Добірка наукової літератури з теми "Soil metagenomic"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Soil metagenomic".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Soil metagenomic"
Navarrete, Acacio Aparecido, Eliamar Aparecida Nascimbém Pedrinho, Luciano Takeshi Kishi, Camila Cesário Fernandes, Victoria Romancini Toledo, Rita de Cassia Félix Alvarez, Elisângela de Souza Loureiro, Leandro Nascimento Lemos, Siu Mui Tsai, and Eliana Gertrudes de Macedo Lemos. "Taxonomic and nitrogen-cycling microbial community functional profiles of sugarcane and adjacent forest soils in Southeast Brazil." MOJ Ecology & Environmental Sciences 6, no. 4 (July 5, 2021): 119–25. http://dx.doi.org/10.15406/mojes.2021.06.00224.
Повний текст джерелаMeier, Matthew J., E. Suzanne Paterson, and Iain B. Lambert. "Use of Substrate-Induced Gene Expression in Metagenomic Analysis of an Aromatic Hydrocarbon-Contaminated Soil." Applied and Environmental Microbiology 82, no. 3 (November 20, 2015): 897–909. http://dx.doi.org/10.1128/aem.03306-15.
Повний текст джерелаWerbin, Zoey R., Briana Hackos, Jorge Lopez-Nava, Michael C. Dietze, and Jennifer M. Bhatnagar. "The National Ecological Observatory Network’s soil metagenomes: assembly and basic analysis." F1000Research 10 (March 23, 2022): 299. http://dx.doi.org/10.12688/f1000research.51494.2.
Повний текст джерелаPuranik, Sampada, Rajesh Ramavadh Pal, Ravi Prabhakar More, and Hemant J. Purohit. "Metagenomic approach to characterize soil microbial diversity of Phumdi at Loktak Lake." Water Science and Technology 74, no. 9 (August 9, 2016): 2075–86. http://dx.doi.org/10.2166/wst.2016.370.
Повний текст джерелаSimon, Carola, and Rolf Daniel. "Metagenomic Analyses: Past and Future Trends." Applied and Environmental Microbiology 77, no. 4 (December 17, 2010): 1153–61. http://dx.doi.org/10.1128/aem.02345-10.
Повний текст джерелаHuy, Pham Quang, Nguyen Kim Thoa, and Dang Thi Cam Ha. "Diversity of reductive dechlorinating bacteria and archaea in herbicide/dioxin-contaminated soils from Bien Hoa airbase using metagenomic approach." Vietnam Journal of Biotechnology 18, no. 4 (May 24, 2021): 773–84. http://dx.doi.org/10.15625/1811-4989/18/4/15799.
Повний текст джерелаCastillo Villamizar, Genis Andrés, Heiko Nacke, Marc Boehning, Kristin Herz, and Rolf Daniel. "Functional Metagenomics Reveals an Overlooked Diversity and Novel Features of Soil-Derived Bacterial Phosphatases and Phytases." mBio 10, no. 1 (January 29, 2019): e01966-18. http://dx.doi.org/10.1128/mbio.01966-18.
Повний текст джерелаWerbin, Zoey R., Briana Hackos, Michael C. Dietze, and Jennifer M. Bhatnagar. "The National Ecological Observatory Network’s soil metagenomes: assembly and basic analysis." F1000Research 10 (April 19, 2021): 299. http://dx.doi.org/10.12688/f1000research.51494.1.
Повний текст джерелаDelmont, Tom O., Patrick Robe, Sébastien Cecillon, Ian M. Clark, Florentin Constancias, Pascal Simonet, Penny R. Hirsch, and Timothy M. Vogel. "Accessing the Soil Metagenome for Studies of Microbial Diversity." Applied and Environmental Microbiology 77, no. 4 (December 23, 2010): 1315–24. http://dx.doi.org/10.1128/aem.01526-10.
Повний текст джерелаOwen, Jeremy G., Zachary Charlop-Powers, Alexandra G. Smith, Melinda A. Ternei, Paula Y. Calle, Boojala Vijay B. Reddy, Daniel Montiel, and Sean F. Brady. "Multiplexed metagenome mining using short DNA sequence tags facilitates targeted discovery of epoxyketone proteasome inhibitors." Proceedings of the National Academy of Sciences 112, no. 14 (March 23, 2015): 4221–26. http://dx.doi.org/10.1073/pnas.1501124112.
