Дисертації з теми "Software defect"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Software defect".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Ye, Xin. "Automated Software Defect Localization." Ohio University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1462374079.
Повний текст джерелаJain, Achin. "Software defect content estimation: A Bayesian approach." Thesis, University of Ottawa (Canada), 2005. http://hdl.handle.net/10393/26932.
Повний текст джерелаHassan, Syed Karimuddin and Syed Muhammad. "Defect Detection in SRS using Requirement Defect Taxonomy." Thesis, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-5253.
Повний текст джерелаskarimuddin@yahoo.com, hassanshah357@gmail.com
Porto, Faimison Rodrigues. "Cross-project defect prediction with meta-Learning." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-21032018-163840/.
Повний текст джерелаModelos de predição de defeitos auxiliam profissionais de teste na priorização de partes do software mais propensas a conter defeitos. A abordagem de predição de defeitos cruzada entre projetos (CPDP) refere-se à utilização de projetos externos já conhecidos para compor o conjunto de treinamento. Essa abordagem é útil quando a quantidade de dados históricos de defeitos é inapropriada ou insuficiente para compor o conjunto de treinamento. Embora o princípio seja atrativo, o desempenho de predição é um fator limitante nessa abordagem. Nos últimos anos, vários métodos foram propostos com o intuito de melhorar o desempenho de predição de modelos CPDP. Contudo, na literatura, existe uma carência de estudos comparativos que apontam quais métodos CPDP apresentam melhores desempenhos. Além disso, não há evidências sobre quais métodos CPDP apresentam melhor desempenho para um domínio de aplicação específico. De fato, não existe um algoritmo de aprendizado de máquina que seja apropriado para todos os domínios de aplicação. A tarefa de decisão sobre qual algoritmo é mais adequado a um determinado domínio de aplicação é investigado na literatura de meta-aprendizado. Um modelo de meta-aprendizado é caracterizado pela sua capacidade de aprender a partir de experiências anteriores e adaptar seu viés de indução dinamicamente de acordo com o domínio alvo. Neste trabalho, nós investigamos a viabilidade de usar meta-aprendizado para a recomendação de métodos CPDP. Nesta tese são almejados três principais objetivos. Primeiro, é conduzida uma análise experimental para investigar a viabilidade de usar métodos de seleção de atributos como procedimento interno de dois métodos CPDP, com o intuito de melhorar o desempenho de predição. Segundo, são investigados quais métodos CPDP apresentam um melhor desempenho em um contexto geral. Nesse contexto, também é investigado se os métodos com melhor desempenho geral apresentam melhor desempenho para os mesmos conjuntos de dados (ou projetos de software). Os resultados revelam que os métodos CPDP mais adequados para um projeto podem variar de acordo com as características do projeto sendo predito. Essa constatação conduz à terceira investigação realizada neste trabalho. Foram investigadas as várias particularidades inerentes ao contexto CPDP a fim de propor uma solução de meta-aprendizado capaz de aprender com experiências anteriores e recomendar métodos CPDP adequados, de acordo com as características do software. Foram avaliados a capacidade de meta-aprendizado da solução proposta e a sua performance em relação aos métodos base que apresentaram melhor desempenho geral.
Tran, Qui Can Cuong. "Empirical evaluation of defect identification indicators and defect prediction models." Thesis, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-2553.
Повний текст джерелаSherwood, Patricia Ann. "Inspections : software development process for building defect free software applied in a small-scale software development environment /." Online version of thesis, 1990. http://hdl.handle.net/1850/10598.
Повний текст джерелаHameed, Muhammad Muzaffar, and Muhammad Zeeshan ul Haq. "DefectoFix : An interactive defect fix logging tool." Thesis, Blekinge Tekniska Högskola, Avdelningen för programvarusystem, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-5268.
Повний текст джерелаPhaphoom, Nattakarn. "Pair Programming and Software Defects : A Case Study." Thesis, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-3513.
Повний текст джерелаAkinwale, Olusegun. "DuoTracker tool support for software defect data collection and analysis /." abstract and full text PDF (free order & download UNR users only), 2007. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1447633.
