Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Soft tissue simulation.

Дисертації з теми "Soft tissue simulation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-37 дисертацій для дослідження на тему "Soft tissue simulation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Golec, Karolina. "Hybrid 3D Mass Spring System for Soft Tissue Simulation." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1004/document.

Повний текст джерела
Анотація:
La nécessité de simulations de tissus mous, tels que les organes internes, se pose avec le progrès des domaines scientifiques et médicaux. Le but de ma thèse est de développer un nouveau modèle générique, topologique et physique, pour simuler les organes humains. Un tel modèle doit être facile à utiliser, doit pouvoir effectuer des simulations en temps réel avec un niveau de précision permettant l'utilisation à des fins médicales. Cette thèse explore de nouvelles méthodes de simulation et propose des améliorations pour la modélisation de corps déformables. Les méthodes proposées visent à pouvoir effectuer des simulations rapides, robustes et fournissant des résultats physiquement précis. L'intérêt principal de nos solutions réside dans la simulation de tissus mous élastiques a petites et grandes déformations à des fins médicales. Nous montrons que pour les méthodes existantes, la précision pour simuler librement des corps déformables ne va pas de pair avec la performance en temps de calcul. De plus, pour atteindre l'objectif de simulation rapide, de nombreuses approches déplacent certains calculs dans une étape de pré-traitement, ce qui entraîne l'impossibilité d'effectuer des opérations de modification topologiques au cours de la simulation comme la découpe ou le raffinement. Dans cette thèse, le cadre utilisé pour les simulations s'appelle TopoSim. Il est conçu pour simuler des matériaux à l'aide de systèmes masses-ressorts (MSS) avec des paramètres d'entrée spécifiques. En utilisant un MSS, qui est connu pour sa simplicité et sa capacité à effectuer des simulations temps réel, nous présentons plusieurs améliorations basé physiques pour contrôler les fonctionnalités globales du MSS qui jouent un rôle clé dans la simulation de tissus réels. La première partie de ce travail de thèse vise à reproduire une expérience réelle de simulation physique qui a étudié le comportement du tissu porcin à l'aide d'un rhéomètre rotatif. Son objectif était de modéliser un corps viscoélastique non linéaire. A partir de l'ensemble des données acquises, les auteurs de l'expérience ont dérivé une loi de comportement visco-élastique qui a ensuite été utilisée afin de la comparer avec nos résultats de simulation. Nous définissons une formulation des forces viscoélastiques non linéaires inspirée de la loi de comportement physique. La force elle-même introduit une non linéarité dans le système car elle dépend fortement de l'amplitude de l'allongement du ressort et de trois paramètres spécifiques à chaque type de tissu. La seconde partie de la thèse présente notre travail sur les forces de correction de volume permettant de modéliser correctement les changements volumétriques dans un MSS. Ces forces assurent un comportement isotrope des solides élastiques et un comportement correct du volume quel que soit la valeur du coefficient de Poisson utilisé. La méthode nécessite de résoudre deux problèmes: l'instabilité provoquant des plis et les contraintes de Cauchy. Nos solutions à ces limitations impliquent deux étapes. La première consiste à utiliser trois types de ressorts dans un maillage entièrement hexaédrique: les arêtes, les faces diagonales et les diagonales internes. Les raideurs des ressorts dans le système ont été formulées pour obéir aux lois mécaniques de base. La deuxième étape consiste à ajouter des forces de correction linéaires calculées en fonction du changement de volume et des paramètres mécaniques du tissu simulé, à savoir le coefficient de Poisson et le module de Young [etc…]
The need for simulations of soft tissues, like internal organs, arises with the progress of the scientific and medical environments. The goal of my PhD is to develop a novel generic topological and physical model to simulate human organs. Such a model shall be easy to use, perform the simulations in the real time and which accuracy will allow usage for the medical purposes.This thesis explores novel simulation methods and improvement approaches for modeling deformable bodies. The methods aim at fast and robust simulations with physically accurate results. The main interest lies in simulating elastic soft tissues at small and large strains for medical purposes. We show however, that in the existing methods the accuracyto freely simulate deformable bodies and the real-time performance do not go hand in hand. Additionally, to reach the goal of simulating fast, many of the approaches move the necessary calculations to pre-computational part of the simulation, which results in inability to perform topological operations like cutting or refining.The framework used for simulations in this thesis is designed to simulate materials using Mass Spring Systems (MSS) with particular input parameters. Using Mass-Spring System, which is known for its simplicity and ability to perform fast simulations, we present several physically-based improvements to control global features of MSS which play the key role in simulation of real bodies
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Duysak, Alpaslan. "Efficient techniques for soft tissue modeling and simulation." Thesis, Bournemouth University, 2004. http://eprints.bournemouth.ac.uk/446/.

Повний текст джерела
Анотація:
Performing realistic deformation simulations in real time is a challenging problem in computer graphics. Among numerous proposed methods including Finite Element Modeling and ChainMail, we have implemented a mass spring system because of its acceptable accuracy and speed. Mass spring systems have, however, some drawbacks such as, the determination of simulation coefficients with their iterative nature. Given the correct parameters, mass spring systems can accurately simulate tissue deformations but choosing parameters that capture nonlinear deformation behavior is extremely difficult. Since most of the applications require a large number of elements i. e. points and springs in the modeling process it is extremely difficult to reach realtime performance with an iterative method. We have developed a new parameter identification method based on neural networks. The structure of the mass spring system is modified and neural networks are integrated into this structure. The input space consists of changes in spring lengths and velocities while a "teacher" signal is chosen as the total spring force, which is expressed in terms of positional changes and applied external forces. Neural networks are trained to learn nonlinear tissue characteristics represented by spring stiffness and damping in the mass spring algorithm. The learning algorithm is further enhanced by an adaptive learning rate, developed particularly for mass spring systems. In order to avoid the iterative approach in deformation simulations we have developed a new deformation algorithm. This algorithm defines the relationships between points and springs and specifies a set of rules on spring movements and deformations. These rules result in a deformation surface, which is called the search space. The deformation algorithm then finds the deformed points and springs in the search space with the help of the defined rules. The algorithm also sets rules on each element i. e. triangle or tetrahedron so that they do not pass through each other. The new algorithm is considerably faster than the original mass spring systems algorithm and provides an opportunity for various deformation applications. We have used mass spring systems and the developed method in the simulation of craniofacial surgery. For this purpose, a patient-specific head model was generated from MRI medical data by applying medical image processing tools such as, filtering, the segmentation and polygonal representation of such model is obtained using a surface generation algorithm. Prism volume elements are generated between the skin and bone surfaces so that different tissue layers are included to the head model. Both methods produce plausible results verified by surgeons.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Schill, Markus A. "Biomechanical soft tissue modeling techniques, implementation and application /." [S.l. : s.n.], 2002. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10605020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Comas, Olivier. "Real-time Soft Tissue Modelling on GPU for Medical Simulation." Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2010. http://tel.archives-ouvertes.fr/tel-00561299.

Повний текст джерела
Анотація:
Modéliser la déformation de structures anatomiques en temps réel est un problème crucial en simulation médicale. En raison des grandes différences existantes dans leur forme et leur constitution, un modèle unique est insuffisant face à la variété des comportements mécaniques. Par conséquent, nous avons identifié deux principaux types de structures: les organes pleins (cerveau, foie, prostate etc.) et les organes creux (colon, vaisseaux sanguins, estomac etc.). Notre réponse à cette problématique est double. Notre première contribution est une implémentation GPU d'un modèle éléments finis qui est non-linéaire, anisotropique et viscoélastique pour les structures pleines. Notre seconde contribution est un environnement pour modéliser en temps réel les structures fines via un modèle parallèlisable et co-rotationnel utilisant des éléments coques et une approche pour mailler une surface complexe avec des éléments coques courbes. Bien que les deux modèles de tissus soient basés sur la mécanique continue pour une meilleure précision, ils sont tous les deux capables de simuler la déformation d'organes en temps réel. Enfin, leur implémentation dans l'environnement open source SOFA permettra la diffusion de ces deux modèles afin de participer à l'amélioration du réalisme des simulateurs médicaux.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Teschner, Matthias. "Direct computation of soft tissue deformation in craniofacial surgery simulation /." Aachen : Shaker, 2001. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=009236357&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chen, Zhuo-Wei. "Simulation numérique du comportement dynamique des organes pelviens." Thesis, Evry-Val d'Essonne, 2013. http://www.theses.fr/2013EVRY0009/document.