Повний текст джерелаДисертації з теми "Soil metagenomic"
Goode, Ann Marie Liles Mark Russell. "Polyketide synthase pathway discovery from soil metagenomic libraries." Auburn, Ala., 2009. http://hdl.handle.net/10415/1805.
Повний текст джерелаShezi, Ntombifuthi. "Bio-prospecting a Soil Metagenomic Library for Carbohydrate Active Esterases." Thesis, Rhodes University, 2016. http://hdl.handle.net/10962/d1021266.
Повний текст джерелаSpiegelman, Dan. "Exploring the fusion of metagenomic library and DNA microarray technologies." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=98805.
Повний текст джерелаBorsetto, Chiara. "Study and exploitation of diverse soil environments for novel natural product discovery using metagenomic approaches." Thesis, University of Warwick, 2017. http://wrap.warwick.ac.uk/97341/.
Повний текст джерелаAndrews, Tucker. "Ecology Of Composted Bedded Pack And Its Impact On The Udder Microbiome With An Emphasis On Mastitis Epidemiology." ScholarWorks @ UVM, 2019. https://scholarworks.uvm.edu/graddis/989.
Повний текст джерелаNesme, Joseph. "Characterization of antibiotic resistance genes abundance and diversity in soil bacteria by metagenomic approaches : what is the dissemination potential of the soil resistome?" Phd thesis, Ecole Centrale de Lyon, 2014. http://tel.archives-ouvertes.fr/tel-01068359.
Повний текст джерелаWhissell, Gavin. "Merging metagenomic and microarray technologies to explore bacterial catabolic potential of Arctic soils." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=98518.
Повний текст джерелаNOVELLO, GIORGIA. "Exploring the microbiota of Vitis vinifera cv. Pinot Noir in two vineyards with different soil management: metagenomic and metaproteomic analysis." Doctoral thesis, Università del Piemonte Orientale, 2017. http://hdl.handle.net/11579/86922.
Повний текст джерелаOrtiz-Ortiz, Marianyoly. "Kartchner Caverns: Habitat Scale Community Diversity and Function in a Carbonate Cave." Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/265356.
Повний текст джерелаGrisi, Teresa Cristina Soares de Lima. "Diversidade de Bacteria e Archaea do solo do Cariri paraibano e prospecção de celulases e xilanases em clones metagenômicos e isolados bacterianos." Universidade Federal da Paraíba, 2011. http://tede.biblioteca.ufpb.br:8080/handle/tede/342.
Повний текст джерелаCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Soil samples of native pasture (site A) and of soil cultivated with grass Paspalum conjugatum, Bergius (site B) collected from Caatinga vegetation in the semi-arid region in Paraíba state (07°23‟27 S 36°31‟58 W) were utilized for constructing four metagenomic libraries, aiming the evaluation of microbial diversity through amplification of gene 16S rRNA of domains Bacteria and Archaea. The metagenomic DNAs were extracted by utilizing FastDNA® SPIN Kit for Soil (BIO 101), which were amplified by PCR, by using universal primers 27F / 1525R (Bacteria) and 20F / 958R (Archaea). The purified fragments were linked to vector pGEM Teasy and transformed by thermal shock in chemically competent Escherichia coli DH10B. Transformants were cultivated in LB/Ampicillin medium (100 μM/ml), IPTG (800 μg/mL) and XGal (80 μg/mL) at 37ºC/18-20 h. A selection of 250 clones of each library was performed, sequenced and after discarding the low quality sequences and chimerics, 64 and 68 sequences were obtained (Bacteria) and 89 and 141 sequences (Archaea) from soils of sites A and B, respectively, which were compared to public bank of data RDB and NCBI (similarity >95%). In site A the phylum Acidobacteria (48.4%) was the most abundant, followed by phyla Bacteroidetes (10.9%), Proteobacteria (10.9%), and Firmicutes (6.3%). In site B Proteobacteria (45.6%) was the most abundant, followed by Firmicutes (10.3%), Acidobacteria (8.8%), Bacterioidetes (7.3%); and also Cyanobacteria (1.5%) and Planctomycetes (1.5%) which were not found in site A. Among the sequences obtained, 23.4% (site A) and 25.0% (site B) were not classified (similarity <95%). In the domain Archaea the phyla found were Euryarchaeota (3.4 and 45.4%) and Crenarchaeota (2.2 and 3.5%), in sites A and B, respectively; it should be observed that 94.4% and 51.1% of the sequences were not classified (similarity <95%), between sites A and B, respectively. Larger diversity (Shannon‟s índex), richness (Chao 1), and distribution (equity index) of communities were observed at species level, in the phyla Bacteria and Archaea, in both sites. The metagenomic libraries 16S rRNA of Bacteria and Archaea, when compared by using the LIBSHUFF program, differed significantly (p<0.0001). The results of the present study showed the occurrence of a great diversity of bacteria and archaea in that semi-arid environment, with peculiar features of elevated temperature and hydric limitations, emphasizing the possibility of investigations on search of new genes and/or microbial isolates with biotechnological potential.
