Дисертації з теми "Soil microbiology"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Soil microbiology".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Jeffery, Simon. "The microbiology of arable soil surfaces." Thesis, Cranfield University, 2007. http://dspace.lib.cranfield.ac.uk/handle/1826/2245.
Повний текст джерелаJones, Frances Patricia. "The microbiology of lean and obese soil." Thesis, University of Reading, 2017. http://centaur.reading.ac.uk/69408/.
Повний текст джерелаPaulse, Arnelia N. (Arnelia Natalie). "Soil stabilization by microbial activity." Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53593.
Повний текст джерелаENGLISH ABSTRACT: Microorganisms play an important role in the stability and maintenance of the ecosystem and in the condition of the soil. However, in their natural environment, microorganisms often experience changing and hostile conditions. They therefore need to be able to adapt physiologically and modify their micro-environment. Biofilm formation is one mechanism to establish favorable micro-environments. The extracellular polymeric substances (EPS) that are typically associated with biofilm formation may also have an impact on soil structure. The aim of this project was to evaluate the potential of microbial manipulation on EPS production and the possible impact thereof on soil structure in order to improve water retention. Specific objectives of this study included the screening of natural environments for EPS-producers, developing techniques to observe EPS production and accumulation in the pores between soil particles, measuring the effect of EPS production on soil water hydraulic gradient, as well as determining the fate and impact of EPS-producers when introduced to naturally-occurring soil microbial communities. Several environmental samples have been screened for EPS-producing microorganisms. Soil columns were then inoculated with these EPS-producers and the passage of 20 mlaliquots water through the columns measured at 3 or 4-day intervals. Microbes isolated from soil, through their EPS production capability proved to retain water more effectively than was the case for water-borne EPS-forming microbes. This phenomenon was further studied using flow cells, filled with soil and inoculated with the EPS-producers isolated from either soil or water. Fluorescence microscopy showed that the soil microbes produced EPS that clogged pores between sand particles more effectively. This clogging resulted in lowering the soil water hydraulic gradient. To evaluate the effect of EPS-producers on existing soil microbial communities, cell counts, Biolog™whole-community carbon utilization studies and T-RFLP (terminal-restriction fragment length polymorphism) analyses were performed. Shifts in the soil microbial community could not be readily seen by observing microbial numbers and T-RFLP-analysis, but was noticeable in carbon utilization patterns.
AFRIKAANSE OPSOMMING: Mikroorganismes speel 'n belangrike rol in die stabiliteit en instandhouding van die ekosisteem en in die kondisie van die grond. In hul natuurlike omgewing ervaar mikroorganismes dikwels veranderlike en ongunstige toestande. Mikroorganismes het dus nodig om hulself fisiologies aan te pas en verander hul mikro-omgewing daarvolgens. Biofilm-vorming is een meganisme om gunstige mikro-omgewings te skep. Die ekstrasellulêre polimeriese produkte (EPP) wat tydens biofilm-vorming gevorm word, mag ook 'n impak hê op die grondstruktuur. Die doel van hierdie projek was om die potensiaal van mikrobiese manipulasie op EPP-vorming te evalueer asook die moontlike impak daarvan op grondstruktuur wat sodoende waterretensie kon bevorder. Die spesifieke doelwitte van hierdie studie het ingesluit die isolasie van EPPproduseerders vanuit natuurlike omgewings, die ontwikkeling van verskeie tegnieke waarvolgens EPP-produksie en die akkumulasie daarvan in die porieë tussen gronddeeltjies bestudeer kon word, die effek van EPP-produksie op hidrouliese gradiënt van grondwater en om die lot en impak wat EPP-produseerders op natuurlike grondmikrobiese populasies te bepaal. Verskeie grond- en watermonsters was getoets vir die voorkoms van EPP-produserende mikroorganismes. Grondkolomme is geïnokuleer met EPP-produseerders en die vloei van 20 ml-volumes water deur die kolomme is gemeet met 3 of 4-dag intervalle. Grond-geïsoleerde mikrobes het beter waterretensie tot gevolg gehad as water- geïsoleerde mikrobes. Hierdie verskynsel was verder bestudeer deur die gebruik van vloeiselle, gevul met grond of sand en geïnokuleer met EPP-produseerders geïsoleer vanuit grond of water. Fluoressensie mikroskopie het aangetoon dat grondmikrobes EPP produseer wat die porieë tussen gronddeeltjies meer effektief verstop. Dié verstopping het gelei tot die verlaging van die grondwater se hidrouliese gradiënt wat bepaal is deur die gebruik van die konstante-vlak bepalingsmetode. Om die effek van EPP-produseerders op bestaande mikrobiese populasies te bepaal, is seltellings, Biolog™ heel-gemeenskap koolstofverbruik studies en T-RFLP (terminale-restriksie fragment-lengte polimorfisme) analises uitgevoer. Veranderinge in die mikrobiese populasie kon nie geredelik bloot deur die bepaling van mikrobiese getalle en T-RFLP-analise waargeneem word nie, maar wel met die koolstofverbruikspatrone.