Повний текст джерелаGray, David Philip Harry. "Software defect prediction using static code metrics : formulating a methodology." Thesis, University of Hertfordshire, 2013. http://hdl.handle.net/2299/11067.
Повний текст джерелаPortnoy, William. "Distributable defect localization using Markov models /." Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/6883.
Повний текст джерелаBowes, David Hutchinson. "Factors affecting the performance of trainable models for software defect prediction." Thesis, University of Hertfordshire, 2013. http://hdl.handle.net/2299/10978.
Повний текст джерелаLiljeson, Mattias, and Alexander Mohlin. "Software defect prediction using machine learning on test and source code metrics." Thesis, Blekinge Tekniska Högskola, Institutionen för kreativa teknologier, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-4162.
Повний текст джерелаMahmood, Zaheed. "An analysis of software defect prediction studies through reproducibility and replication." Thesis, University of Hertfordshire, 2018. http://hdl.handle.net/2299/20826.
Повний текст джерелаCurhan, Lisa A. 1961. "Software defect tracking during new product development of a computer system." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/34824.
Повний текст джерелаIncludes bibliographical references (p. 74-75).
Software defects (colloquially known as "bugs") have a major impact on the market acceptance and profitability of computer systems. Sun Microsystems markets both hardware and software for a wide variety of customer needs. The integration of hardware and software is a key core capability for Sun. Minimizing the quantity and impact of software defects on this integration during new product development is essential to execution of a timely and high-quality product. To analyze the effect of software defects on the product development cycle for a midrange computer system, I have used a particular computer platform, the Productl server, as a case study. The objective of this work was to use Sun's extensive database of software defects as a source for data-mining in order to draw conclusions about the types of software defects that tend to occur during new product development and early production ramp. I also interviewed key players on the Productl development team for more insight into the causes and impacts of software defects for this platform. Some of the major themes that resulted from this study include: The impact of defects is not necessarily proportional to their quantity. Some types of defects have a much higher cost to fix due to customer impact, time needed to fix, or the wide distribution of the software in which they are embedded. Software Requirements need to be vetted extensively before production of new code. This is especially critical for platform-specific requirements. The confluence of new features, new software structure and new hardware can lead to a greater density of software defects. The higher number of defects associated with the new System Controller code supports this conclusion. Current Limitations of Defect Data Mining: Automated extraction
(cont.) of information is most efficient when it can be applied to numbers and short text strings. However, the evaluation of software defects for root cause cannot be easily summarized in a few words or numbers. Therefore, an intelligent classification methodology for root causes of software defects, to be included in Sun's defect database, would be extremely useful to increase the utility of the database for institutional learning. Software Defect Data Mining seems to be underutilized at Sun. I have barely touched the surface of the information that can be extracted from our "BugDB" defect database. This data resource is rich with history. We should extract and analyze this type of data frequently.
by Lisa A. Curhan.
S.M.
Isunza, Navarro Abgeiba Yaroslava. "Evaluation of Attention Mechanisms for Just-In-Time Software Defect Prediction." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288724.
Повний текст джерелаJust-In-Time Defect Prediction (JIT-DP) fokuserar på att förutspå fel i mjukvara vid ändringar i koden, med målet att hjälpa utvecklare att identifiera defekter medan utvecklingsprocessen fortfarande är pågående, och att förbättra kvaliteten hos applikationsprogramvara. Detta arbete studerar djupinlärningstekniker genom att tillämpa attentionmekanismer som har varit framgångsrika inom, bland annat, språkteknologi (NLP). Vi introducerar två nätverk vid namn Convolutional Neural Network with Bidirectional Attention (BACNN), och Bidirectional Attention Code Network (BACoN), som använder en tvåriktad attentionmekanism mellan koden och meddelandet om en mjukvaruändring. Dessutom undersöker vi BERT [17] och RoBERTa [57], attentionarkitekturer för JIT-DP. Mer specifikt studerar vi hur effektivt dessa attentionbaserade modeller kan förutspå defekta ändringar, och jämför dem med de bästa tillgängliga arkitekturerna DeePJIT [37] och TLEL [101]. Våra experiment utvärderar modellerna genom att använda mjukvaruändringar från det öppna källkodsprojektet OpenStack. Våra resultat visar att attentionbaserade nätverk överträffar referensmodellen sett till träffsäkerheten i de olika scenarierna. De attentionbaserade modellerna, framför allt BERT och RoBERTa, demonstrerade lovade resultat när det kommer till att identifiera defekta mjukvaruändringar och visade sig vara effektiva på att förutspå defekter i ändringar av nya mjukvaruversioner.
