perform effectively during the winter to heat the loft up, meaning that winter operation for this specific design is not feasible. Possible improvements to the design include using construction materials with higher thermal capacities to retain heat energy and ensure continued operation during periods of low solar radiation, as well as using selective absorber coatings on the collector surface. It is recommended that further work on the project include the integration of these improvements into the present design and to use the findings obtained from the sensitivity analysis to improve system efficiencies. CFD analysis of the test-rig will be insightful as an additional means to validate and compare with the analytical and experimental data obtained in this report. With the continuation of these studies, this low-cost solar chimney design can be optimised, validated on a commercial scale and built into existing and new housing developments. Incorporating such a passive thermal device will aid homeowners in air regulation and thermal comfort of their living space as well as saving on energy requirements.
Sponsored by the Centre for Renewable and Sustainable Energy Studies, Stellenbosch University
Grosso, Stefano <1990>. "Performance testing of a combined solar and heat-drying system for biological sludge." Master's Degree Thesis, Università Ca' Foscari Venezia, 2015. http://hdl.handle.net/10579/5862.
Повний текст джерелаNakielska, Magdalena. "Model obliczeniowo-funkcjonalny komina słonecznego wspomagającego wentylację grawitacyjną w obiektach budowlanych." Rozprawa doktorska, Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy, 2015. http://dlibra.utp.edu.pl/Content/819.
Повний текст джерелаTRAJANO, Tarcisio Oliveira. "Desenvolvimento de um sistema automatizado para medir a variação de massa na câmara de secagem de um secador solar de frutas." Universidade Federal de Campina Grande, 2017. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/356.
Повний текст джерелаMade available in DSpace on 2018-04-10T19:01:23Z (GMT). No. of bitstreams: 1 TARCISIO OLIVEIRA TRAJANO – DISSERTAÇÃO (PPGEM) 2017.pdf: 2697792 bytes, checksum: 3b2e76dd99d5771faa121f9c71b64ab6 (MD5) Previous issue date: 2017-09-01
Automatizar o processo de medição da variação de massa do produto em um secador solar é um avanço em relação ao procedimento atualmente utilizado que é manual. O objetivo deste trabalho é desenvolver essa automatização utilizando tecnologia apropriada para ser incorporada ao secador solar em desenvolvimento na Universidade Federal de Campina Grande (UFCG). Esses secadores precisam ser simples e de baixo custo para serem utilizados pelo ambiente da agricultura familiar. O processo utilizado consistiu na construção e teste de um protótipo de uma câmara de secagem com forma retangular, de dimensões 32,2 x 43,0 x 34,0 cm, acoplado ao coletor solar. No sistema de medição automatizado foi utilizado uma balança com bandeja em tela de alumínio, de dimensões 37,0 x 21,0 x 6,0 cm, fixada por uma haste de madeira a uma célula de carga, tipo extensômetro de folha, que envia sinais de tensão, proporcionais à variação de massa do produto que esta sendo seco, a uma plataforma de aquisição de dados com Arduino UNO integrada ao equipamento. A célula de carga fixada a bandeja foi instalada dentro e, num experimento seguinte, fora da câmara de secagem. O sistema de aquisição e tratamento de dados também foi instalado na parte externa da câmara de secagem. Foram realizados testes preliminares de medição com a utilização de lâmpadas halógenas, e os resultados obtidos mostraram temperaturas, no interior da câmara, de aproximadamente 45°C ±5ºC, utilizando um peso padrão de 100g. Os resultados obtidos durante a secagem da banana prata (Musa spp), permitiram a construção das curvas de variação de massa de banana e a curva de cinética de secagem. Também foram obtidas as curvas que mostram a variação da temperatura do ar de secagem no interior da câmara. Essa temperatura ficou na faixa de 30ºC a 40ºC, abaixo do esperado que era de 50°C ±10ºC. Por isso a banana atingiu apenas o valor de 44% de teor de umidade em base úmida, acima dos 25% que noBrasil é o máximo para que a banana seca seja considerada banana passa. Foram observadas interferências indesejáveis durante o processo de medição automatizada, as estratégias utilizadas (filtros) para reduzir as interferências não foram suficientes para reduzi-las totalmente e seguirão sendo estudadas em trabalhos futuros.