Wagai, Rota. "Climatic and Lithogenic Controls on Soil Organic Matter-Mineral Associations." Fogler Library, University of Maine, 2005. http://www.library.umaine.edu/theses/pdf/WagaiR2005.pdf.
Повний текст джерелаMarí, Marí Teresa. "Changes in soil biodiversity and activity along management and climatic gradients." Doctoral thesis, Universitat de Lleida, 2017. http://hdl.handle.net/10803/457976.
Повний текст джерелаLos llamados "rangelands" son áreas sin cultivar, ampliamente pastoreadas por animales domésticos y salvajes, actualmente amenazados por los cambios climático y de uso del suelo. Los microorganismos del suelo tienen un papel clave tanto en la descomposición como en diversos procesos del ecosistema, por lo que composición y función de la comunidad microbiana han sido utilizados durante mucho tiempo como índices de fertilidad del suelo. Los rangelands europeos y africanos comparten un origen antropogénico común, pero el clima y la gestión del suelo les afectan de una manera diferente. Es por ello que esta tesis pretende analizar la comunidad microbiana de ambos tipos de ecosistemas, a fin de observar los efectos de algunas de las amenazas comunes desde una perspectiva más global. Mientras que el sobrepastoreo demostró tener el efecto más perjudicial sobre la función microbiana en suelos kenianos, se encontró un efecto más fuerte del clima sobre los prados europeos. Los hongos y las bacterias covariaron a lo largo de gradientes altitudinales y climáticos, pero la comunidad bacteriana mostró una recuperación más rápida después de las perturbaciones biológicas y físico-químicas del suelo. Este conjunto de estudios añade nuevos conocimientos sobre la estructura y función de los rangelands africanos y europeos, e invita a explorar nuevas líneas de investigación que incluyan tanto bacterias como hongos en el estudio de la comunidad microbiana del suelo.
Rangelands are uncultivated areas extensively grazed by wild and domestic animals, currently threatened by land use and climatic changes. Soil microorganisms play a key role in decomposition and several ecosystem processes and the composition and function of the microbial community have been long used as indices of soil fertility. African and European rangelands share a common anthropogenic origin, but climate and management affect them in a different way. That is why this thesis aimed to analyze the microbial community of both in order to observe the effects of some common threats from a more global perspective. While overgrazing proved to have the most detrimental effect on the soil microbial function in Kenyan soils, a stronger effect of climate was found to affect European grasslands. Fungi and bacteria co-varied along altitudinal and climatic gradients, but the bacterial community showed a fast recovery after biological and soil physico-chemical disturbances. This group of studies adds new knowledge on the structure and function of the African and European rangelands, and invite to explore new lines of research including both fungal and bacterial consortia when studying the soil microbial community.
Rodriguez, Luis A. (Luis Antonio). "Adenylate Energy Charge Determinations of Soil Bacteria Grown in Soil Extract Medium." Thesis, University of North Texas, 1988. https://digital.library.unt.edu/ark:/67531/metadc500662/.
Повний текст джерелаBester, Reinhard. "Growth and survival of Saccharomyces cerevisiae in soil." Thesis, Stellenbosch : University of Stellenbosch, 2011. http://hdl.handle.net/10019.1/16597.