Shippey, Thomas Joshua. "Exploiting abstract syntax trees to locate software defects." Thesis, University of Hertfordshire, 2015. http://hdl.handle.net/2299/16365.
Повний текст джерелаSiahaan, Antony. "Defect correction based domain decomposition methods for some nonlinear problems." Thesis, University of Greenwich, 2011. http://gala.gre.ac.uk/7144/.
Повний текст джерелаLand, Lesley Pek Wee Information Systems Technology & Management Australian School of Business UNSW. "Software group reviews and the impact of procedural roles on defect detection performance." Awarded by:University of New South Wales. School of Information Systems, Technology and Management, 2000. http://handle.unsw.edu.au/1959.4/21838.
Повний текст джерелаDUTTA, BINAMRA. "Enterprise Software Metrics: How To Add Business Value." Kent State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=kent1239239432.
Повний текст джерелаSun, Boya. "PRECISION IMPROVEMENT AND COST REDUCTION FOR DEFECT MINING AND TESTING." Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1321827962.
Повний текст джерелаKasianenko, Stanislav. "Predicting Software Defectiveness by Mining Software Repositories." Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-78729.
Повний текст джерелаSaxena, Kaustubh. "Investigation of the Effect of the Number of Inspectors on the Software Defect Estimates." Thesis, North Dakota State University, 2012. https://hdl.handle.net/10365/26714.
Повний текст джерелаKristiansen, Jan Maximilian Winther. "Software Defect Analysis : An Empirical Study of Causes and Costs in the Information Technology Industry." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for datateknikk og informasjonsvitenskap, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-11120.
Повний текст джерелаVandehei, Bailey R. "Leveraging Defects Life-Cycle for Labeling Defective Classes." DigitalCommons@CalPoly, 2019. https://digitalcommons.calpoly.edu/theses/2111.
Повний текст джерелаOuyang, Sheng. "The effect of amount of software reuse on defect severity in real-time C-base environment." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0015/MQ55266.pdf.
Повний текст джерелаShams, Zalia. "Automated Assessment of Student-written Tests Based on Defect-detection Capability." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/52024.
Повний текст джерелаPh. D.
Wilkerson, Jerod W. "Closing the Defect Reduction Gap between Software Inspection and Test-Driven Development: Applying Mutation Analysis to Iterative, Test-First Programming." Diss., The University of Arizona, 2008. http://hdl.handle.net/10150/195160.
Повний текст джерелаYilmaz, Gokcen. "An Automated Defect Detection Approach For Cosmic Functional Size Measurement Method." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614646/index.pdf.
Повний текст джерелаCHANG, RAY-YAUNG. "Discovering Neglected Conditions in Software by Mining Program Dependence Graphs." Case Western Reserve University School of Graduate Studies / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=case1218722056.
Повний текст джерелаSargut, Kamil Umut. "Application Of Statistical Process Control To Software Development Processes Via Control Charts." Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/1270081/index.pdf.
Повний текст джерелаBhatti, Khurram, and Ahmad Nauman Ghazi. "Effectiveness of Exploratory Testing, An empirical scrutiny of the challenges and factors affecting the defect detection efficiency." Thesis, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-5456.