Automating the process of measuring the mass variation of the product in a solar dryer is an advance over the currently used procedure which is manual. The objective of this work is to develop this automation using appropriate technology to be incorporated into the developing solar dryer at the Federal University of Campina Grande (UFCG). These dryers need to be simple and inexpensive to be used by the family farming environment. The process used consisted in the construction and testing of a prototype of a drying chamber with rectangular shape, dimensions 32.2 x 43.0 x 34.0 cm, coupled to the solar collector. In the automated measurement system, a scale was used with aluminum tray, measuring 37.0 x 21.0 x 6.0 cm, fixed by a wooden rod to a load cell, type extensometer of sheet, which sends voltage signals, proportional to the mass variation of the product being dried, to a data acquisition platform with Arduino UNO integrated to the equipment. The loading cell attached to the tray was installed inside and, in a subsequent experiment, outside the drying chamber. The data acquisition and processing system was also installed on the outside of the drying chamber. Preliminary measurement tests were carried out with the use of halogen lamps, and the results obtained showed temperatures within the chamber of approximately 45°C ± 5°C, using a standard weight of 100 g. The results obtained during the drying of the silver banana (Musa spp) allowed the construction of the banana mass variation curves and the drying kinetic curve. Curves showing the temperature of the drying air inside the chamber were also obtained. This temperature was in the range of 30°C to 40°C, below that expected to be 50°C ± 10°C as a consequence of the low intensity of solar radiation on the days of experiment. Therefore the banana reached only the value of 44% moisture content on wet basis, above the desirable 25%. Undesirable interferences were observed during the automated measurement process, the strategies used (filters) to reduce interferences were not enough to reduce them completely and will continue to be studied in future works.
LIMA, Wellington Sousa. "Análises de sistemas de secagem: solar, elétrico e misto na produção de banana passa." Universidade Federal de Campina Grande, 2017. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/969.
Повний текст джерелаMade available in DSpace on 2018-06-13T19:01:17Z (GMT). No. of bitstreams: 1 WELLINGTON SOUSA LIMA – TESE (PPGEP) 2016.pdf: 9442067 bytes, checksum: da59f22d2d376fa121ab8bae0ba8d2e4 (MD5) Previous issue date: 2017-03-17
Este trabalho apresenta um estudo comparativo de sistemas de secagem para produção de banana passa. Foram utilizados um secador solar de exposição indireta com sistema de aquisição e controle das propriedades termodinâmicas do ar de secagem, e um secador elétrico automatizado com sistema de supervisão e controle embarcados . Os sistemas de secagem estudados neste trabalho foram: secagem solar, secagem elétrica e secagem mista (secagem solar seguida de secagem elétrica). Os testes experimentais foram realizados na UFCG em Campina Grande, PB, para secagem de banana prata (Musa spp.). O produto final obtido pelos três sistemas de secagem apresentou boa qualidade em relação ao aspecto visual, com um percentual de umidade em base úmida menor que 25%, compatível com o recomendado pela Resolução RDC n° 272/05 da ANVISA. O sistema de aquisição e controle de dados, como inovação no secador solar, utilizando a plataforma Arduino, garantiu a medição de temperatura e umidade relativa do ar de secagem nas entradas e saídas do coletor solar e da câmara de secagem, e também o acionamento e controle da convecção forçada no sistema de secagem para manter a temperatura no interior da câmara de secagem entre 40ºC e 60ºC. Como resultado, são apresentados os valores obtidos para rendimento do secador solar, consumo específico de energia (CEE), eficiência do processo de secagem e tempo de secagem. Por meio dos experimentos com o secador solar e com o secador elétrico foram obtidas as curvas de cinética de secagem da banana. Os resultados foram comparados e mostraram que o modelo matemático de Page é apropriado para predizer o tempo de secagem. O coeficiente de determinação (R²) obtido na secagem elétrica, na secagem mista e na secagem solar com controle, foram superiores ao obtido na secagem solar sem controle, isso demostra a importância do controle das propriedades termodinâmicas nos processos de secagem. Com relação ao CEE, o processo de secagem elétrica apresentou um CEE de 379,33 kWh por ciclo com temperatura de 45ºC e 225,54 kWh por ciclo com temperatura de 55ºC. Por outro lado o processo de secagem mista apresentou um CEE de 295,87 kWh por ciclo, a uma temperatura de 45ºC, e o processo de secagem solar apresentou um CEE médio de 45,83 kWh por ciclo. Isso mostra a grande vantagem comparativa do secador solar em relação ao secador elétrico. Com relação à eficiência mássica para os três processos de secagem, os mesmos apresentaram eficiências mássicas equivalentes em torno de 89%, o que já era esperado. Com relação aos rendimentos térmicos do secador solar, obtidos nos processos de secagem solar com controle e sem controle da temperatura , foram respectivamente 27,85% e 30,65%. Esses resultados são ligeiramente maiores que os reportados na literatura, o que indica que o secador solar desenvolvido na UFCG apresenta um elevado padrão na secagem de banana, além do fácil manuseio, construção e operacionalidade.