Повний текст джерелаENGLISH ABSTRACT: Saccharomyces cerevisiae is commonly associated with the wine industry. However, this yeast was also isolated from soils not associated with vines. Despite the fact that S. cerevisiae is not perceived as an autochthonous soil yeast, its interaction with other soil microbiota suggests the contrary. Aside from a few in vitro studies, the fate of S. cerevisiae in soil is largely unknown. This may partly be ascribed to the lack of reliable methods to enumerate fermentative yeasts in soil. Consequently, we evaluated an enumeration procedure for fermentative yeasts in soil, whereby yeast malt extract (YM) agar plates containing selective agents, were incubated in anaerobic jars before the colonies were enumerated. This procedure proved to be selective for fermentative yeasts, such as industrial strains of S. cerevisiae. We then commenced studying the growth and survival of S. cerevisiae in soil differing in moisture content and nutrient levels, using S. cerevisiae strain S92 and the genetically modified strain S. cerevisiae ML01, as well as two autochthonous soil yeasts, Cryptococcus laurentii and Cryptococcus podzolicus. The yeast strains were each inoculated into three series of microcosms containing sterile soil with a moisture content of ca. 30% (v/w), a moisture content of ca. 15% (v/w), or a moisture content of ca. 30% supplemented with nutrients used in agriculture. Growth of each strain was monitored for a period of 48 days and all the yeasts were found to grow or survive under these conditions, up until the end of the incubation period. Generally, the cryptococci reached larger population sizes in the soil than the Saccharomyces strains, which may be due to their ability to utilize a wider range of carbon sources and to survive in semi-arid soils. Aside from cell numbers observed in nutrient supplemented soil, in which S. cerevisiae ML01 reached higher numbers than S92, there was no significant difference between the growth and survival of the Saccharomyces strains. In all the microcosms, metabolic rates, as determined by measuring CO2 emissions from soil, reached a maximum within the first day and then declined over the remainder of the trial, possibly due to depletion of nutrients. Differences in CO2 emissions from the different series of microcosms were attributed to different metabolic rates and energy expenditure needed to maintain yeast populations under different conditions. Each of the above-mentioned yeasts was subsequently inoculated in a microcosm prepared from non-sterile soil and monitored using selective enumeration procedures. The Saccharomyces strains were enumerated using the above-mentioned soil dilution plates incubated in anaerobic jars. The presence of natural soil biota caused a decrease in viable yeast numbers for all strains and this was ascribed to competition with and predation by other soil borne organisms. Further evidence for competition and/or amensalism impacting on Saccharomyces populations in soil was obtained when monitoring co-cultures of Saccharomyces with C. laurentii 1f and C. podzolicus 3f in soil microcosms, revealed a significant reduction in Saccharomyces numbers during a 28 day incubation period. However, when the two Saccharomyces strains were cultured in soil microcosms inoculated with a protistan predator, populations of both strains increased and remained at these high levels for the duration of the trial. These findings point to a possible symbiosis between Saccharomyces and the protista whereby the predators ensure continuous nutrient cycling within the soil microcosms. In the final part of the study, epifluorescence microscopy revealed that, similar to known soil cryptococci, the two Saccharomyces strains were able to form biofilms in oligotrophic conditions. The results of this study showed that in the presence of natural soil microbes, no differences exist between the growth and survival of S. cerevisiae S92 and S. cerevisiae ML01. Also, the findings point to a natural niche for this species somewhere in the soil habitat.
AFRIKAANSE OPSOMMING: Saccharomyces cerevisiae word algemeen met die wynindustrie geassosieer. Hierdie gis is egter ook uit grond geïsoleer wat nie met wingerd geassosieer word nie. Ten spyte van die feit dat S. cerevisiae nie as ‘n outogtoniese grondgis beskou word nie, dui sy interaksie met ander grondmikrobiota op die teendeel. Behalwe vir ‘n paar in vitro studies, is die lot van S. cerevisiae in grond grootliks onbekend. Dit mag gedeeltelik aan die gebrek aan betroubare metodes om fermenterende giste in grond te tel, toegeskryf word. Ons het gevolglik ‘n tellingsmetode vir fermenterende giste in grond geëvalueer waarin gis-mout ekstrak (GM) agar plate, bevattende selektiewe agente, in anaërobiese flesse geïnkubeer is voordat die kolonies getel is. Hierdie metode was selektief vir fermenterende giste, soos die industriële stamme van S. cerevisiae. Hierna is die groei en oorlewing van S. cerevisiae bestudeer in gronde met verskillende vog- en nutriëntvlakke deur gebruik te maak van S. cerevisiae stam S92 en die geneties gemodifiseerde stam S. cerevisiae ML01, asook twee outogtoniese grondgiste, Cryptococcus laurentii en Cryptococcus podzolicus. Die gisstamme is elk geïnokuleer in drie reekse van mikrokosmosse bestaande uit steriele grond met ‘n vogvlak van ca. 30% (v/w), ‘n vogvlak van ca. 15% (v/w), of ‘n vogvlak van ca. 30% aangevul met landbounutriënte. Die groei van elke stam is waargeneem vir ‘n tydperk van 48 dae en al die giste het onder hierdie omstandighede tot aan die einde van die inkubasietydperk gegroei of oorleef. Oor die algemeen het die cryptococci groter populasies in die grond gevorm as die Saccharomyces