Повний текст джерелаSlutsatser: Vi anser att det experimentella tester har stor potential och mycket mer att erbjuda testning industrin. Men mer empirisk undersökning och sann fakta och siffror är skyldiga att motivera testning industrin att anpassa den. Vi har rapporterat en rad fördelar, nackdelar, utmaningar och faktorer i denna studie. Vi undersökte vidare fordringar anges av ET utövare genom ett experiment och undersökning. De statistiska test genomfördes på insamlade data för att dra meningsfulla resultat. Vi fann statistisk signifikans skillnaden i antalet sann fel som upptäcks. Använda utforskande testning strategi testare fann långt fler fel än testfall baserat testning. Även om det inte fanns någon statistisk signifikans skillnad mellan de två synsätten för falska defekter.
0046 73 651 8048
Sivrioglu, Damla. "A Method For Product Defectiveness Prediction With Process Enactment Data In A Small Software Organization." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614516/index.pdf.
Повний текст джерелаIs process enactment data beneficial for defect prediction?&rdquo
, &ldquo
How can we use process enactment data?&rdquo
and &ldquo
Which approaches and analysis methods can our method support?&rdquo
questions. We used multiple case study design and conducted case studies including with and without process enactment data in a small software development company. We preferred machine learning approaches rather than statistical ones, in order to cluster the data which includes process enactment informationsince we believed that they are convenient with the pattern oriented nature of the data. By the case studies performed, we obtained promising results. We evaluated performance values of prediction models to demonstrate the advantage of using process enactment data for the prediction of defect open duration value. When we have enough data points to apply machine learning methods and the data can be clusteredhomogeneously, we observed approximately 3% (ranging from -10% to %17) more accurate results from analyses including with process enactment data than the without ones. Keywords:
Kučera, Filip. "Softwarové ovládací prostředí pro měřicí metodu LBIC." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2010. http://www.nusl.cz/ntk/nusl-218413.
Повний текст джерелаРуденко, Александр Антонович. "Вероятностные модели и методы оценивания надежности программных средств с учетом вторичных дефектов". Thesis, Полтавский национальный технический университет им. Ю. Кондратюка, 2015. http://repository.kpi.kharkov.ua/handle/KhPI-Press/19065.
Повний текст джерелаThe dissertation on obtaining the scientific degree of candidate of technical sciences in the specialty 05.13.06 – information technologies – National technical University "Kharkiv Polytechnic Institute", Kharkov, 2015. The dissertation dedicated to the developing of models, methods of reliability estimation of software-technical complexes of information technology on the basis of making secondary defects. Scientific results are: improving probabilistic models of reliability estimation of software based on the parameters of secondary defects by modifying the risk function of these models that allows to reflect processes of testing and maintenance of software; method of estimating secondary defects of software tools that is based on the analysis of statistical data of manifestation of primary defects of software tools that allows to raise the accuracy of the quantitative assessment of performance indicators; the method of calculating the average intensity of manifestation of defects and the average change in the intensity of manifestation of defects with the help of modified model Jelinski-Moranda that, unlike existing, takes into account factor of secondary defects that allows to verify the reliability of software tools. Information technology of assessment the secure of software tools taking into account the secondary defects is devised basing on the method of estimating the number of secondary defects according to the statistics of defect detection and the method of calculating the average intensity of manifestation of defects and the average change in the intensity of manifestation of defects. The proposed models and methods allow to raise the accuracy of estimation of reliability of software and hardware complexes that is achieved by taking into account the factor of secondary defects.
Руденко, Олександр Антонович. "Імовірнісні моделі та методи оцінювання надійності програмних засобів з урахуванням вторинних дефектів". Thesis, ТОВ "Фірма "Техсервіс", 2015. http://repository.kpi.kharkov.ua/handle/KhPI-Press/19064.