This paper presents a comparative study of drying systems for the production of dried bananas. An indirect solar exposure dryer with acquisition system and control of the thermodinamic properties of the drying air, and an automatized electric dryer with embedded control and supervision system were used. The drying systems studied in this paper were: solar drying, electrical drying and mixed drying (solar drying followed by electrical drying). The experimental tests were performed at the UFCG in Campina Grande, PB, for the drying of bananas (Musa spp.). The final product obtained by the three drying systems presented good visual aspect, scent and flavour, and moisture percentage at moist base less than 25%, compatible to the resolution RDC nº 272/05 of the ANVISA. The acquisition system a nd data control, added as inovation at the solar dryer, using the Arduino plataform, granted the measurement of the temperature and air relative moisture of drying air, both in the entrance and exit of the solar colector of the drying chamber, and also the activation and control of the forced convection of the drying system to keep the temperature in the drying chamber between 40ºC and 60ºC. As results, the obtained values to the drying system efficiency are presented, specific comsuption of energy (CEE), drying system efficiency and drying time. Through the experiments with the solar and the electric dryers, the curves that represent the drying kinectics of the banana were obtained. The results were compared and showed that Page’s mathematical model is adequate to predict the drying time. The determination coefficient (R²) obtained at the electric dryer was superior to the solar dryer, this shows that the control system of the thermodinamics properties of the drying air is more efficient on the electric dryer. In relation to the CEE, the electric drying showed a CEE of 379.33 kWh per cycle with a temperature of 45ºC and 225.54 kWh per cycle at the temperature of 55ºC . On the other hand, the mixed drying had a CEE of 295.87 kWh per cycle, at a temperature of 45 ºC, and the solar drying a medium CEE of 45.83 kWh per cycle. This shows the great comparative advantage of the solar dryer when compared to the electric dryer. In relation to the massic efficiency to the 3 drying processes, they showed equivalente massi c efficiency around 89%, which was expected. In relation to the thermic efficiencies of the solar dryer, obtained on the experiments with and without temperature control, were respectively 27.85%, 30.65%, these results show that the obtained resulsts are slightly superior to the results reported on the literature, which indicates that the solar dryer under development in the UFCG shows high efficiency to perform the drying of bananas, although its easy to construct and operate.
Книги з теми "SOLAR CHIMNEY DRYING SYSTEM"
Torres, Jose Antonio. Mathematical simulation of a solar drying system. 1987.
Знайти повний текст джерелаYang, Kun. Observed Regional Climate Change in Tibet over the Last Decades. Oxford University Press, 2017. http://dx.doi.org/10.1093/acrefore/9780190228620.013.587.
Повний текст джерелаЧастини книг з теми "SOLAR CHIMNEY DRYING SYSTEM"
Kumar, Anil, Harsh Deep, Om Prakash, and O. V. Ekechukwu. "Advancement in Greenhouse Drying System." In Solar Drying Technology, 177–96. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3833-4_5.
Повний текст джерелаSung, Ling Leh, Mohd Suffian bin Misran, Md Tarek Ur Rahman Erin, and Md Mizanur Rahman. "Solar Chimney and Turbine-Assisted Ventilation System." In Cold Inflow-Free Solar Chimney, 139–69. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6831-6_8.
Повний текст джерелаPrakash, Om, Anil Kumar, Prashant Singh Chauhan, and Daniel I. Onwude. "Energy Analysis of the Direct and Indirect Solar Drying System." In Solar Drying Technology, 529–42. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3833-4_19.
Повний текст джерелаHuang, HuiLan, Hua Zhang, Yi Huang, and Feng Lu. "Simulation Calculation on Solar Chimney Power Plant System." In Challenges of Power Engineering and Environment, 1158–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-76694-0_216.
Повний текст джерелаKarim, M. A., and Zakaria Mohd Amin. "Analytical Modelling of Integrated Solar Drying System." In Renewable Energy in the Service of Mankind Vol II, 867–79. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18215-5_79.
Повний текст джерелаNouar, Hadda, Toufik Tahri, Younes Chiba, and Abdelghani Azizi. "Thermal Investigation of a Solar Chimney Power Plant System: CFD Approach." In Advances in Green Energies and Materials Technology, 367–74. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0378-5_48.