Amostras do solo da pastagem nativa (sítio A) e sob cultivo do capim marrequinho (Paspalum conjugatum, Bergius) (sítio B), coletadas na região semi-árida do bioma Caatinga, Paraíba, (07°23‟27 S 36°31‟58 O), foram utilizadas para construção de quatro bibliotecas de clones metagenômicos, para avaliação da diversidade microbiana pela amplificação do gene 16S rRNA dos domínios Bacteria e Archaea. Os DNA metagenômicos foram extraídos utilizando FastDNA® SPIN Kit for Soil (BIO 101), os quais foram amplificados por PCR utilizando primers universais, 27F / 1525R (Bacteria) e 20F / 958R (Archaea). Os fragmentos purificados foram ligados ao vetor pGEM Teasy e transformados por choque térmico em Escherichia coli DH10B quimicamente competente. Os transformantes foram cultivados em meio Agar LB/Ampicilina (100 μ/mL), IPTG (800 μg/μL) e XGal (80 μg/μL), a 37ºC/18-20 h. Foram selecionados 250 clones de cada biblioteca os quais foram sequenciados e após descarte das sequências de baixa qualidade e quiméricas, foram obtidas 64 e 68, 89 e 141 sequências para Bacteria e Archaea, nos solos dos sítios A e B, respectivamente, as quais foram comparadas em banco de dados públicos RDB e NCBI (≥95% de similaridade). No sítio A o filo Acidobacteria (48,4%) foi o mais abundante, seguido dos filos Bacteroidetes (10,9%), Proteobacteria (10,9%), e Firmicutes (6,3%). No sítio B Proteobacteria (45,6%) foi o de maior destaque, seguido de Firmicutes (10,3%), Acidobacteria (8,8%), Bacterioidetes (7,3%); e ainda Cyanobacteria (1,5%) e Planctomycetes (1,5%), que não foram encontrados no sítio A. Entre as sequências geradas, 23,4% (sítio A) e 25,0% (sítio B) não foram classificadas (similaridade <95%). No domínio Archaea foram encontrados os filos Euryarchaeota (3,4 e 45,4%) e Crenarchaeota (2,2 e 3,5%), nos sítios A e B, respectivamente; destacando-se que 94,4% e 51,1% das sequências não foram classificadas (similaridade <95%), entre os sítios A e B, respectivamente. Uma maior diversidade (índice de Shannon), riqueza (índice Chao 1) e distribuição (índice de equidade) das comunidades foram observadas no nível de espécies, tanto para Bacteria como para Archaea, nos dois sítios. As bibliotecas de clones metagenômicos 16S rRNA de Bacteria e Archaea, quando comparadas, utilizando-se o programa LIBSHUFF, diferiram significativamente (p<0,0001). Os resultados desse estudo mostraram a ocorrência de uma grande diversidade de bactérias e arqueas, nesse tipo de ambiente pouco estudado e com características peculiares de temperatura elevada e limitações hídricas, com possibilidade de busca de novos genes e/ou isolados microbianos, com potencial biotecnológico.
Книги з теми "Soil metagenomic"
Accademia economico-agraria dei georgofili (Florence, Italy). Biodiversità e il metagenoma del terreno agrario. Firenze: Edizioni Polistampa, 2011.
Знайти повний текст джерелаJapan) MARCO Workshop (5th 2009 Tsukuba. Perspectives of Metagenomics in Agricultural Research: MARCO Workshop 5 : abstract : 6-7 October 2009, Tsukuba, Japan : Epochal Tsukuba (Tsukuba International Congress Center). Tsukuba, Japan: National Institute for Agro-Environmental Sciences, 2009.