Повний текст джерелаThe dissertation on obtaining the scientific degree of candidate of technical sciences in the specialty 05.13.06 – information technologies – National technical University "Kharkiv Polytechnic Institute", Kharkov, 2015. The dissertation dedicated to the developing of models, methods of reliability estimation of software-technical complexes of information technology on the basis of making secondary defects. Scientific results are: improving probabilistic models of reliability estimation of software based on the parameters of secondary defects by modifying the risk function of these models that allows to reflect processes of testing and maintenance of software; method of estimating secondary defects of software tools that is based on the analysis of statistical data of manifestation of primary defects of software tools that allows to raise the accuracy of the quantitative assessment of performance indicators; the method of calculating the average intensity of manifestation of defects and the average change in the intensity of manifestation of defects with the help of modified model Jelinski-Moranda that, unlike existing, takes into account factor of secondary defects that allows to verify the reliability of software tools. Information technology of assessment the secure of software tools taking into account the secondary defects is devised basing on the method of estimating the number of secondary defects according to the statistics of defect detection and the method of calculating the average intensity of manifestation of defects and the average change in the intensity of manifestation of defects. The proposed models and methods allow to raise the accuracy of estimation of reliability of software and hardware complexes that is achieved by taking into account the factor of secondary defects.
Sundström, Alex. "Investigation into predicting unit test failure using syntactic source code features." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233382.
Повний текст джерелаI denna avhandling undersöks applikationen av prognos för mjukvarudefekter för att förutse enhetstestfel. Data för detta syfte samlades in från en utvecklingsmiljö med kontinuerlig integration. Experimenten utfördes med användning av semantiska särdrag samlade från källkod. Då data var obalanserat med defekta exempel i minoritet evaluerades olika grader av översampling. Datainsamlingsprocessen visade att även om det fanns många kodinlämningar så misslyckades få någonsin ett enhetstest. Svårigheter med att länka testmisslyckanden till en specifik fil påträffades också. Den använda maskininlärningsmodellen uppvisade också dåliga resultat i jämförelse med relaterade värk. Mätt i F-measure uppnåddes i genomsnitt 53% av genomsnittlig prestandan av bästa möjliga prognos av mjukvarudefekter av buggar i Java källkod. Specifikt så framträdde det att väldigt lite information verkar finnas för modellen att lära sig defekter i filer som ej fanns med i träningsdata.
Moriggl, Irene. "Intelligent Code Inspection using Static Code Features : An approach for Java." Thesis, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-4149.
Повний текст джерелаCAVALCANTI, Diego Tavares. "Estudo do uso de vocabulários para analisar o impacto de relatórios de defeitos a código-fonte." Universidade Federal de Campina Grande, 2012. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1839.
Повний текст джерелаMade available in DSpace on 2018-09-28T14:01:43Z (GMT). No. of bitstreams: 1 DIEGO TAVARES CAVALCANTI - DISSERTAÇÃO PPGCC 2012..pdf: 11733349 bytes, checksum: 59909ce95d6ea71dea6e9686d3d20c33 (MD5) Previous issue date: 2012-11-26
Localizar e corrigir defeitos são tarefas comuns no processo de manutenção de software. Entretanto, a atividade de localizar entidades de código que são possivelmente defeituosas e que necessitam ser modificadas para a correção de um defeito, não é trivial. Geralmente, desenvolvedores realizam esta tarefa por meio de um processo manual de leitura e inspeção do código, bem como de informações cadastradas em relatórios de defeitos. De fato, é necessário que os desenvolvedores tenham um bom conhecimento da arquitetura e do design do software a fim de realizarem tal tarefa. Entretanto, este conhecimento fica espalhado por entre a equipe e requer tempo para ser adquirido por novatos. Assim, é necessário o desenvolvimento de técnicas que auxiliem na tarefa de análise de impacto de relatórios de defeitos no código, independente da experiência do desenvolvedor que irá executá-la. Neste trabalho, apresentamos resultados de um estudo empírico no qual avaliamos se a análise automática de vocabulários de relatórios de defeitos e de software pode ser útil na tarefa de localizar defeitos no código. Nele, analisamos similaridade de vocabulários como fator para sugerir classes que são prováveis de serem impactadas por um dado relatório de defeito. Realizamos uma avaliação com oito projetos maduros de código aberto, desenvolvidos em Java, que utilizam Bugzilla e JIRA como seus repositórios de defeitos. Nossos resultados indicam que a análise de ambos os vocabulários é, de fato, uma fonte valiosa de informação, que pode ser utilizada para agilizar a tarefa de localização de defeitos. Para todos os sistemas estudados, ao considerarmos apenas análise de vocabulário, vimos que, mesmo com um ranking contendo apenas 8% das classes de um projeto, foi possível encontrar classes relacionadas ao defeito buscado em até 75% dos casos. Portanto, podemos concluir que, mesmo que não possamos utilizar vocabulários de software e de relatórios de defeitos como únicas fontes de informação, eles certamente podem melhorar os resultados obtidos, ao serem combinados com técnicas complementares.