stamme, wat toegereken kan word aan hul vermoë om ‘n wyer reeks koolstofbronne te benut en om in droë gronde te oorleef. Behalwe dat S. cerevisiae ML01 ‘n hoër aantal selle in nutriënt aangevulde grond behaal het as S92, was daar geen beduidende verskil tussen die groei en oorlewing van die Saccharomyces stamme nie. In al hierdie mikrokosmosse het die metaboliese tempo, soos bepaal deur CO2 vrystellings vanuit grond te meet, ‘n maksimum bereik binne die eerste dag en dan het dit afgeneem oor die res van die toetsperiode, waarskynlik as gevolg van die uitputting van die nutriënte. Verskille in die CO2 vrystellings wat vir die verskillende reekse van mikrokosmosse aangeteken is, is te wyte aan die verskillende metaboliese tempo’s en energiegebruik benodig om gispopulasies onder verskillende omstandighede in stand te hou. Elk van bogenoemde giste is vervolgens geïnokuleer in ‘n mikrokosmos wat voorberei is van nie-steriele grond, en waargeneem deur selektiewe enumerasie prosedures toe te pas. Die Saccharomyces stamme is getel deur gebruik te maak van bogenoemde grondverdunningsplate wat in anaërobiese flesse geïnkubeer is. Die teenwoordigheid van natuurlike grondbiota het in alle stamme ‘n afname in lewensvatbare gisgetalle veroorsaak en is toegeskryf aan die kompetisie met en predasie deur ander grondorganismes. Verdere bewys van die impak van kompetisie en/of amensalisme op Saccharomyces populasies in die grond, is die beduidende afname in Saccharomyces getalle tydens ‘n 28 dag inkubasie tydperk, waartydens ko-kulture van Saccharomyces stamme met C. laurentii 1f en C. podzolicus 3f in grond mikrokosmosse ondersoek is. Toe die twee Saccharomyces stamme egter in grond mikrokosmosse opgekweek is wat met ‘n protistiese predator geïnokuleer is, het populasies van albei stamme gegroei en om hierdie hoë vlakke gebly tot aan die einde van die toets. Hierdie bevindings dui ‘n moontlike simbiose tussen Saccharomyces en die protista aan waardeur die predatore deurlopende nutriëntsiklering binne die grondmikrokosmos verseker. In die laaste deel van die studie toon epifluoressensie mikroskopie aan dat, net soos bekende grond cryptococci, die twee Saccharomyces stamme in staat is om biofilms in oligotrofiese omstandighede te vorm. Die resultaat van die studie toon aan dat in die teenwoordigheid van natuurlike grondmikrobe daar geen verskil tussen die groei en oorlewing van S. cerevisiae S92 en S. cerevisiae ML01 is nie. Die bevindings dui ook aan dat daar ‘n natuurlike nis vir hierdie spesie iewers in die grondhabitat is.
Coyle, Kieran. "An investigation of the role of soil micro-organisms in phosphorus mobilisation : a report submitted to fulfil the requrements of the degree of Doctor of Philosophy." Title page, table of contents and abstract only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phc8814.pdf.
Повний текст джерелаHoyle, Frances Carmen. "The effect of soluble organic carbon substrates, and environmental modulators on soil microbial function and diversity /." Connect to this title, 2006. http://theses.library.uwa.edu.au/adt-WU2007.0050.
Повний текст джерелаJenkins, Anthony Blaine. "Organic carbon and fertility of forest soils on the Allegheny Plateau of West Virginia." Morgantown, W. Va. : [West Virginia University Libraries], 2002. http://etd.wvu.edu/templates/showETD.cfm?recnum=2486.
Повний текст джерелаTitle from document title page. Document formatted into pages; contains x, 282 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references.
Menefee, Dorothy. "Anthropogenic influences on soil microbial properties." Thesis, Kansas State University, 2016. http://hdl.handle.net/2097/32657.
Повний текст джерелаDepartment of Agronomy
Ganga M. Hettiarachchi
Human activities have the potential to alter soil biochemical properties in a number of different ways. This thesis will focus on how agricultural practices (tillage and cropping system), climate change, and urban soil pollution (primarily lead and arsenic) affect soil biochemical properties. Two incubation studies were conducted to determine how human activities influence soil biochemical properties. The first study focused on how altered temperature and moisture regimes affected soil properties from four different agroecosystems. Four different soils were incubated under two different soil preparation methods (sieved <4mm and <0.25 mm), three different temperature treatments (12, 24, and 36°C), and two different moisture treatments (field capacity and 80% of field capacity) for 180 days. Destructive samples were taken at 7, 30, 60, 120, and 180 days and the soil microbial community was analyzed using phospholipid fatty acid analysis (PLFA). The second study investigated how soil amendment treatments (Mushroom Compost and Composted Biosolids) of an industrially contaminated site affected the biochemical properties of that soil. Surface soil samples collected 435 days after compost addition from urban garden test plots located adjacent to a former rail yard in Monon, Indiana. Soils were incubated for 30 days to stimulate microbial activity. Following incubation, the soil was analyzed for PLFA, soil enzymes, and available metal fractions. In the first study the greatest differences were found between the <4mm and the <0.25 mm size fractions – which highlights the effect of soil aggregation and structure on microbial populations. After aggregation effects, temperature treatment had the next largest effect on microbial populations, with the greatest biomass in the middle (24°C) treatment. The second study assessed different soil amendments on soil microbial properties and metal availability. Composted biosolids reduced metal availability and increased microbial enzyme activity and biomass.