Знайти повний текст джерелаSugitha, T. C. K., Asish K. Binodh, K. Ramasamy, and U. Sivakumar. Soil Metagenomics. Taylor & Francis Group, 2020.
Знайти повний текст джерелаSugitha, T. C. K., Asish K. Binodh, K. Ramasamy, and U. Sivakumar. Soil Metagenomics. Taylor & Francis Group, 2020.
Знайти повний текст джерелаSugitha, T. C. K., Asish K. Binodh, K. Ramasamy, and U. Sivakumar. Soil Metagenomics. Taylor & Francis Group, 2020.
Знайти повний текст джерелаSugitha, T. C. K., Asish K. Binodh, K. Ramasamy, and U. Sivakumar. Soil Metagenomics. Taylor & Francis Group, 2020.
Знайти повний текст джерелаSugitha, T. C. K., Asish K. Binodh, K. Ramasamy, and U. Sivakumar. Soil Metagenomics. Taylor & Francis Group, 2020.
Знайти повний текст джерелаTaberlet, Pierre, Aurélie Bonin, Lucie Zinger, and Eric Coissac. Environmental DNA for functional diversity. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198767220.003.0010.
Повний текст джерелаTaberlet, Pierre, Aurélie Bonin, Lucie Zinger, and Eric Coissac. Introduction to environmental DNA (eDNA). Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198767220.003.0001.
Повний текст джерелаKirchman, David L. Genomes and meta-omics for microbes. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789406.003.0005.
Повний текст джерелаЧастини книг з теми "Soil metagenomic"
Kathi, Srujana. "Emerging Metagenomic Strategies for Assessing Xenobiotic Contaminated Sites." In Soil Biology, 89–100. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-47744-2_7.
Повний текст джерелаDelmont, Tom O., Laure Franqueville, Samuel Jacquiod, Pascal Simonet, and Timothy M. Vogel. "Soil Metagenomic Exploration of the Rare Biosphere." In Handbook of Molecular Microbial Ecology I, 287–98. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118010518.ch33.
Повний текст джерелаUnno, Yusuke, and Takuro Shinano. "Metagenomic Analysis of the Rhizosphere Soil Microbial Community." In Molecular Microbial Ecology of the Rhizosphere, 1099–103. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118297674.ch104.
Повний текст джерелаMisra, Sankalp, Vijay Kant Dixit, Swapnil Pandey, Shashank Kumar Mishra, Nikita Bisht, and Puneet Singh Chauhan. "Exploration of Soil Resistome Through a Metagenomic Approach." In Antibacterial Drug Discovery to Combat MDR, 313–25. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9871-1_15.
Повний текст джерелаParsley, Larissa C., Chengcang Wu, David Mead, Robert M. Goodman, and Mark R. Liles. "Soil Microbial DNA Purification Strategies for Multiple Metagenomic Applications." In Handbook of Molecular Microbial Ecology II, 109–15. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118010549.ch11.
Повний текст джерелаWommack, K. Eric, Sharath Srinivasiah, Mark R. Liles, Jaysheel Bhavsar, Shellie Bench, Kurt E. Williamson, and Shawn W. Polson. "Metagenomic Contrasts of Viruses in Soil and Aquatic Environments." In Handbook of Molecular Microbial Ecology II, 25–36. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118010549.ch4.
Повний текст джерелаRajesh, T., J. Rajendhran, P. Lavanya Pushpam, and P. Gunasekaran. "Methods in Metagenomic DNA, RNA, and Protein Isolation from Soil." In Handbook of Molecular Microbial Ecology II, 93–107. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118010549.ch10.
Повний текст джерелаColagiero, Mariantonietta, Isabella Pentimone, Laura Cristina Rosso, and Aurelio Ciancio. "A Metagenomic Study on the Effect of Aboveground Plant Cover on Soil Bacterial Diversity." In Soil Biological Communities and Ecosystem Resilience, 97–106. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63336-7_6.
Повний текст джерелаKielak, Anna M., and George A. Kowalchuk. "Targeting Major Soil-Borne Bacterial Lineages Using Large-Insert Metagenomic Approaches." In Handbook of Molecular Microbial Ecology II, 135–41. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118010549.ch14.