Повний текст джерелаSopian, K., G. Y. Abusaibaa, R. Abdullah, H. Jarimi, A. Ibrahim, A. F. Abdullah, and A. B. Al-Aasam. "Performance of Solar Assisted Dual Condenser Heat Pump Drying System." In Lecture Notes in Mechanical Engineering, 254–58. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3179-6_46.
Повний текст джерелаMoussaoui, Haytem, Ahmed Aït Aghzzaf, Ali Idlimam, and Abdelkader Lamharrar. "Modeling of a Forced Convection Solar Drying System by Experimental Designs." In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions, 1497–99. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70548-4_436.
Повний текст джерелаSingh, S. P., and Ankur Nagori. "Economic Feasibility of Refrigeration Waste Heat-Assisted Solar Hybrid Drying System." In Lecture Notes in Mechanical Engineering, 441–54. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9678-0_39.
Повний текст джерелаAugustus Leon, M., and S. Kumar. "Evaluation of a Solar-Biomass-Rock Bed Storage Drying System, and its Application for Chilli Drying." In Proceedings of ISES World Congress 2007 (Vol. I – Vol. V), 1990–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75997-3_405.
Повний текст джерелаТези доповідей конференцій з теми "SOLAR CHIMNEY DRYING SYSTEM"
Buonomo, Bernardo, Oronzio Manca, Sergio Nardini, and Gianluca Tartaglione. "Numerical Simulation of Convective-Radiative Heat Transfer in a Solar Chimney." In ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/esda2014-20390.
Повний текст джерелаGuo, Yongqing, Xiaodai Xue, Qingsong Li, Zhi'ao Li, Yang Si, Kai Li, and Shengwei Mei. "Experimental study of solar chimney power plant system." In 2017 Chinese Automation Congress (CAC). IEEE, 2017. http://dx.doi.org/10.1109/cac.2017.8244052.
Повний текст джерелаSuherman, Suherman, Fa’ireza Rafli Arfiansyah, Rizqi Sa’adatun Ni’mah, Evan Eduard Susanto, and Hadiyanto Hadiyanto. "Coffee bean drying using ventilation - Photovoltaic solar drying method." In THE 6TH INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT, EPIDEMIOLOGY AND INFORMATION SYSTEM (ICENIS) 2021: Topic of Energy, Environment, Epidemiology, and Information System. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0126487.
Повний текст джерелаNguyen Vu Lan. "Improvement of conventional solar drying system." In 2017 International Conference on System Science and Engineering (ICSSE). IEEE, 2017. http://dx.doi.org/10.1109/icsse.2017.8030964.
Повний текст джерелаWong, Nyuk Hien, Alex Yong Kwang Tan, Kian Seng Ang, Stephen Mok, and Alice Goh. "Performance Evaluation of Solar Chimney System in the Tropics." In International Conference on Sustainable Design and Construction (ICSDC) 2011. Reston, VA: American Society of Civil Engineers, 2012. http://dx.doi.org/10.1061/41204(426)38.
Повний текст джерелаHuang, Huilan, Gang Li, and Hua Zhang. "Experimental Performance of a Solar Collector in Solar Chimney Power Plant System." In 2010 International Conference on Electrical and Control Engineering (ICECE). IEEE, 2010. http://dx.doi.org/10.1109/icece.2010.907.
Повний текст джерелаChai, Adrian Ngu Ming, M. Ibrahim, Cheah Bin Chuan, and B. F. Yousif. "On the Development of Solar Drying System." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12294.
Повний текст джерелаEduardo Predolin, RODRIGO, Vicente Luiz Scalon, and Geraldo Luiz Palma. "Development of natural convection solar drying system." In 18th Brazilian Congress of Thermal Sciences and Engineering. ABCM, 2020. http://dx.doi.org/10.26678/abcm.encit2020.cit20-0603.
Повний текст джерелаHarun, Darwin, Muhammad Ilham Maulana, Hasan Akhyar, and Husaini. "Experimental investigation on open sun-drying and solar drying system of bilimbi." In 2016 6th International Annual Engineering Seminar (InAES). IEEE, 2016. http://dx.doi.org/10.1109/inaes.2016.7821947.
Повний текст джерелаJime´nez, M. J., J. D. Guzma´n, M. R. Heras, J. Arce, J. P. Xama´n, and G. Alvarez. "Thermal Performance of a Natural Ventilation System." In ASME 2010 4th International Conference on Energy Sustainability. ASMEDC, 2010. http://dx.doi.org/10.1115/es2010-90264.
Повний текст джерела