Повний текст джерела
Анотація:
Le prolapsus des organes pelviens (vessie, rectum, utérus, vagin) est un problème de santé qui touche de plus en plus de femmes. Ce trouble, dont la fréquence augmente avec le vieillissement de la population, altère inévitablement la qualité de vie des malades. Pour autant, les causes de cette pathologie sont mal connues et les pratiques chirurgicales demeurent mal évaluées. La réalisation d’un simulateur du comportement dynamique des organes pelviens permettant au chirurgien d’estimer l’impact fonctionnel de son geste avant sa réalisation est donc un besoin identifié. Ce travail concerne ainsi le développement, par la méthode des éléments finis, d’un modèle numérique du mouvement des organes pelviens et de leurs interactions. Un modèle est construit à partir d’une segmentation de l’IRM des patiente, permettant de générer la géométrie des organes pelviens. Des lois hyperélastiques sont ensuite adoptées pour modéliser le comportement mécanique des organes. Des résultats qualitatifs sont obtenus, permettant de comprendre les causes de certaines formes de prolapsus et d’estimer l’effet virtuel des interactions entre les organes
Pelvic organ prolapse is a health problem that occurs only in women and becomes more common. These disorders whose frequency increases with the aging of the population affect the patients’ quality of life. However, the causes of these diseases are poorly understood and the surgical practices remain poorly evaluated. The realization of a simulator will allow surgeon to estimate the functional impact of his actions before implementation, to perform the surgery in a more controlled and reliable way. This work concerns the development of a numerical model of pelvic organs’ movement and their interactions based on the finite element methods. A first model is constructed from patients MRI images, allowing the generation of the organ geometries. Hyperelastic modeling of the organs behaviors were considered. Qualitative results could help to understand the reasons for the prolapse and to estimate the potential effect of organs interactions
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lu, Yongtao. "Soft tissue modelling and facial movement simulation using the finite element method." Thesis, Cardiff University, 2010. http://orca.cf.ac.uk/54369/.

Повний текст джерела
Анотація:
This thesis presents a framework for soft tissue modelling, facial surgery simulation, and facial movement synthesis based on the volumetric finite element method. Assessment of facial appearance pre- and post-surgery is of major concern for both patients and clinicians. Pre-surgical planning is a prerequisite for successful surgical procedures and outcomes. Early computer-assisted facial models have been geometrically based. They are computationally efficient, but cannot give an accurate prediction for facial surgery simulation. Therefore, in this thesis, the emphasis is placed on physically-based methods, especially the finite element technique. To achieve realistic surgery simulation, soft tissue modelling is of crucial importance. Thus, in this thesis, considerable effort has been directed to develop constitutive equations for facial skeletal muscles. The skeletal muscle model subsequently developed is able to capture the complex mechanical properties of skeletal muscle, which are active, quasi-incompressible, fibre-reinforced and hyperelastic. In addition, to improve the characterisation of in-vivo muscle behaviour, a technique has been developed to visualise the internal fibre arrangement of skeletal muscle using the FEM-NURBS method, which is the combination of the finite element method and the non-uniform rational B-spline solid mathematical representation. Another principal contribution made in this thesis is the three-dimensional finite element facial model, which can be used for the simulations of facial surgery and facial movement. The procedure of one cranio-facial surgery is simulated by using this facial model and the numerical predictions show a good agreement with the patient post-surgical data. In addition, it would be very helpful to also simulate the facial movement and facial expressions. In this thesis, two facial expressions (smile and disgust) and the mouth opening are simulated to assess the post-surgical appearance and test the muscle-driven facial movement simulation method.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Faraci, Alessandro. "A multiresolution nonlinear finite element approach to real-time simulation of soft tissue deformation with haptic feedback." Thesis, Imperial College London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.430145.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nilsson, Linus. "Real-time simulation of diaphragm displacement during physiological and mechanical ventilation." Thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-202329.

Повний текст джерела
Анотація:
This thesis presents a tunable 3D real-time interactive simulator of the geometrical displacement of the thoracic diaphragm during physiological and mechanical ventilation. Particular attention is placed on capturing the heterogeneous tissue composition while maintaining computational efficiency and accuracy. The long term goal is to establish an accurate theoretical model to complement the experimental and clinical studies of the side effects associated with mechanical ventilation and to overcome the ethical difficulties of performing time resolved studies on human patients. The deformations are modelled using a commercial 3D model and a mass-spring model together with distance constraints and Verlet integration. The simulator is easily adjusted in real-time to many different cases of ventilation and validated through inspection and comparison with existing models. More research is needed to validate the model using patient specific data, as well as extending the model to include additional physiological and pathophysiological components. Long term goals includes considering the microscopic aspects of cellular mechanics to capture the underlying causes of ventilator-induced diaphragmatic dysfunction.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Visconti, Maria Augusta Portella Guedes 1985. "Validity of water and acrylic as soft tissue simulation materials in an in vitro study using cone beam computed tomography." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/290177.

Повний текст джерела
Анотація:
Orientador: Francisco Haiter Neto
Texto em português e inglês
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba
Made available in DSpace on 2018-08-24T17:16:38Z (GMT). No. of bitstreams: 1 Visconti_MariaAugustaPortellaGuedes_D.pdf: 2357684 bytes, checksum: ed042e1f5da51d27eae5691a052e4cc3 (MD5) Previous issue date: 2014
Resumo: O presente estudo propôs-se validar os materiais água e acrílico como simuladores de tecidos moles em um estudo in vitro realizado com tomografia computadorizada de feixe cônico (TCFC). Para isso foram utilizadas três cabeças humanas, com tecidos moles intactos, para determinação do padrão-ouro. Essas cabeças foram submetidas a exames de TCFC e posteriormente descarnadas e tomografadas novamente, agora com diferentes tipos de simuladores de tecido mole, seguindo o mesmo protocolo de aquisição. Para simulação dos tecidos moles foram confeccionadas três caixas de acrílico com diferentes dimensões e espessuras. Estas caixas foram utilizadas isoladamente, conjugadas entre si e em combinação com a água, totalizando dez diferentes tipos de simuladores. Um único avaliador experiente realizou as mensurações em quatro regiões de interesse para maxila e mandíbula, incluindo dentes e ossos alveolares. As regiões de interesse consistiram em áreas quadrangulares, nas quais foram determinados todos os valores de cinzas expressos em pixels. Os resultados mostraram que tanto a região avaliada quanto os tipos de simuladores testados interferiram diretamente nos valores de pixels obtidos. As caixas de acrílico de 0,5 e 1,5 cm de espessura foram os simuladores que mais se assemelharam ao padrão-ouro, não apresentando diferença significativa. No entanto, essa similaridade apenas foi observada para a maxila, limitada às regiões dos dentes e ossos alveolares anteriores. A simulação dos tecidos moles realizada apenas com o acrílico foi a que mais se aproximou dos tecidos moles humanos nas imagens de TCFC, apenas para maxila
Abstract: The aim of this study was to validate the materials water and acrylic as soft tissue simulators in an in vitro study conducted with cone beam computed tomography (CBCT). For this we used three human heads, with soft tissues intact, to determine the "gold standard". These heads were submitted to CBCT exams, and subsequently stripped and scanned again, this time with different types of soft tissue simulators, following the same acquisition protocol. For soft tissue simulation, three acrylic boxes of differing dimensions and thicknesses were prepared. These boxes were used separately, combined together, and in combination with water, totaling ten different types of simulators. A single experienced evaluator did measurements in four regions of interest for the maxilla and mandible, including teeth and alveolar bone. The regions of interest consisted of quadrangular areas, in which all gray values were determined, expressed in pixels. The results sowed both the region evaluated as well as the types of simulators tested directly affected the pixel values obtained. The acrylic boxes with 0.5 and 1.5 cm thickness were the simulators that more closely resembled the gold standard, presenting no significant difference. However, this similarity was observed only for the maxilla, limited to the anterior tooth and alveolar bone regions. The simulation of soft tissues done solely with acrylic was the one closest to human soft tissues in the CBCT images, only for maxilla
Doutorado
Radiologia Odontologica
Doutora em Radiologia Odontológica
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Ma, Jiajie. "Accuracy and reliability of non-linear finite element analysis for surgical simulation." University of Western Australia. School of Mechanical Engineering, 2006. http://theses.library.uwa.edu.au/adt-WU2010.0089.

Повний текст джерела
Анотація:
In this dissertation, the accuracy and reliability of non-linear finite element computations in application to surgical simulation is evaluated. The evaluation is performed through comparison between the experiment and finite element analysis of indentation of soft tissue phantom and human brain phantom. The evaluation is done in terms of the forces acting on the cylindrical Aluminium indenter and deformation of the phantoms due to these forces. The deformation of the phantoms is measured by tracking 3D motions of X-ray opaque markers implanted in the direct neighbourhood under the indenter using a custom-made biplane X-ray image intensifiers (XRII) system. The phantoms are made of Sylgard® 527 gel to simulate the hyperelastic constitutive behaviour of the brain tissue. The phantoms are prepared layer by layer to facilitate the implantation of the X-ray opaque markers. The modelling of soft tissue phantom indentation and human brain phantom indentation is performed using the ABAQUSTM/Standard finite element solver. Realistic geometry model of the human brain phantom obtained from Magnetic Resonance images is used. Specific constitutive properties of the phantom layers determined through uniaxial compression tests are used in the model. The models accurately predict the indentation force-displacement relations and marker displacements in both soft tissue phantom indentation and human brain phantom indentation. Good agreement between the experimental and modelling results verifies the reliability and accuracy of the finite element analysis techniques used in this study and confirms the predictive power of these techniques in application to surgical simulation.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Delventhal, Brooke. "Simulation-Based Stability Tests in Total Knee Arthroplasty: Are Component Alignment, KneeLaxity, and Tibiofemoral Contact Forces Related?" The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1574422948246589.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Potvin, Brigitte. "Predicting Muscle Activations in a Forward-Inverse Dynamics Framework Using Stability-Inspired Optimization and an In Vivo-Based 6DoF Knee Joint." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34647.