Locating and fixing bugs described in bug reports are routine tasks in software development processes. A major effort must be undertaken to successfully locate the (possibly faulty) entities in the code that must be worked on. Generally, developers map bug reports to code through manual reading and inspection of both bug reports and the code itself. In practice, they must rely on their knowledge about the software architecture and design to perform the mapping in an efficient and effective way. However, it is well known that architectural and design knowledge is spread out among developers. Hence, the success of such a task is directly depending on choosing the right developer. In this paper, we present results of an empirical study we performed to evaluate whether the automated analysis of bug reports and software vocabularies can be helpful in the task of locating bugs. We conducted our study on eight versions of six mature Java open-source projects that use Bugzilla and JIRA as bug tracking systems. In our study, we have used Information Retrieval techniques to assess the similarity of bug reports and code entities vocabularies. For each bug report, we ranked ali code entities according to the measured similarity. Our results indicate that vocabularies are indeed a valuable source of information that can be used to narrow down the bug-locating task. For ali the studied systems, considering vocabulary similarity only, a Top 8% list of entities has about 75% of the target entities. We conclude that while vocabularies cannot be the sole source of information, they can certainly improve results if combined with other techniques.
OLIVEIRA, Paulo César de. "Abordagem semi-supervisionada para detecção de módulos de software defeituosos." Universidade Federal de Pernambuco, 2015. https://repositorio.ufpe.br/handle/123456789/19990.
Повний текст джерелаMade available in DSpace on 2017-07-24T12:11:04Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Dissertação Mestrado Paulo César de Oliveira.pdf: 2358509 bytes, checksum: 36436ca63e0a8098c05718bbee92d36e (MD5) Previous issue date: 2015-08-31
Com a competitividade cada vez maior do mercado, aplicações de alto nível de qualidade são exigidas para a automação de um serviço. Para garantir qualidade de um software, testá-lo visando encontrar falhas antecipadamente é essencial no ciclo de vida de desenvolvimento. O objetivo do teste de software é encontrar falhas que poderão ser corrigidas e consequentemente, aumentar a qualidade do software em desenvolvimento. À medida que o software cresce, uma quantidade maior de testes é necessária para prevenir ou encontrar defeitos, visando o aumento da qualidade. Porém, quanto mais testes são criados e executados, mais recursos humanos e de infraestrutura são necessários. Além disso, o tempo para realizar as atividades de teste geralmente não é suficiente, fazendo com que os defeitos possam escapar. Cada vez mais as empresas buscam maneiras mais baratas e efetivas para detectar defeitos em software. Muitos pesquisadores têm buscado nos últimos anos, mecanismos para prever automaticamente defeitos em software. Técnicas de aprendizagem de máquina vêm sendo alvo das pesquisas, como uma forma de encontrar defeitos em módulos de software. Tem-se utilizado muitas abordagens supervisionadas para este fim, porém, rotular módulos de software como defeituosos ou não para fins de treinamento de um classificador é uma atividade muito custosa e que pode inviabilizar a utilização de aprendizagem de máquina. Neste contexto, este trabalho propõe analisar e comparar abordagens não supervisionadas e semisupervisionadas para detectar módulos de software defeituosos. Para isto, foram utilizados métodos não supervisionados (de detecção de anomalias) e também métodos semi-supervisionados, tendo como base os classificadores AutoMLP e Naive Bayes. Para avaliar e comparar tais métodos, foram utilizadas bases de dados da NASA disponíveis no PROMISE Software Engineering Repository.