Sutanto, Yovita. "Manure from grazing cattle effects on soil microbial communities and soil quality in northern West Virginia pastures /." Morgantown, W. Va. : [West Virginia University Libraries], 2005. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=3933.
Повний текст джерелаTitle from document title page. Document formatted into pages; contains vii, 72 p. : ill. (some col.), map. Includes abstract. Includes bibliographical references.
Sheremata, Tamara W. "The influence of soil organic matter on the fate of trichloroethylene in soil." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0017/NQ44582.pdf.
Повний текст джерелаBlair, Jennifer M. "Mechanistic modelling of bioavailability : putting soil microbiology in its pore scale context." Thesis, Abertay University, 2007. https://rke.abertay.ac.uk/en/studentTheses/bf7beb4b-07fa-41a8-8eeb-25aabf2669a7.
Повний текст джерелаWatts, Dexter Brown. "Mineralization in soils amended with manure as affected by environmental conditions." Auburn, Ala. :, 2007. http://repo.lib.auburn.edu/2007%20Spring%20Dissertations/WATTS_DEXTER_20.pdf.
Повний текст джерелаWilliams, David. "Ecophysiological studies of soil ammonia oxidising bacteria." Thesis, Available from the University of Aberdeen Library and Historic Collections Digital Resources, 2009. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=26464.
Повний текст джерелаJones, Hilary A. "The oxidation of methane in landfill soil cover." Thesis, University of Essex, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306045.
Повний текст джерелаTrubl, Gareth. "Pioneering Soil Viromics to Elucidate Viral Impacts on Soil Ecosystem Services." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1543425468999981.
Повний текст джерелаHerron, Paul Robert. "Interactions between actinophage and streptomycetes in soil." Thesis, University of Warwick, 1991. http://wrap.warwick.ac.uk/79686/.
Повний текст джерелаPadua, Roberto R. "Purification and characterization of an antimicrobial compound secreted by a soil bacterium /." Abstract Full Text (HTML) Full Text (PDF), 2008. http://eprints.ccsu.edu/archive/00000530/02/1979FT.htm.
Повний текст джерелаThesis advisor: Michael A. Davis. "... in partial fulfillment of the requirements for the degree of Master of Arts in Biomolecular Sciences." Includes bibliographical references (leaves 36-39). Also available via the World Wide Web.
Mansoor, E. Y. "Immunological approaches to the ecology of Arthrobacter in soil." Thesis, University of Essex, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315755.
Повний текст джерелаCaleb, Oluwafemi James. "Microbial community structure as an indicator of soil health in apple orchards." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4133.
Повний текст джерелаENGLISH ABSTRACT: The relationship between various land management practices, soil properties and the soil microbial communities are complex and little is known about the effect of these interactions on plant productivity in agricultural systems. Although it would be advantageous to have a single organism or property that can be used as a measure of soil health, it may not be possible. Soil organisms which include both the microorganisms as well as soil fauna are subjected to the effect of their immediate environment. This microenvironment in turn is determined by the soil properties as well as above ground flora and their interactions. Most soil indicators interact with each other, and these interactions can modify or influence the soil properties. The complexities of the interactions between critical soil indicator values often preclude its practical use by land managers and policy makers. However, soil microbial communities (e.g. diversity and structural stability) may serve as a relative indicator of soil quality. These communities are sensitive to land management practices and changes in the microenvironment. The objective of this study was to gain an understanding of the complex relationships by investigating the effect of conventional, integrated and organic apple production systems on the physical, chemical and biological (particularly soil microbial diversity) properties of the soil. Automated Ribosomal Intergenic spacer analysis (ARISA) was used to characterise fungal (F-ARISA) and bacterial (B-ARISA) communities from soil samples obtained from an experimental apple orchard in Elgin, Grabouw. The intergenic spacer (ITS) region from the fungal rRNA operon was amplified using ITS4 and fluorescently FAM (6- carboxylfluorescein) labelled ITS5 primers. Similarly, the 16S-23S intergenic spacer region from the bacterial rRNA operon was amplified using ITSR and FAM-labelled ITSF primers. The sensitivity of the technique allowed us to discriminate between the soil microbial communities of the different treatments. From our results we observed significant increase (p < 0.05) in the fungal community diversity between the February and April samples, while the bacterial community diversity was consistent (p > 0.05). Also, treatments with mulch showed a significantly higher microbial diversity than the other treatments at a 5 % significance level. Fungal communities showed significant correlation with the potassium concentration in the soil, while bacterial communities depicted a significant correlation with the soil phosphorous concentration. Based on the results we concluded that different management practices have a significant effect on the soil microbial communities and that these communities are particularly sensitive to small changes in the environment. However, there is still a need to determine what the composition of the soil microbial communities are to be able to correlate our observations with soil health.