Повний текст джерела
Анотація:
Modeling and simulations are useful tools to help understand knee function and injuries. As there are more muscles in the human knee joint than equations of motion, optimization protocols are required to solve a problem. The purpose of this thesis was to improve the biofidelity of these simulations by adding in vivo constraints derived from experimental intra-cortical pin data and stability-inspired objective functions within an OpenSim-Matlab forward-inverse dynamics simulation framework on lower limb muscle activation predictions. Results of this project suggest that constraining the model knee joint’s ranges of motion with pin data had a significant impact on lower limb kinematics, especially in rotational degrees of freedom. This affected muscle activation predictions and knee joint loading when compared to unconstrained kinematics. Furthermore, changing the objective will change muscle activation predictions although minimization of muscle activation as an objective remains more accurate than the stability inspired functions, at least for gait. /// La modélisation et les simulations in-silico sont des outils importants pour approfondir notre compréhension de la fonction du genou et ses blessures. Puisqu’il y a plus de muscles autour du genou humain que d’équations de mouvement, des procédures d’optimisation sont requises pour résoudre le système. Le but de cette thèse était d’explorer l’effet de changer l’objectif de cette optimisation à des fonctions inspirées par la stabilité du genou par l’entremise d’un cadre de simulation de dynamique directe et inverse utilisant MatLab et OpenSim ainsi qu'un model musculo-squelétaire contraint cinématiquement par des données expérimentales dérivées de vis intra-corticales, sur les prédictions d’activation musculaire de la jambe. Les résultats de ce projet suggèrent que les contraintes de mouvement imposées sur le genou modélisé ont démontré des effets importants sur la cinématique de la jambe et conséquemment sur les prédictions d'activation musculaire et le chargement du genou. La fonction objective de l'optimisation change aussi les prédictions d’activations musculaires, bien que la fonction minimisant la consommation énergétique soit la plus juste, du moins pour la marche.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Moreira, Hipólito Douglas França. "Deformação de tecidos moles para simuladores médicos: uma abordagem sem malha." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/100/100131/tde-25012016-172839/.

Повний текст джерела
Анотація:
Esta dissertação de mestrado propõe o estudo e a implementação de um método de deformação usando modelos tridimensionais sem o uso de malhas baseado na técnica Smoothed Particles Hydrodynamics (SPH), que consiste num sistema de resolução de equações diferenciais para aplicação de conceitos físicos para simular deformação de tecidos moles. A opção pelo método sem malha para processo de deformação é apresentado nesta dissertação como alternativa a um dos métodos mais comuns em simulação de deformação de tecidos, o método massa-mola, explorando questões referentes ao uso de recursos computacionais. Para chegada a definição do método foram analisados os temas envolvendo métodos de deformação, modelos baseados em pontos e o SPH como plataformas para alcançar o desenvolvimento do método proposto pela dissertação. Como forma de comprovar as propriedades do método desenvolvido foi realizada a implementação e testes levando em consideração os modelos de deformação e a interação em tempo real num ambiente de simulação que contempla a deformação de uma mama, levando em conta a comparação com o método massa-mola, o uso de recursos do próprio método em função do aumento de detalhe e do uso de objeto com múltiplas propriedades
This master thesis proposes a study and implementation of deformation method using tridimensional models without edge composed meshes based on Smoothed Particles Hydrodynamics (SPH) technique, that consists on diferential equation solving system to reproduce physical concepts to simulate soft tissue deformation. The option for a meshless method to deformation process is shown in this thesis as an alternative to a very common method in tissue deform simulation, the mass-spring method, reviewing a comparison based on computational resources. To achieve a method definition were analyzed fields of study involving deformation methods, point-based models and SPH as platforms to build and deploy the proposed method for this thesis. To show the characteristics for this developed deformation method was realized the implementation and tests based on deformation models and real time interaction on a simulation environment that includes a breast deformation, taking in account the comparison to mass-spring, number of points of the cloud model and multiple properties
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Wijanto, Florent. "Multiscale mechanics of soft tissues." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLX093.

Повний текст джерела
Анотація:
Les réseaux de fibre sont une structure omniprésente dans les tissus biologiques, aussi bien au niveau macroscopique, où ils sont l'ingrédient principal des tissus mous, qu'au niveau microscopique, en tant que constituants des structures collagèniques ou du cytosquelette. L'objectif de ce travail de thèse est de proposer un modèle basé sur la microstructure physique des réseaux de fibres afin d'obtenir une compréhension du comportement mécanique des réseaux de fibres biologiques. Le modèle est basé sur une description de fibres glissant les unes par rapport aux autres et interagissant via des ponts qui se comportent comme des ressorts. Ces ponts peuvent s'attacher et se détacher de manière stochastique avec un taux de détachement qui dépend de la force subie. Comparé aux modélisations existantes, notre travail met en jeu une configuration en glissement dynamique des fibres, ainsi que des sites d'attachement discrets ne permettant l'attachement qu'à des endroits localisés de la fibre. Le détachement des ponts est basé sur la diffusion thermique hors d'un puit de potentiel suivant la théorie de Kramers. Cette théorie donne un contexte physique à la dynamique du détachement ainsi qu'une dépendance naturelle du détachement au chargement via l'inclinaison du paysage énergétique par la force de chargement. Le modèle donne deux modes de contrôle du système : un contrôle à vitesse imposée, appelé système dur, et un contrôle à force imposée, appelé système mou. Notre travail permet également de visualiser le comportement du système à travers une simulation stochastique. Les simulations offrent deux algorithmes, chacun adapté à la méthode de contrôle du système, en système dur ou mou et respectant la causalité dans chacun des modes. Les résultats de la simulation sont explorés via la visualisation des données sortantes de la simulation, qui servent de support pour l'investigation paramétrique du comportement du modèle et ancrent l'interprétation physique des résultats. En particulier, l'influence de l'espacement des sites d'attachement du système, un point caractéristique du modèle, est examiné. De même, nous explorons l'effet de chargements complexes (transitoires, cycliques, etc.) qui représentent les chargements physiologiques des tissus fibreux
Fibre networks are ubiquitous structures in biological tissues, both at the macroscopic level being the main ingredient in soft tissues and at the microscopic level, as constituents of collagen structures or the cytoskeleton. The goal of this work is to propose a model based on the physical microstructure of fibre networks in order to provide an understanding of the mechanical behaviour of biological fibre networks. The current model starts from fibres sliding with respect to one another and interacting via spring-like cross-bridges. These cross-bridges can attach and detach stochastically with a load-dependent detachment rate. Compared to existing modelling approaches, this work features a dynamic sliding configuration for the interacting fibres and discrete binding sites which permit attachment on localised spaces of the fibre. The detachment of cross-bridges is based on thermal diffusion out of an energy well, following the Kramers rate theory. This theory provides a physical background to the detachment dynamics as well as a natural load dependency in the tilting of the energy landscape by the load force. The model provides two modes by which the depicted system may be driven: an imposed velocity driving, called a hard device and an imposed load driving, called a soft device. The work also provides a way of visualising the behaviour of the model by performing a stochastic simulation. The simulations provided present two algorithms, each tailored to represent the driving of the system, whether in hard or soft device, respecting the causality in each of the driving mode. Simulation results are explored via data visualisation of simulation output. These visualisation serve as an entry point into parametric investigation of the model behaviour and anchor the interpretation of the results into physical systems. In particular, the influence of binding site spacing, one of the key features of the model, is investigated. We also investigate the effects of complex loading paths (transitory, cyclic, etc.) which can be associated to the physiological loadings fibrous tissues
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Cavalcanti, Ebenézer Silva. "Desenvolvimento de um sistema para medida elastográfica dinâmica por ultrassom." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/59/59135/tde-01122012-112131/.