Повний текст джерелаPershina, E. V., E. E. Andronov, A. G. Pinaev, and N. A. Provorov. "Recent Advances and Perspectives in Metagenomic Studies of Soil Microbial Communities." In Management of Microbial Resources in the Environment, 141–66. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-5931-2_7.
Повний текст джерелаТези доповідей конференцій з теми "Soil metagenomic"
Melnichuk, T. N., A. Yu Egovtseva, S. F. Abdurashitov, E. R. Abdurashytova, E. N. Turin, V. V. Gorelova, and A. A. Zubochenko. "Microbiocenosis of southern chernozem under the influence of no-till." In CURRENT STATE, PROBLEMS AND PROSPECTS OF THE DEVELOPMENT OF AGRARIAN SCIENCE. Federal State Budget Scientific Institution “Research Institute of Agriculture of Crimea”, 2020. http://dx.doi.org/10.33952/2542-0720-2020-5-9-10-114.
Повний текст джерелаTereshchenko, Natalya, Tatiana Zyubanova, Elena Akimova, and Oksana Minaeva. "The assessment of soil suitability for reproduction of healthy seed potatoes based on metagenomic analysis of the soil microbial community and the level of soil suppressive activity." In MODERN SYNTHETIC METHODOLOGIES FOR CREATING DRUGS AND FUNCTIONAL MATERIALS (MOSM2020): PROCEEDINGS OF THE IV INTERNATIONAL CONFERENCE. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0069257.
Повний текст джерелаTaura, Usman, Sara Al-Araimi, Saif Al-Bahry, Yahya Al-Wahaibi, and Lujain Al-Rashdi. "Isolation of Autochthonous Consortium for the Bioremediation of Oil Contaminated Produced Water." In SPE Nigeria Annual International Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/212024-ms.
Повний текст джерелаKawulok, Jolanta, and Michal Kawulok. "Environmental Metagenome Classification for Soil-based Forensic Analysis." In 9th International Conference on Bioinformatics Models, Methods and Algorithms. SCITEPRESS - Science and Technology Publications, 2018. http://dx.doi.org/10.5220/0006659301820187.
Повний текст джерелаDzombak, Rebecca M., and Nathan D. Sheldon. "USING PAIRED GEOCHEMISTRY AND METAGENOMICS TO EXPLORE SOIL CRUSTS AS ANCIENT TERRESTRIAL ANALOGUES." In 54th Annual GSA North-Central Section Meeting - 2020. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020nc-347938.
Повний текст джерелаRahman, Jessica S., Jinyan Li, Juanying Xie, Shoshana Fogelman, and Michael Blumenstein. "Connectivity Based Method for Clustering Microbial Communities from Metagenomics Data of Water and Soil Samples." In 2018 International Joint Conference on Neural Networks (IJCNN). IEEE, 2018. http://dx.doi.org/10.1109/ijcnn.2018.8489220.
Повний текст джерела"Fungal metagenome of Chernevaya Taiga soils: taxonomic composition, differential abundance and factors related to plant gigantism." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-167.
Повний текст джерелаЗвіти організацій з теми "Soil metagenomic"
House, Geoffrey Lehman, Laverne A. Gallegos-Graves, and Patrick Sam Guy Chain. Overview of the Soil Metagenomics and Carbon Cycling SFA Fungal Collection. Office of Scientific and Technical Information (OSTI), November 2018. http://dx.doi.org/10.2172/1483488.
Повний текст джерелаCrowley, David E., Dror Minz, and Yitzhak Hadar. Shaping Plant Beneficial Rhizosphere Communities. United States Department of Agriculture, July 2013. http://dx.doi.org/10.32747/2013.7594387.bard.
Повний текст джерелаZhou, Jizhong, and Liyou Wu. From Structure to Functions: Metagenomics-Enabled Predictive Understanding of Soil Microbial Feedbacks to Climate Change. Office of Scientific and Technical Information (OSTI), November 2019. http://dx.doi.org/10.2172/1574023.
Повний текст джерелаMinz, Dror, Stefan J. Green, Noa Sela, Yitzhak Hadar, Janet Jansson, and Steven Lindow. Soil and rhizosphere microbiome response to treated waste water irrigation. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7598153.bard.
Повний текст джерела