AFRIKAANSE OPSOMMING: Die verhouding tussen verskillende landboubestuurspraktyke, grondeienskappe en die mikrobiese gemeenskappe in grond is kompleks en weinig is bekend oor die uitwerking van hierdie interaksies op die produktiwiteit van landboustelsels. Alhoewel dit voordelig sou wees om ‘n enkele organisme of eienskap te kan hê wat die gesondheid van grond kan meet, sal dit dalk nie moontlik wees nie. Grondorganismes wat die mikroörganismes sowel as die grondfauna insluit, is onderworpe aan die invloed van hulle onmiddelike omgewings. Hierdie mikro-omgewings op hulle beurt word weer beïnvloed deur die grondeienskappe sowel as die die oppervlak flora en hulle wisselwerkinge. Meeste van die grondaanwysers toon ook wisselwerkinge met mekaar, en hierdie wisselwerkinge kan die grondeienskappe beïnvloed or selfs verander. Die kompleksiteit van die wisselwerkinge tussen kritiese grond aanwysers is meestal die rede waarom dit nie deur grondbestuurders en beleidsmakers gebruik word nie. Dit is ongeag die feit dat grond mikrobiese gemeenskappe (bv. diversiteit en stukturele stabiliteit) mag dien as ‘n relatiewe aanwyser van grondkwaliteit. Hierdie gemeenskappe is sensitief vir bestuurspraktyke en veranderinge in die mikro-omgewing. Die doel van die studie was om die ingewikkelde verhoudings in die grondgemeenskappe te bestudeer en die uitwerking van konventionele, geïntegreerde en organiese appel produksie sisteme op die fisiese, chemiese en biologiese eienskappe (veral die grond mikrobiologiese diversiteit) te bepaal. Geoutomatiseerde Ribosomale Intergeniese Spasie Analise (ARISA) is gebruik om die fungus (F-ARISA) en bakteriese (B-ARISA) gemeenskappe van grondmonsters wat vanaf ‘n proef appelboord in Elgin (Grabouw) verkry is, te bepaal. Die intergeenspasie (ITS) area van die fungus rDNA operon is vermeerder deur die ITS4 en fluoresserende FAM (6-karboxylfluorescein) gemerkte ITS5 inleiers te gebruik. Soortgelyk is die 16S-23S intergeenspasie area van die bakteriese rDNA operon vermeerder deur ITSR en FAM-gemerkte ITSF inleiers te gebruik. Die sensitiwiteit van die tegniek laat ons toe om te onderskei tussen die grond mikrobiese gemeenskappe vanaf verskillende grondbehandelings. Vanuit die resultate kon ons aflei dat daar ‘n toename (p < 0.05) in die fungus gemeenskap diversiteit vanaf Februarie to April was terwyl die bakteriese gemeenskap ‘n konstante diversteit getoon het (p > 0.05). Behandelings met grondbedekking het ook ‘n beduidend hoër mikrobiese diversiteit getoon as ander behandelings. Fungus gemeenskappe het beduidende korrelasies getoon met kalium konsentrasies in die grond, terwyl bakteriese gemeenskappe ‘n beduidende korrelasie getoon het met grond fosfor konsentrasies. Gebaseer op die resultate kon ons aflei dat verskillende bestuurspraktyke ‘n uitwerking kan hê op die grond mikrobiese gemeenskappe en dat hierdie gemeenskappe sensitief is vir klein veranderinge in die omgewing. Dit sal egter nog nodig wees om die spesifieke samestelling van die grond mikrobiese gemeenskappe te bepaal voor ons hierdie waarnemings kan korreleer met grondgesondheid.
Kinneer, Krista L. "Size fractionation of bacterial functional diversity within soils." Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=1095.
Повний текст джерелаTitle from document title page. Document formatted into pages; contains x, 68 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 47-48).