Повний текст джерела
Анотація:
Este trabalho aborda o desenvolvimento de um aparato instrumental para efetuar medidas elastográficas por ultrassom. No qual foi considerado a elastografia tradicional que busca analisar as propriedades mecânicas de viscosidade e elasticidade de um meio, através da compressão e descompressão, de modo a simular o processo de palpação utilizado pelos médicos para avaliar a rigidez de um tecido, pois é sabido que estas mudanças estão relacionados a alguma forma de lesão do tecido biológico. Para alcançar tal propósito, foi construído simuladores de tecidos moles com características mecânicas próximas ao tecido biológico, nos quais foram utilizados materiais a base de parafinas (hidrocarbonetos) e gelatinas (proteínas extraída da hidrólise do colágeno de tecidos bovinos/suínos). Além do mais, foram introduzidos, na mistura, fluidos magnetoreológicos (FMR), que permitiram alterar estas propriedades mecânicas através da aplicação de um campo magnético externo. Os resultados apontam a viabilidade do protótipo em levantar o módulo de elasticidade destes simuladores, além de torná-lo um elemento diferencial para treinamento de profissionais da área de saúde e possível criação de protocolo para calibração de diferentes tumores e análise de medidas elastográficas, a partir da alteração de rigidez de um meio através da aplicação de campos magnéticos externos.
This work approaches the development of an apparatus to perform instrumental measures elastográficas ultrasound. In elastography which was traditionally considered that seeks to analyze the mechanical properties of viscosity and elasticity of a medium, through compression and decompression in order to simulate the palpation process used by physicians to evaluate stiffness of a fabric, it is known that these changes are related to some form of injury of biological tissue. To achieve this goal, was constructed simulators soft tissues mechanical characteristics close to biological tissue in which the materials were used based on paraffin (oil) and gelatin (protein hydrolysis of collagen extracted from bovine tissue / pigs). Besides, were introduced into the mixture, magnetorheological fluids (FMR) which allowed to change these mechanical properties by applying an external magnetic field. The results indicate the viability of the prototype in raising the modulus of elasticity of these simulators, and make it a differential element of training for health professionals and possible creation of protocol for calibration of different tumors and analysis of measures elastográficas from changing the stiffness of a medium by applying external magnetic fields.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Mishra, Shikta. "Modeling and Simulation of Cutting in Soft Biological Tissues for Surgical Simulation." University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1352994028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Deram, Aurélien. "Environnement générique pour la validation de simulations médicales." Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENS022/document.

Повний текст джерела
Анотація:
Dans le cadre des simulations pour l'entrainement, le planning, ou l'aide per-opératoire aux gestes médicaux-chirurgicaux, de nombreux modèles ont été développés pour décrire le comportement mécanique des tissus mous. La vérification, la validation et l'évaluation sont des étapes cruciales en vue de l'acceptation clinique des résultats de simulation. Ces tâches, souvent basées sur des comparaisons avec des données expérimentales ou d'autres simulations, sont rendues difficiles par le nombre de techniques de modélisation existantes, le nombre d'hypothèses à considérer et la difficulté de réaliser des expériences réelles utilisables. Nous proposons un environnement de comparaison basé sur une analyse du processus de modélisation et une description générique des éléments constitutifs d'une simulation (e.g. géométrie, chargements, critère de stabilité) ainsi que des résultats (expérimentaux ou provenant d'une simulation). La description générique des simulations permet d'effectuer des comparaisons avec diverses techniques de modélisation (e.g. masse-ressorts, éléments finis) implémentées sur diverses plateformes de simulation. Les comparaisons peuvent être faites avec des expériences réelles, d'autres résultats de simulation ou d'anciennes versions du modèle grâce à la description commune des résultats, et s'appuient sur un ensemble de métriques pour quantifier la précision et la vitesse de calcul. La description des résultats permet également de faciliter l'échange d'expériences de validation. La pertinence de la méthode est montrée sur différentes expériences de validation et de comparaison de modèles. L'environnement et ensuite utilisé pour étudier l'influence des hypothèses de modélisations et des paramètres d'un modèle d'aspiration de tissu utilisé par un dispositif de caractérisation des lois de comportement. Cette étude permet de donner des pistes pour l'amélioration des prédictions du dispositif
Numerous models have been developed to describe the mechanical behavior of soft tissues for medical simulation. Verification, validation and evaluation are crucial steps towards the acceptance of simulation results by clinicians. These tasks, often based on comparisons between simulation results and experimental data or other simulations, are difficult because of the wide range of available modeling techniques, the number of possible assumptions, and the difficulty to perform validation experiments. A comparison framework is proposed based on the analysis of the modelisation process and on a generic description of both constitutive elements of a simulation (e.g. geometry, loads, stability criterion) and results (from simulations or experiments). Generic description allows comparisons between different modeling techniques implemented in various simulation platforms. Comparisons can be performed against real experiments, other simulation results or previous versions of a model thanks to the generic description of results and use a set of metrics to quantify both accuracy and computational efficiency. This description also facilitates validation experiments sharing. The usability of the method is shown on several validation and comparison experiments. The framework is then used to investigate the influence of modeling assumptions and parameters in a biomechanical finite element model of an in-vivo tissue aspiration device. This study gives clues towards the improvement of the predictions of the characterization device
Стилі APA, Harvard, Vancouver, ISO та ін.
19

De, Novi Gianluca <1975&gt. "Soft tissue modeling for virtual reality surgery simulator with haptic feedback." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2011. http://amsdottorato.unibo.it/3702/1/DeNovi_Gianluca_tesi.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

De, Novi Gianluca <1975&gt. "Soft tissue modeling for virtual reality surgery simulator with haptic feedback." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2011. http://amsdottorato.unibo.it/3702/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Staber, Brian. "Stochastic analysis, simulation and identification of hyperelastic constitutive equations." Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1042/document.

Повний текст джерела
Анотація:
Le projet de thèse concerne la construction, la génération et l'identification de modèles continus stochastiques, pour des milieux hétérogènes exhibant des comportements non linéaires. Le domaine d'application principal visé est la biomécanique, notamment au travers du développement d'outils de modélisation multi-échelles et stochastiques, afin de quantifier les grandes incertitudes exhibées par les tissus mous. Deux aspects sont particulièrement mis en exergue. Le premier point a trait à la prise en compte des incertitudes en mécanique non linéaire, et leurs incidences sur les prédictions des quantités d'intérêt. Le second aspect concerne la construction, la génération (en grandes dimensions) et l'identification multi-échelle de représentations continues à partir de résultats expérimentaux limités
This work is concerned with the construction, generation and identification of stochastic continuum models, for heterogeneous materials exhibiting nonlinear behaviors. The main covered domains of applications are biomechanics, through the development of multiscale methods and stochastic models, in order to quantify the great variabilities exhibited by soft tissues. Two aspects are particularly highlighted. The first one is related to the uncertainty quantification in non linear mechanics, and its implications on the quantities of interest. The second aspect is concerned with the construction, the generation in high dimension and multiscale identification based on limited experimental data
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Bosman, Julien. "Physically-based 6-DoF nodes deformable models : application to connective tissues simulation and soft-robots control." Thesis, Lille 1, 2015. http://www.theses.fr/2015LIL10122/document.

Повний текст джерела
Анотація:
La simulation médicale est un domaine de recherche de plus en plus actif. Malgré les avancées observées ces dernières années, le modèle complet du patient virtuel reste un objectif ambitieux. Il existe encore de nombreuses opportunités de recherche, notamment concernant la modélisation mécanique des conditions aux limites. Jusqu'à présent, la majorité des travaux était consacrée à la simulation d'organes, ces derniers étant généralement simulés seuls. Cette situation pose problème car l'influence des organes environnants sur les conditions aux limites est négligée. Ces interactions peuvent être complexes, impliquant des contacts mais aussi des liaisons mécaniques dues aux tissus conjonctifs. Ainsi, les influences mutuelles entre les structures anatomiques sont souvent simplifiées, diminuant le réalisme des simulations. Cette thèse visé à étudier l'importance des tissus conjonctifs, et plus particulièrement d'une bonne modélisation des conditions aux limites. Dans ce but, le rôle des ligaments lors d'une intervention chirurgicale par laparoscopie a été étudié. Afin d'améliorer le réalisme des simulations, un modèle mécanique dédié aux tissus conjonctifs, basée sur la mécanique des milieux continus et un ensemble de nœuds à 6 degrés de liberté a été développée. En outre, les travaux sur les tissus conjonctifs ont donné lieu à la mise au point d'une méthode de modélisation utilisée dans le cadre des robots déformables. Cette méthode permet un contrôle précis, et temps-réel, d'un bras robotisé déformable. L'utilisation de nœuds orientables a donné lieu à un modèle à nombre de degrés de liberté réduit, permettant de reproduire le comportement de structures plus complexes
Despite the promising advances done in medical simulation, the complete virtual patient’s model is yet to come. There are still many avenues for improvements, especially concerning the mechanical modeling of boundary conditions.So far, most of the work has been dedicated to organs simulation, which are generally simulated alone. This raises a real problem as the role of the surrounding organs in boundary conditions is neglected. However, these interactions can be complex, involving contacts but also mechanical links provided by layers of soft tissues known as connective tissues. As a consequence, the mutual influences between the anatomical structures are generally simplified, weakening realism of simulations.This thesis aims at studying the importance of the connective tissues, and especially of a proper modeling of the boundary conditions. To this end, the role of the ligaments during laparoscopic liver surgery has been investigated. In order to enhance the simulations’ realism, a mechanical model dedicated to the connective tissues has been worked out. This has led to the development of a physically-based method relying on material points that can, not only translate, but also rotate themselves. The goal of this model is to enable the simulation of multiple organs linked by complex interactions.In addition, the work on the connective tissues model has been derived to be used in soft robotics. The principle of relying on orientable material points has been used to developed a reduced model that can reproduce the behavior of more complex structures. The objective of this work is to provide the means to control – in real-time – a soft robot made of a deformable arm
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Caforio, Federica. "Mathematical modelling and numerical simulation of elastic wave propagation in soft tissues with application to cardiac elastography." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLX001/document.