Because the increase of market competition then high level of quality applications are required to provide automate services. In order to achieve software quality testing is essential in the development lifecycle with the purpose of finding defect as earlier as possible. The testing purpose is not only to find failures that can be fixed, but improve software correctness and quality. Once software gets more complex, a greater number of tests will be necessary to prevent or find defects. Therefore, the more tests are designed and exercised, the more human and infrastructure resources are needed. However, time to run the testing activities are not enough, thus, as a result, it causes escape defects. Companies are constantly trying to find cheaper and effective ways to software defect detection in earlier stages. In the past years, many researchers are trying to finding mechanisms to automatically predict these software defects. Machine learning techniques are being a research target, as a way of finding software modules detection. Many supervised approaches are being used with this purpose, but labeling software modules as defective or not defective to be used in training phase is very expensive and it can make difficult machine learning use. Considering that this work aims to analyze and compare unsupervised and semi-supervised approaches to software module defect detection. To do so, unsupervised methods (of anomaly detection) and semi-supervised methods using AutoMLP and Naive Bayes algorithms were used. To evaluate and compare these approaches, NASA datasets were used at PROMISE Software Engineering Repository.
Marín, Campusano Beatriz Mariela. "Functional Size Measurement and Model Verification for Software Model-Driven Developments: A COSMIC-based Approach." Doctoral thesis, Universitat Politècnica de València, 2011. http://hdl.handle.net/10251/11237.
Повний текст джерелаMarín Campusano, BM. (2011). Functional Size Measurement and Model Verification for Software Model-Driven Developments: A COSMIC-based Approach [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/11237
Palancia
Mahmood, Waqas, and Muhammad Faheem Akhtar. "Validation of Machine Learning and Visualization based Static Code Analysis Technique." Thesis, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-4347.
Повний текст джерелаSoftware trygghet har alltid varit en i efterhand inom mjukvaruutveckling som leder till osäker mjukvara. Företagen är beroende av penetrationstester för att upptäcka säkerhetsproblem i deras programvara. Att införliva säkerheten vid tidigt utvecklingsskede minskar kostnaderna och overhead. Statisk kod analys kan tillämpas vid genomförandet av mjukvaruutveckling livscykel. Tillämpa maskininlärning och visualisering för statisk kod är en ny idé. Teknik kan lära mönster av normaliserade kompressionständning avstånd NCD och klassificera källkoden till rätta eller felaktig användning på grundval av utbildning fall. Visualisering bidrar också till att klassificera code fragment utifrån deras associerade färger. En prototyp har utvecklats för att genomföra denna teknik som kallas Code Avstånd VISUALISERARE CDV. För att testa effektiviteten hos denna teknik empirisk validering krävs. I denna forskning vi bedriver serie experiment för att testa dess effektivitet. Vi använder verkliga livet öppen källkod som vår test ämnen. Vi har också samlats in fel från deras motsvarande felrapportering förråd samt fel och rätt version av källkoden. Vi utbildar CDV genom att markera rätt och fel version av koden fragment. På grundval av dessa träningar CDV klassificerar andra nummer fragment som korrekta eller felaktiga. Vi mätt sina fel upptäckt förhållandet falska negativa och falska positiva förhållandet. Resultatet visar att den här tekniken är effektiv i fel upptäckt och har låga antalet falsklarm.
waqasmah@gmail.com +46762316108
Ahmed, Israr, and Shahid Nadeem. "Minimizing Defects Originating from Elicitation, Analysis and Negotiation (E and A&N) Phase in Bespoke Requirements Engineering." Thesis, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-4070.
Повний текст джерелаPERES, Glaucia Boudox. "A black-box testing technique for the detection of crashes based on automated test scenarios." Universidade Federal de Pernambuco, 2009. https://repositorio.ufpe.br/handle/123456789/2366.
Повний текст джерелаBoudox Peres, Glaucia; Cabral Mota, Alexandre. A black-box testing technique for the detection of crashes based on automated test scenarios. 2009. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2009.
Řezníček, Martin. "Inovace měřicího pracoviště pro měření solárních článků." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2009. http://www.nusl.cz/ntk/nusl-217979.