Lynch, Ryan P. "Controlling Soilborne Diseases of Potato and Influencing Soil Microbiology with Brassica Cover Crops." Fogler Library, University of Maine, 2008. http://www.library.umaine.edu/theses/pdf/LynchRP2008.pdf.
Повний текст джерелаMoodley, Kamini. "Microbial diversity of Antarctic Dry Valley mineral soil." Thesis, University of the Western Cape, 2004. http://etd.uwc.ac.za/index.php?module=etd&.
Повний текст джерелаRhode, Owen H. J. "Intraspecies diversity of Cryptococcus laurentii (Kufferath) C.E. Skinner and Cryptococcus podzolicus (Bab’eva & Reshetova) originating from a single soil sample." Thesis, Stellenbosch : University of Stellenbosch, 2005. http://hdl.handle.net/10019.1/1812.
Повний текст джерелаIntraspecific diversity among yeasts, including basidiomycetous yeasts has mostly been studied from a taxonomic point of view. The heterobasidiomycetous genus Cryptococcus is no exception and it was found to contain species that display heterogeneity both on a genetic and physiological level, i.e. diversity among strains originating from different geographical areas. It was stated that this diversity within yeast species is possibly caused by intrinsic attributes of the different habitats the strains of a particular species originate from. However, little is known about the diversity of a species within a specific habitat. Thus, in this study intraspecific diversity among selected cryptoccoci isolated from a single soil sample originating from pristine Fynbos vegetation , was investigated.
Kumaresa, Deepak. "Molecular ecology of methanotrophs in a landfill cover soil." Thesis, University of Warwick, 2009. http://wrap.warwick.ac.uk/2771/.
Повний текст джерелаPino, Vanessa. "Soil Microbial Diversity Across Different Agroecological Zones in New South Wales." Thesis, The University of Sydney, 2016. http://hdl.handle.net/2123/16705.
Повний текст джерелаLeech, Fiona. "Influence of alternative fertilizers on pasture production, soil properties and soil microbial community structure." Thesis, The University of Sydney, 2019. https://hdl.handle.net/2123/21460.
Повний текст джерелаCartwright, Colin. "Biodegradation and impact of phthalate plasticisers on a soil microbial community." Thesis, University of Kent, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264768.
Повний текст джерелаBurden, John P. "The survival, activity and distribution of gentamicin-producing Micromonospora in soil." Thesis, University of Warwick, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302692.
Повний текст джерелаKurtboke, Dilber Ipek. "New approaches to the isolation of non-streptomycete actinomycetes from soil." Thesis, University of Liverpool, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314514.
Повний текст джерелаAraÃjo, Jackson de Lima. "Arthropods and attributes soil microbiology in fruit trees en Vale do Curu-CE, Brasil." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13481.
Повний текст джерелаUma das grandes preocupaÃÃes relacionadas aos sistemas de manejo agrÃcola adotado pelo homem reside nos efeitos sobre os processos biolÃgicos que ocorrem no solo, cuja aÃÃo dentro dos ecossistemas visando à exploraÃÃo agrÃcola, modifica a intensidade desses processos em virtude do emprego de prÃticas que objetivam exclusivamente a maximizaÃÃo da produÃÃo vegetal. Um dos desafios da pesquisa em biologia do solo à justamente entender os impactos do manejo sobre as complexas interaÃÃes de todos os organismos edÃficos ao nÃvel de comunidade que sÃo fundamentais na manutenÃÃo da qualidade do solo. Objetivou-se avaliar a influÃncia dos manejos em cultivos de fruteiras (mangueira, goiabeira e coqueiro) na composiÃÃo e distribuiÃÃo dos artrÃpodes de solo (mesofauna e macrofauna edÃfica) e sobre a biomassa microbiana, sua atividade e interaÃÃo com os atributos quÃmicos, fÃsicos e ambientais. O estudo dos artrÃpodes edÃficos teve inÃcio em julho de 2013 e seguiu atà maio de 2014, com coletas realizadas em quatro perÃodos. As atividades microbiolÃgicas do solo foram avaliadas mediante as determinaÃÃes dos atributos microbianos do solo (RBS, CBM, NBM, NBM/N, qCO2 e qMIC). Constatou-se que os artrÃpodes de solo mostraram-se sensÃveis as alteraÃÃes ocasionadas pelos sistemas de manejos do solo, possibilitando a sua indicaÃÃo como importante ferramenta para aplicar-se como bioindicadores da qualidade do sistema edÃfico. O sistema com cultivo de goiabeiras mostrou-se instÃvel ao longo do tempo em relaÃÃo à estrutura da comunidade dos artrÃpodes de solo. O sistema com cultivo de coqueiros propicia melhores caracterÃsticas do solo e aumento na abundÃncia e riqueza de espÃcies da macrofauna invertebrada. O carbono da biomassa microbiana (CBM), nitrogÃnio da biomassa microbiana (NBM) e o quociente metabÃlico (qCO2), foram os principais atributos microbiolÃgicos do solo responsÃveis por identificar dissimilaridades entre as Ãreas. CorrelaÃÃes entre as variÃveis microbiolÃgicas e faunÃsticas do solo foram baixas, com correlaÃÃes significativas somente entre Collembola, NBM e NBM/N.