Повний текст джерела
Анотація:
Les objectifs de cette thèse sont la modélisation mathématique et la simulation numérique de l’élastographie impulsionnelle basée sur la force de radiation acoustique (FRA) dans un tissu mou précontraint, et en particulier le myocarde. La première partie du manuscript concerne la modélisation mathématique de la FRA, la propagation d’ondes de cisaillement qui en résulte et la caractérisation de la vitesse des ondes de cisaillement pour une loi de comportement générale du tissu myocardique. Nous montrons aussi des applications pour l’estimation de l’orientation des fibres cardiaques dans le myocarde et l’évaluation de “pathologies synthétiques ”. Une des contributions principales de ce travail est le développement d’un modèle mathématique original de la FRA. En particulier, à partir d’un modèle biomécanique tridimensionnel du coeur, nous obtenons, à travers une approche asymptotique, les équations qui régissent les champs de pression et de cisaillement induits par la FRA. De plus, nous calculons une expression analytique du terme source responsable de la génération des ondes de cisaillement à partir d’une impulsion acoustique en pression. Dans la deuxième partie de la thèse, nous proposons des outils numériques efficaces pour une simulation numérique réaliste d’une expérience d’élastographie impulsionnelle dans un tissu quasi-incompressible, précontraint et fibré. La discrétisation en espace se base sur des éléments finis spectraux d’ordre élevé. Pour la discrétisation en temps, nous proposons une nouvelle méthode adaptée à l’élasticité incompressible. En particulier, seuls les termes correspondant à des vitesses infinies, associés à la contrainte d’incompressibilité, sont traités implicitement, à travers la resolution d’un problème de Poisson à chaque pas de temps de l’algorithme. En outre, nous proposons une nouvelle méthode d’ordre élevé et efficace pour la résolution d’un problème de Poisson, qui se base sur la transformée de Fourier discrète
This PhD thesis concerns the mathematical modelling and numerical simulation of impulsive Acoustic Radiation Force (ARF)-driven Shear Wave Elastography (SWE) imaging in a prestressed soft tissue, with a specific reference to the cardiac setting. The first part of the manuscript deals with the mathematical modelling of the ARF, the resulting shear wave propagation, and the characterisation of the shear wave velocity in a general constitutive law for the myocardial tissue. We also show some applications to the extraction of fibre orientation in the myocardium and the detection of “synthetic pathologies”. One of the main contributions of this work is the derivation of an original mathematical model of the ARF. In more detail, starting from an accurate biomechanical model of the heart, and based on asymptotic analysis, we infer the governing equation of the pressure and the shear wave field remotely induced by the ARF, and we compute an analytical expression of the source term responsible for the generation of shear waves from an acoustic pressure pulse. In the second part of the PhD thesis, we propose efficient numerical tools for a realistic numerical simulation of an SWE experiment in a nearly-incompressible, pre-stressed, fibered soft tissue. The spatial discretisation is based on high-order Spectral Finite Elements (HO-SEM). Concerning the time discretisation, we propose a novel method adapted to incompressible elasticity. In particular, only the terms travelling at infinite velocity, associated with the incompressibility constraint, are treated implicitly by solving a scalar Poisson problem at each time step of the algorithm. Furthermore, we provide a novel matrix-free, high-order, fast method to solve the Poisson problem, based on the use of the Discrete Fourier Transform
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Dziubla, Thomas D. Lowman Anthony M. "Macroporous hydrogels as vascularizable soft tissue-implant interfaces : materials characterization, in vitro evaluation, computer simulations, and applications in implantable drug delivery devices /." Philadelphia : Drexel University, 2002. http://dspace.library.drexel.edu/handle/1721.1/36.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Boubaker, Mohamed Bader. "Contribution mécanique à la réduction des marges en radiothérapie de la prostate : modélisation et simulation numérique du mouvement et de la déformation des organes pelviens." Thesis, Vandoeuvre-les-Nancy, INPL, 2009. http://www.theses.fr/2009INPL089N/document.

Повний текст джерела
Анотація:
La prostate est un organe pelvien qui joue un rôle important dans son environnement anatomique, notamment en assurant la sécrétion d’un liquide essentiel dans la composition du liquide séminal. Le cancer de la prostate représente la première cause mortalité chez l’homme à un âge avancé. Ce travail concerne le développement par la méthode des éléments finis d'un modèle numérique du mouvement des organes pelviens (prostate, vessie, rectum) et de leurs interactions. L’objectif est la réduction des marges d'irradiation du volume cible au cours d'une séance de radiothérapie, afin de ne pas altérer les organes sains avoisinants. Les marges choisies sont importantes compte tenu du fait que la prostate subi des déplacements importants lors des interactions permanentes avec les organes avoisinants. Un premier modèle est construit à partir de la géométrie des organes pelviens générée à partir d'images scanner acquises sur patients. Des lois hyper-élastiques sont adoptées pour modéliser le comportement mécanique du rectum et de la vessie et un comportement Hookéen est considéré pour la prostate. Les paramètres physiques du modèle sont déterminés à partir de la littérature, des données expérimentales et de nos propres mesures. Les conditions aux limites cinématiques et statiques (pressions de distension intra-vésicale et intra-rectale) sont définies à partir des observations anatomiques et reflètent la présence de l’entourage anatomique et les conditions de chargement. Des comparaisons entre les variations de forme et de position d'organes obtenues par simulation et les mesures obtenues par imagerie scanner (Keros et al. ; 2006) montrent des amplitudes de déplacements proches, avec des écarts variant entre 8% et 11%. Un modèle prenant en compte la variabilité des paramètres physiques inter et intra patients est envisagé en perspectives
The prostate plays an important biological role in the human body, such as secretion of some prostatic liquid essential in the semen composition. Prostate cancer is the first cause of mortality for men at an advanced age. The prostate motion due to the interactions with the surrounding anatomic entities is difficult to predict, hence important margins are usually adopted during X-ray irradiation, in order not to damage the surrounding healthy organs (bladder and rectum). The principal objective of this work is to set up a FE model of the motion and deformation of the human pelvic organs in order to reduce the margins. A first model is constructed from CT-scans of the human pelvic organs, allowing the generation of the organ geometrics. Hyperelastic modeling of the bladder and rectum behaviors were considered whereas a Hookean model was retained for the prostate. The model parameters are fixed by adopting literature data, experimental data (from CHU-Nancy) and experimental measurements achieved on pig. Boundary conditions are defined according either surrounding anatomy kinematic constraints or internal pressures that correspond to the bladder and rectum repletion’s. Simulated displacements show order of magnitudes of the prostate motion very close to measurements carried out by Keros et al. (2006) on a deceased person, with a relative error ranging from 8% to 11%. Those differences are essentially due to the variability in the physical parameters, pointing out the need for a statistical approach in order to take into account the material, geometrical and loading variability related to a panel of patients
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Oliveira, Ana Cláudia Melo Tiessi Gomes de. "Método de deformação elástica para simulação visual e háptica de procedimentos de punção." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/3/3141/tde-29122014-182821/.