Повний текст джерелаFaustová, Tereza. "Nástroje na podporu testování." Master's thesis, Vysoká škola ekonomická v Praze, 2009. http://www.nusl.cz/ntk/nusl-11762.
Повний текст джерелаWang, Hui. "Software Defects Classification Prediction Based On Mining Software Repository." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-216554.
Повний текст джерелаNakamura, Taiga. "Recurring software defects in high end computing." College Park, Md. : University of Maryland, 2007. http://hdl.handle.net/1903/7217.
Повний текст джерелаThesis research directed by: Computer Science. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Hickman, Björn, and Victor Holmqvist. "Predict future software defects through machine learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301864.
Повний текст джерелаRapportens mål var att undersöka potentiella effekter av att predicera mjukvarudefekter i ett mjukvaruprojekt. Detta genomfördes med hjälp av maskininlärning. Vidare undersöker studien vilka särdrag hos en kodbas som är av intresse för att genomföra dessa prediktioner. De undersökta särdrag som användes för att träna modellerna var av både teknisk såväl som organisatorisk karaktär. Modellerna som användes var Random forest, logistisk regression och naive Bayes. Data hämtades från ett open source git-repository, VSCode, där korrekta klassificeringar av rapporterade defekter hämtades från GitHub-Issues. Rapportens resultat ger indikationer på att både tekniska och organisatoriska särdrag är av relevans. Samtliga tre modeller påvisade liknande resultat. Vidare kan modellernas resultat visa stöd för att användas som ett komplementärt verktyg vid projektledning av mjukvaruprojekt. Närmare bestämt stöd vid riskplanering, riskbedömning och vid resursallokering. Vidare skulle fortsatta studier inom detta område vara av intresse för att bekräfta denna studies slutsatser.
Couto, César Francisco de Moura. "Predicting software defects with causality tests = Predizendo defeitos de software com testes de causalidade." Universidade Federal de Minas Gerais, 2013. http://hdl.handle.net/1843/ESBF-9GMMLN.
Повний текст джерелаPredição de defeitos é uma área de pesquisa em engenharia de software que objetiva identificar os componentes de um sistema de software que são mais prováveis de apresentar defeitos. Apesar do grande investimento em pesquisa objetivando identificar uma maneira efetiva para predizer defeitos em sistemas de software, ainda não existe uma solução amplamente utilizada para este problema. As atuais abordagens para predição de defeitos apresentam pelo menos dois problemas principais. Primeiro, a maioria das abordagens não considera a idéia de causalidade entre métricas de software e defeitos. Mais especificamente, os estudos realizados para avaliar as técnicas de predição de defeitos não investigam em profundidade se as relações descobertas indicam relações de causa e efeito ou se são coincidências estatísticas. O segundo problema diz respeito a saída dos atuais modelos de predição de defeitos. Tipicamente, a maioria dos modelos indica o número ou a existência de defeitos em um componente no futuro. Claramente, a disponibilidade desta informação é importante para promover a qualidade de software. Entretanto, predizer defeitos logo que eles são introduzidos no código é mais útil para mantenedores que simplesmente sinalizar futuras ocorrências de defeitos. Para resolver estas questões, nós propomos uma abordagem para predição de defeitos centrada em evidências mais robustas no sentido de causalidade entre métricas de código fonte (como preditor) e a ocorrência de defeitos. Mais especificamente, nós usamos um teste de hipótese estatístico proposto por Clive Granger (Teste de Causalidade de Granger) para avaliar se variações passadas nos valores de métricas de código fonte podem ser usados para predizer mudanças em séries temporais de defeitos. Nossa abordagem ativa alarmes quando mudanças realizadas no código fonte de um sistema alvo são prováveis de produzir defeitos. Nós avaliamos nossa abordagem em várias fases da vida de quatro sistemas implementados em Java. Nós alcançamos um precisão média maior do que 50% em três dos quatro sistemas avaliados. Além disso, ao comparar nossa abordagem com abordagens que não são baseadas em testes de causalidade, nossa abordagem alcançou uma precisão melhor.