Wang, Jing, and 王静. "Culture-independent analysis of anammox, AOA and AOB in paddy soil of Sanjiang Plain in Northeast China." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B4622158X.
Повний текст джерелаWalter, Diana Joyce, and dianawalter@internode on net. "The Environmental Impact of Genetically Modified Crop Plants on the Microbiology of the Rhizosphere." Flinders University. Biotechnology, 2005. http://catalogue.flinders.edu.au./local/adt/public/adt-SFU20070301.161014.
Повний текст джерелаEdvantoro, Bagus Bina. "Bioavailability, toxicity and microbial volatilisation of arsenic in soils from cattle dip sites." Title page, Contents and Abstract only, 2000. http://web4.library.adelaide.edu.au/theses/09A/09ae24.pdf.
Повний текст джерелаQuinones, Casilda. "Influence of three organic solvents on soil microbial activity." Thesis, The University of Arizona, 1985. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_1985_420_sip1_w.pdf&type=application/pdf.
Повний текст джерелаBarakat, Mohammad 1962. "Seasonal fluctuation in soil and thatch microbial populations in an 80%:20% sand:peat creeping bentgrass putting green." Thesis, The University of Arizona, 1991. http://hdl.handle.net/10150/277909.
Повний текст джерелаChapman, Joshua A. "Soil microbial communities from the alimentary canal of the earthworm Lumbricus terrestris (Oligochaeta: lumbricidae)." Morgantown, W. Va. : [West Virginia University Libraries], 2006. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4756.
Повний текст джерелаTitle from document title page. Document formatted into pages; contains viii, 75 p. : ill. (some col.), map. Includes abstract. Includes bibliographical references.
Millar, Neville. "The effect of improved fallow residue quality on nitrous oxide emissions from tropical soils." Thesis, Imperial College London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268667.
Повний текст джерелаWoodward, Rebecca Stanton Wain. "Analysis of tetracycline resistance in compost bacilli." Thesis, University of Liverpool, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259753.
Повний текст джерелаJohnson-Rollings, Ashley S. "A polyphasic approach to the study of chitinolytic bacteria in soil." Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/51637/.
Повний текст джерелаMueller, Sabrina R. "Chromium, DNA, and Soil Microbial Communities." Cincinnati, Ohio : University of Cincinnati, 2006. http://rave.ohiolink.edu/etdc/view.cgi?acc_num=ucin1141334651.
Повний текст джерелаAdvisor: Brian K. Kinkle. Title from electronic thesis title page (viewed Apr. 23, 2009). Keywords: SEC-ICP-MS; Fungal community; bacterial community; DGGE. Includes abstract. Includes bibliographical references.
Nielsen, Uffe Nygaard. "Influences on species richness and composition of belowground communities at multiple spatial scales." Thesis, Available from the University of Aberdeen Library and Historic Collections Digital Resources, 2008. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=24811.
Повний текст джерелаIker, Brandon Charles. "Application of Advanced Molecular Techniques in Applied Environmental Microbiology." Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/301699.
Повний текст джерелаCundiff, Gary Thomas. "Using Arbuscular Mycorrhizae to Influence Yield, Available Soil Nutrients and Soil Quality in Conventional VS. Organic Vegetable Production." TopSCHOLAR®, 2012. http://digitalcommons.wku.edu/theses/1155.
Повний текст джерелаParekh, Nisha Rajnikant Parekh. "New approaches to the selective isolation of wall chemotype IV actinomycestes from soil." Thesis, University of Liverpool, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333669.
Повний текст джерелаCogram, Kirstie J. "The effects of seaweed extracts on soilborne diseases, soil microbiology and the growth of wheat." Thesis, University of Bristol, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336244.
Повний текст джерелаLanza, G. R., and Phillip R. Scheuerman. "Effect of Soil Amendments on In Situ Biodegradation in Creosote Contaminated Soils." Digital Commons @ East Tennessee State University, 1996. https://dc.etsu.edu/etsu-works/2910.
Повний текст джерелаDavies, Nicholas Julian. "Microbial response to simulated climate change in Antarctic fellfield soil." Thesis, University of Kent, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242859.
Повний текст джерела