Повний текст джерела
Анотація:
Os simuladores que empregam técnicas de Realidade Virtual são alternativas vantajosas às formas tradicionais de ensino e treinamento médico. Esses simuladores apresentam requisitos específicos, tais como: interação em tempo real e modelos realistas para representar órgãos e tecidos. Além disso, devem possuir comportamentos físicos suficientemente parecidos com os reais e gerar feedbacks dos procedimentos que estejam sendo simulados. Essas características exigem esforços de programação para o desenvolvimento de técnicas de interação e visualização 3D, além de estudos dos tecidos humanos, incluindo o comportamento físico dos órgãos e tecidos e o estudo das leis da Física envolvidas neste processo. O tema central desta pesquisa é a simulação de procedimentos de punção, sendo que nesse tipo de aplicações são necessários tanto o realismo visual como também o háptico, a fim de proporcionar ao usuário sensações parecidas com as encontradas nos procedimentos reais. Os métodos que utilizam parâmetros físicos são os mais utilizados alcançar o realismo exigido na interação háptica. No entanto, esses métodos deixam a desejar no que diz respeito à interação em tempo real. Dessa forma, o objetivo desta pesquisa foi desenvolver um novo método para simular a deformação de objetos tridimensionais que representam órgãos humanos. De forma que sejam alcançados o realismo visual, o realismo háptico e a interação em tempo real, com um custo computacional aceitável. O método desenvolvido consiste na divisão dos objetos tridimensionais em camadas, a fim de simular o volume e também a heterogeneidade dos órgãos humanos. O número de camadas e a atribuição de parâmetros físicos podem ser definidos de acordo com os diferentes tecidos que compõem o órgão humano e respectivos comportamentos que se pretenda simular. O método foi desenvolvido depois de conduzida uma Revisão Sistemática para levantamento dos métodos utilizados em aplicações para treinamento médico e respectivos níveis de realismo visual e háptico oferecidos. Para demonstrar e testar o funcionamento do método foi criado um simulador genérico de procedimentos de punção, no qual podem ser configurados o número de camadas, os parâmetros visco-elásticos, e assim permitir a avaliação do desempenho e o realismo das simulações. Como exemplo de aplicação o método foi aplicado em um simulador de punção de mama, cuja qualidade foi avaliada por médicos especialistas. Os protótipos foram criados no Laboratório de Tecnologias Interativas da Escola Politécnica da USP (Interlab), a partir de um Framework desenvolvido pelo Laboratório de Aplicações de Informática em Saúde da Escola de Artes Ciências e Humanidades da USP (LApIS).
Simulators that employ Virtual Reality techniques can prove to be an advantageous alternative to the traditional forms of medical learning and training. These simulators have specific requirements, such as real-time interaction and realistic models representing organs and tissues. Moreover, they should possess physical behavior similar enough to real life and generate feedback from procedures being simulated. These characteristics require programming efforts for the development of 3D visualization and interaction techniques, as well as studies of human tissue, including the physical behavior of organs and tissues and the study of the laws of Physics involved in this process. The main theme of this research is the simulation of puncture procedures. This type of application requires a realistic rendering of both visual and haptic traits in order to provide the user with sensations similar to those found in real procedures. Methods which employ physical parameters are more widely used to achieve the realism required in haptic interaction. However, these methods present shortcomings regarding real-time interaction. Thus, the aim of this research was to develop a new method to simulate the deformity of tridimensional objects that represent human organs and to achieve visual realism, haptic realism, and real-time interaction, with acceptable computational costs. The method developed in this study consists in dividing tridimensional objects into layers in order to simulate volume as well as heterogeneity of human organs. The number of layers and the attribution of physical parameters can be defined according to different tissues that compose the human organ and respective behaviors that one wishes to simulate. The method was developed after a systematic review to assess the methods employed in applications for medical training and their respective levels of visual and haptic realism. In order to demonstrate and to test how the method operates, we created a generic simulator of puncture procedures, which can be configured with any combination of layers of tissue and its viscoelastic parameters, allowing for the assessment of simulation performance and realism. As an example, the method was applied to a breast biopsy simulator whose quality was evaluated by specialist doctors. The prototypes were created in the Interactive Technology Laboratory (Interlab) of the Engineering School of the University of São Paulo, from a framework developed by the Laboratory of Computer Applications for Health Care (LApIS) of the School of Arts, Science and Humanities of the University of São Paulo.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Duriez, Christian. "Simulation temps-réel d'interventions médicales impliquant des déformations et des interactions mécaniques entre les tissus et les outils (Manuscrit en anglais)." Habilitation à diriger des recherches, Université des Sciences et Technologie de Lille - Lille I, 2013. http://tel.archives-ouvertes.fr/tel-00785118.

Повний текст джерела
Анотація:
Les travaux de recherche présentés pour l'habilitation à diriger des recherches, visent à proposer de nouveaux outils pour simuler des interventions médicales et chirurgicales. Ces outils ont plusieurs applications dont l'amélioration de la formation des praticiens, la planification d'interventions pour la préparation et la validation d'une thérapie ou encore l'assistance au geste médical durant une intervention. Or, pour simuler ces interventions de manière réaliste voire prédictive, il faut tenir compte de la déformation des structures anatomiques et des interactions mécaniques entre les outils et les organes. En même temps, la simulation doit être interactive et calculée en temps-réel pour garder le geste du praticien dans la boucle de la simulation. Le défi majeur de notre travail est donc de garantir un calcul précis au niveau de la simulation tout en gardant un temps de calcul très court, qui soit compatible avec le temps-réel. D'abord, nous proposons une formulation optimisée de la méthode par éléments finis (FEM) et de nouveaux outils numériques (pré-conditionneurs, couplage entre modèles...) dédiés à au calcul FEM temps-réel. Cette approche est utilisée pour calculer la biomécanique des déformations des tissus anatomiques et les instruments flexibles. Nous abordons ensuite un autre point clé de ces simulations que sont les conditions aux limites. Les interactions mécaniques entre organes et/ou entre les outils chirurgicaux et les tissus sont souvent complexes à modéliser. Or, une mauvaise prise en compte de ces interactions peut aboutir à des erreurs importantes. Notre approche suit les bases de la mécanique non-régulière pour gérer, notamment, le contact et le frottement entre solides. Nous étendons l'approche à d'autres modèles d'interaction (comme l'insertion d'aiguille par exemple). Dans ce contexte, nous mettons l'accent sur le calcul de la compliance des structures en temps-réel. Par ailleurs, pour certaines interventions où le retour visuel n'est pas parfait, le praticien se guide aussi avec le sens du toucher. Il est donc important de reproduire au moins partiellement cette sensation - dite haptique - avec des interfaces à retour d'effort, pilotée à partir des données de la simulation. Dans ce domaine, nous proposons une approche centrée sur le rendu haptique des interactions mécaniques entre outil chirurgical et tissus humain. Cette approche se base notamment sur une désynchronisation du calcul de la boucle de simulation et de la boucle de retour d'effort qui demande un rafraichissement à haute fréquence (1kHz). Finalement, nous présentons ces résultats de recherche sur des exemples concrets d'application et nous présentons les défis à venir pour permettre à la simulation de devenir un outil utilisé par les praticiens à l'avenir. Le manuscrit est en anglais.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Gay, Cyprien. "Adhésifs, mousses, copolymères, granulaires immergés, rides, tissus." Habilitation à diriger des recherches, Université Paris-Diderot - Paris VII, 2013. http://tel.archives-ouvertes.fr/tel-00778225.

Повний текст джерела
Анотація:
Je suis un physicien, théoricien de la matière molle. Dans des domaines assez variés (polymères, mouillage, adhésifs, mousses), j'ai abordé des problématiques très différentes~: enchevêtrements dynamiques à l'échelle moléculaire, conformation de polymères aux interfaces, interactions visco-élastiques autour d'hétérogénéités (cavitation dans les adhésifs), capillarité, pression osmotique et dilatance dans les mousses liquides, dilatance et mécanismes locaux dans les granulaires mous immergés, formulation tensorielle de la plasticité à partir des grandes déformations élastiques dans les mousses. Depuis que je suis au laboratoire Matières et Systèmes Complexes, je m'intéresse aux travaux menés par plusieurs équipes sur la mécanique du vivant à différentes échelles, depuis le cytosquelette et la cellule entière jusqu'aux agrégats cellulaires et aux organismes en développement.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Ballit, Abbass. "Design and manufacturing process optimization for prosthesis of the lower limb." Thesis, Compiègne, 2020. http://www.theses.fr/2020COMP2589.

Повний текст джерела
Анотація:
Le socket prothétique (dit aussi emboiture prothétique), élément d'interface essentiel entre le moignon du patient et le dispositif prothétique, est le plus souvent le lieu où se définit le degré de réussite prothétique. C'est la partie la plus critique de la prothèse, personnalisée pour s'adapter au membre résiduel unique de l'amputé. Sans une forme et un ajustement approprié du socket, la prothèse devient inconfortable, voire inutilisable, et provoque des douleurs et des problèmes de peau. La production prothétique actuelle manque encore de normes numériques universelles pour concevoir un socket. La pratique actuelle est coûteuse et repose sur les raffinements manuels du technicien orthopédiste, et la qualité de l'ajustement est strictement corrélée à ses compétences ainsi qu'aux retours subjectifs du patient lors des phases d’essai de la prothèse fabriquée. La thèse vise à mener une analyse approfondie d'une conception optimale de l'emboîture prothétique en étudiant un processus alternatif de conception assistée par ordinateur. Ce processus est entièrement basé sur le modèle virtuel du membre résiduel du patient et repose sur le calcul de l’interaction emboîture-moignon. Un calcul rapide est favorable dans ce cas, c'est pourquoi nous proposons d'utiliser le système Mass-Spring (MSS) au lieu de la méthode FE largement utilisée pour modéliser les tissus mous du membre résiduel. Une nouvelle configuration du modèle MSS est proposée pour respecter la propriété de non compressibilité des tissus mous en ajoutant des « ressorts correctifs » non linéaires. Le modèle numérique doit être généré à partir du modèle scanné du moignon. À cette fin, nous proposons un schéma de fusion de quatre capteurs de profondeur à bas coût pour un scan rapide et économique avec des techniques de réduction des erreurs. Enfin, le membre résiduel virtuel est utilisé dans la phase de conception du socket. Une méthode de conception paramétrique est proposée et étudiée. Le problème de conception est transformé en problème de satisfaction des contraintes dérivées du calcul inverse de l'interaction socket-moignon. L'approche inverse a été choisie pour éliminer le besoin d'une formulation de contact coûteuse. Ce fait conduit à des calculs rapides, et par conséquent, permet de fournir des retours numériques en temps réel pendant le processus de conception. Le système a été implémenté pas programmation C++ avec une interface graphique où les retours numériques sont donnés sous forme d’une carte de radar. La validation a été faite en comparant les résultats de notre système avec la sortie des simulations FE. Le système a été implémenté avec une interface graphique conviviale et virtuellement testé et validé numériquement. Ce système réduit les limites des pratiques actuelles. Cependant, de nombreux travaux sont encore en cours pour affiner et développer le système et le valider par des expériences cliniques
The prosthetic socket, an essential interface element between the patient's stump and prosthetic device, is most often the place where the degree of prosthetic success is defined. It is the most critical part of the prosthesis, customized to fit with the unique residual limb of the amputee. Without a proper socket shape and fit, the prosthesis becomes uncomfortable, or even unusable, and causes pain and skin issues. The state-of-the-art prosthetic production is still missing universal numerical standards to design a socket. The current practice is expensive and relies on the manual refinements of the orthopedic technician, and the fit quality strictly correlates with his skills as well as the subjective feedback of the patient. The thesis aims to conduct a deep analysis of an optimal design of the prosthetic socket by studying and developing an alternative computer-aided design process. This process is fully based on the virtual model of the patient’s residual limb and relies on the calculation of the socket-stump interaction. A fast calculation is favorable in this case, that’s why we propose to use the Mass-Spring System (MSS) instead of the widely used FE method to model the soft tissues of the residual limb. A new configuration of the MSS model is proposed to respect the non-compressibility property of the soft tissues by adding non-linear “Corrective Springs”. The numeric model is to be generated from the scanned model of the stump. For this purpose, we propose a fusion scheme of four RGB-Depth sensors for a rapid and low-cost scan with error reduction techniques. Finally, the virtual residual limb is used in the socket designing phase. A parametric design method is proposed and investigated. The design problem is transformed into a constraint-satisfaction-problem whose constraints are derived from the inverse calculation of the stump-socket interaction. The inverse approach has been chosen to eliminate the need for expensive contact formulation. This fact leads to rapid calculations, and consequently, allows to provide real-time numerical feedback during the designing process. The validation was done by comparing the results of our system with the output of FE simulations. The system has been implemented with a user-friendly graphical interface and virtually tested and numerically validated. This system reduces the limitations of the current practices. However, a lot of works is still ahead to refine and develop the system and validate it with clinical experiments
Стилі APA, Harvard, Vancouver, ISO та ін.
30

"Interactive soft tissue deformation in surgical simulation." Thesis, 2006. http://library.cuhk.edu.hk/record=b6074299.

Повний текст джерела
Анотація:
As a good and competent surgical simulator, it should provide surgeons with visual, tactile and behavioral illusion of reality. In literature, methods for object deformation range from non-physically based models to physically based models. Early works of non-physically based models focused on pure geometrical models that were originally employed in computer-aided design. These methods could be used to produce vivid deformable effects in computer animation. However, the soft tissue simulation in surgical applications requires more realistic models based on physical properties of human tissues. As a result, the mass-spring model and the finite element model have become the most popular representations for deformable organs in surgical simulation. Our research focuses on the real-time soft tissue deformable model based on the finite element method for surgical application.
Extended from the hybrid condensed finite element model, an interactive hybrid condensed model with hardware acceleration by the graphics processing unit (GPU) is proposed. Two methods are developed in order to map the data onto the GPU in accordance with the application data structure. The performance of the primary calculation task in the solver is enhanced. Furthermore, an improved scheme is presented to conduct the newly applied forces induced by dragging or poking operations in the non-operational region.
In the thesis, new approaches to establish a physically based model for soft tissue deformation and cutting in virtual-reality-based simulators are proposed. A deformable model, called the hybrid condensed finite element model, based on the volumetric finite element method is presented. By this method, three-dimensional organs can be represented as tetrahedral meshes, divided into two regions: the operational region and the non-operational one. Different methods treat the regions with different properties in order to balance the computational time and the level of the simulation realism. The condensation technique is applied to only involve the calculation of the surface nodes in the non-operational region while the fully calculation of the volumetric deformation is processed in the operational part. This model guarantees the smooth simulation of cutting operation with the exact cutting path when users manipulate a virtual scalpel. Moreover, we discuss the relevant aspects on what affect the efficiency of implementing the finite element method, as well as the issues considered for choosing the effective solving method to our problem. Three numerical methods have been examined in our model.
Surgical simulator, which benefits from virtual reality techniques, presents a realistic and feasible approach to train inexperienced surgeons within a safe environment. It plays more and more important role in medical field and also changes the world of surgical training. Especially, the minimally invasive microsurgery, which offers patients various attractive advantages over the traditional surgery, has been widely used in otolaryngology, gastroenterology, gynecology and neurology in the last two decades.
Through the combination of these approaches, a physically based model which allows users to freely perform the soft tissue cutting and detecting, such as poking or dragging operations, with soft tissue deformation is achieved in real-time.
Wu Wen.
"August 2006."
Adviser: Pheng Ann Heng.
Source: Dissertation Abstracts International, Volume: 68-03, Section: B, page: 1745.
Thesis (Ph.D.)--Chinese University of Hong Kong, 2006.
Includes bibliographical references (p. 112-127).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Abstracts in English and Chinese.
School code: 1307.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Tang, W., and Tao Ruan Wan. "Constraint-Based Soft Tissue Simulation for Virtual Surgical Training." 2014. http://hdl.handle.net/10454/11302.

Повний текст джерела
Анотація:
yes
Most of surgical simulators employ a linear elastic model to simulate soft tissue material properties due to its computational efficiency and the simplicity. However, soft tissues often have elaborate nonlinearmaterial characteristics. Most prominently, soft tissues are soft and compliant to small strains, but after initial deformations they are very resistant to further deformations even under large forces. Such material characteristic is referred as the nonlinear material incompliant which is computationally expensive and numerically difficult to simulate. This paper presents a constraint-based finite-element algorithm to simulate the nonlinear incompliant tissue materials efficiently for interactive simulation applications such as virtual surgery. Firstly, the proposed algorithm models the material stiffness behavior of soft tissues with a set of 3-D strain limit constraints on deformation strain tensors. By enforcing a large number of geometric constraints to achieve the material stiffness, the algorithm reduces the task of solving stiff equations of motion with a general numerical solver to iteratively resolving a set of constraints with a nonlinear Gauss–Seidel iterative process. Secondly, as a Gauss–Seidel method processes constraints individually, in order to speed up the global convergence of the large constrained system, a multiresolution hierarchy structure is also used to accelerate the computation significantly, making interactive simulations possible at a high level of details . Finally, this paper also presents a simple-to-build data acquisition system to validate simulation results with ex vivo tissue measurements. An interactive virtual reality-based simulation system is also demonstrated.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Liu, Kuan-Chih, and 劉冠志. "Deformation And Cutting Of Soft Tissue With Haptic Rendering In Dental Implant Simulation." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/08233516609672767773.

Повний текст джерела
Анотація:
碩士
國立中正大學
機械工程學系暨研究所
100
The aim of this thesis is to develop a Haptic surgical training system to simulate immediately the deformation and cutting effect of the soft tissue in the oral implant surgery. In this thesis, a local search algorithm is proposed and combined with Virtual Proxy algorithm to achieve continuous collision detection without re-building or modifying hierarchy structure. In this system, a Mass Spring System (MSS) algorithm is used to simulate the realistic deformation of the soft tissue when the cutter collides with the gingival. Moreover, we use a Node Snapping algorithm to simulate the cutter movement and then split the triangular meshes under the movement. Finally, the splitting shape is determined by the MSS. The MSS is also used for the Haptic rendering during the cutting treatment. Therefore, users can feel the intuitive force feedback by the Haptic device. According to the experiment, the proposed algorithm can offer a realistic experience by visual and tactile sensing in soft tissue deformation and cutting operation. In addition, the algorithm is integrated into an oral implant training system to improve users’ skills and increase their experiences. Keywords: Collision Detection, MSS, Haptic Device, God Object、Node Snapping
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Silva, Liliana Sofia de Aguiar Pereira de. "Biomechanical models of the lower limb and pelvis, for female human gait in regular and overload conditions related to pregnancy." Doctoral thesis, 2014. http://hdl.handle.net/10400.5/8340.

Повний текст джерела
Анотація:
Doutoramento em Motricidade Humana na especialidade de Biomecânica
A gravidez é uma fase especial da vida , considerando as adaptações morfológicas, fisiológicas, biomecânicas e hormonais vivenciadas pelas mulheres durante cerca de 40 semanas e no período pós-parto, podendo modificar o padrão de marcha e contribuir para uma sobrecarga no sistema músculo-esquelético, causando dor nos membros inferiores, bacia e zona lombar. Os objetivos do presente trabalho foram: 1) analisar a marcha de mulheres grávidas no segundo trimestre; 2) comparar as adaptações biomecânicas da marcha, entre as mulheres grávidas no segundo trimestre, mulheres não grávidas e mulheres com condições de sobrecarga artificiais; 3) analisar modelos biomecânicos com quatro set ups diferentes de análise; e, 4) analisar um modelo de contacto que determina a força vertical de reação do apoio. Os resultados demonstraram que as mulheres grávidas têm uma padrão de marcha similar ao normal. Observou-se que o ganho do peso no tronco aumenta o tempo das fases de apoio e de duplo apoio, quer nas mulheres grávidas quer nas mulheres com carga adicional. A resposta ao momento externo flexor da anca está relacionada com maior atividade dos extensores para suportar a carga anterior do tronco na direção da translação do centro de massa. Nas mulheres grávidas, o modelo universal-revolução-esférica afetou mais as variáveis cinemáticas quando comparado com o modelo de juntas com seis graus de liberdade. O modelo de contacto entre o pé e o solo, sobrestimou as forças verticais de reação. O aumento da massa do pé, devido ao inchaço consequente da gravidez, reduz a rigidez durante a fase de apoio. Os resultados do presente trabalho serão úteis para promover a investigação biomecânica do padrão de marcha durante a gravidez.
FCT - Fundação para Ciência e a Tecnologia
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Dimaio, Simon P. "Modelling, simulation and planning of needle motion in soft tissues." Thesis, 2003. http://hdl.handle.net/2429/15012.

Повний текст джерела
Анотація:
Precise needle placement is required for the success of a wide variety of percutaneous interventions in medicine. Insertions into soft tissues can be difficult to learn and to perform, due to tissue deformation, needle deflection and limited visual feedback. Little quantitative information is known about the interaction between needles and soft tissues during puncture, and no effective physically-based training, planning and guidance systems exist for such procedures. This work aims to characterise needle-tissue interaction by measuring contact forces and deformations that are applied during insertions into soft tissue phantoms. A new methodology for estimating the forces that occur along the needle shaft during insertion is described. The approach is based on physical experiments, as well as on linear elastic phantom models that are discretised by traditional Finite Element Methods. Shaft force distributions are derived from insertions into homogeneous and simple layered inhomogeneous tissue phantoms at several driving velocities, and are applied as boundary conditions to tissue models for physically-based simulations of needle insertion trajectories. A large-strain elastic needle model is coupled to the tissue models to account for needle deflection and bending during simulated insertion. Since the force-displacement relationship is only of interest along the needle shaft, a condensation technique is shown to reduce the computational complexity of linear simulation models significantly. The boundary conditions that determine the tissue and needle motion change as the needle penetrates, or is withdrawn from the tissue model. Boundary condition and local material coordinate changes are facilitated by fast low-rank matrix updates. Such numerical schemes have been seen in prior work involving point and surface interaction; however, in this work the condensation state, boundary conditions and material coordinates evolve as the needle penetrates the tissue volume, and as internal contact states change. These novel interactive simulation techniques allow users to manipulate a three-degree-of-freedom virtual needle as it penetrates virtual tissue models, while experiencing steering torques and forces through a planar haptic interface. Models and simulations are also used to formulate needle insertion as a trajectory planning and control problem. The concept of needle steering is developed, and a Needle Manipulation Jacobian is defined to express the relationship between the needle base and tip velocities. This concept is used in conjunction with a potential-field-based path planning technique to demonstrate needle tip placement and obstacle avoidance. Results from open loop insertion experiments are also provided.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

"Interactive deformable simulation of soft tissues for virtual surgery applications." 2004. http://library.cuhk.edu.hk/record=b6073625.

Повний текст джерела
Анотація:
Choi Kup Sze.
"June 2004."
Thesis (Ph.D.)--Chinese University of Hong Kong, 2004.
Includes bibliographical references (p. 122-127).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Mode of access: World Wide Web.
Abstracts in English and Chinese.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Chen, Yu-Ching, and 陳玉菁. "Simulating phosphatic fossilization of the soft tissue with Xenopus laevis oocytes." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/59828022634900614520.

Повний текст джерела
Анотація:
碩士
國立清華大學
分子與細胞生物研究所
93
Paleontologist, geologists and biologists use fossil records to learn about the past history of the earth. Through fossils, we gain the knowledge of the biodiversity and geological processes which still continue today. Fossils from the Precambrian phosphorite rocks of the Doushantuo Formation in Southwest China have an age of ~580 million years ago. Analysis of the preservation of the fossils suggests that creatures were buried alive by catastrophic sediment incursions. Since the preservation of the morphological details of the soft tissues is so well, it triggers our interests in deciphering the mechanism of fossilization. We selected the Xenopus laevis oocytes as the subject in the study of mineralization simulation experiments. Based on the theory in Taphonomy, we tried to create a sedimentary system in laboratory of different conditions, including temperatures, pH and time scales, in order to approach the situation which came extensive mineralization inside the oocytes. The results indicated the importance of cell membrane permeability in introducing sufficient minerals into the oocytes to protect the soft tissues. Calcium phosphate usually involves in preservation of spectacular three-dimensional details of soft tissues. We also tried to demonstrate whether repeated sedimentation processes could increase the amount of crystals and lead to a higher preservation potential. The results showed that the content of crystals increased dramatically through the process. We suggest that the formation of Wengan fossils may be either the consequences of bio-permeability alternation, or evidences remaining in highly condensed and reworked deposits on ancient phosphorite rocks.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Lewis, Simone. "Low Severity Neck Injury from Side Impact." Thesis, 2018. https://vuir.vu.edu.au/42155/.

Повний текст джерела
Анотація:
Typically, whiplash (low severity neck injury of for short LSNI) is associated with rear impacts. Due to this, there is a wide body of research investigating the mechanism of LSNI as a result of rear impact. Detailed studies into the prevalence of low severity neck injury show that this injury also occurs in front and side impacts (Stryke et al. 2012, Teamming et al., 1998, Jakobsson 1998, Morris et al., 1996, v Koch et. al. 1995,). This thesis is an investigation into low severity neck injury resulting from side impacts. An initial investigation into the Monash University Accident Research Centre database (Australia) and the Loughborough University Co-operative Crash Investigation Study (UK) was undertaken to identify the typical factors associated with LSNI from side impacts. These factors were then used to determine the real-world cases to be reconstructed later in the thesis. As the occupants involved in side impacts are exposed to large lateral accelerations that do not occur in rear impacts, the factors that are associated with LSNI from rear impact cannot automatically be assumed to be a relevant in side impacts. This thesis makes a contribution to research by identifying the factors associated with LSNI that are unique to this side impact. This work can guide future research into the development of human surrogates/ human models to ensure that they more accurately replicate side impacts at multiple impact angles (such as oblique angles), as this thesis shows that LSNI occurs at various side impact angles and not just at 90 degrees. A MADYMO human body model with detailed neck was used to simulate driver response in side impacts. To verify the output from the model, results from post mortem human subjects (PMHS) and live human volunteers, were used for comparison. The impact angles investigated in these trials were 90 degree lateral and 45 degree oblique. Six real world crashes were reconstructed using computer simulations undertaken in MADYMO (Mathematical Dynamic Modelling) and HVE (Human, Vehicle, Environment). Three different impact angles were analysed, namely 90 degree lateral near side, 90 degree lateral far side and 45 degree oblique near side. For each impact angle, two cases were reconstructed, one with an occupant receiving a low severity neck injury, and the other was a control case where the occupant did not receive a low severity neck injury. The methodology used in this thesis of determining crash acceleration (crash pulse) by using HVE has been used previously by researchers (Franklyn et al. 2003, 2005a, 2005b and Hasija et al. 2007, 2009) to investigate head injury. Hasija et al. (2007, 2009), when investigating head injury also programmed the determined the crash pulse (from HVE) into a MADYMO to reconstruct the occupant mechanics using a crash test dummy model.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії