Статті в журналах з теми "Soft glass"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Soft glass.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Soft glass".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Biljaković, K., D. Starešinić, J. C. Lasjaunias, G. Remenyi, R. Mélin, P. Monceau, and S. Sahling. "Charge density glass dynamics – Soft potentials and soft modes." Physica B: Condensed Matter 407, no. 11 (June 2012): 1741–45. http://dx.doi.org/10.1016/j.physb.2012.01.020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zou, Qing-Zhi, Zhan-Wei Li, You-Liang Zhu, and Zhao-Yan Sun. "Coupling and decoupling between translational and rotational dynamics in supercooled monodisperse soft Janus particles." Soft Matter 15, no. 16 (2019): 3343–52. http://dx.doi.org/10.1039/c9sm00165d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Makino, Akihiro, Teruo Bitoh, Akihisa Inoue, and A. Lindsay Greer. "Soft Magnetic Bulk Glassy Alloy Synthesized by Flux Melting and Water Quenching." Materials Science Forum 539-543 (March 2007): 1921–25. http://dx.doi.org/10.4028/www.scientific.net/msf.539-543.1921.

Повний текст джерела
Анотація:
The flux treatment was applied to increase the glass-forming ability of a glassy [(Fe0.5Co0.5)0.75B0.20Si0.05]96Nb4 alloy. The large bulk glassy specimen with diameter of 7.7 mm was prepared by water quenching the melt immersed in the molten flux of B2O3. The diameter of the specimens is approximately 1.5 times as large as the previous result, even though the cooling rate of copper mold casting should be much higher than that of water quenching. The critical cooling rate for a glassy phase is 150 - 170 K/s, which is much slower than 500 K/s without the flux treatment. The flux treatment improves the glass-forming ability by cleaning the molten metal where heterogeneous nucleation is difficult to take place.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sumekar, Henu, Fani Pangadian, and Diana Soesilo. "Perbedaan Kebocoran Mikro Soft Glass Fiber Post Dan Glass Fiber Post Sebagai Pasak Saluran Akar." Sinnun Maxillofacial Journal 4, no. 01 (April 30, 2022): 52–60. http://dx.doi.org/10.33096/smj.v4i01.73.

Повний текст джерела
Анотація:
Pendahuluan: Pasak adalah suatu restorasi yang terbuat dari logam maupun non logam yang dimasukkan ke dalam saluran akar untuk menambah retensi dan melanjutkan tekanan-tekanan yang diterima ke sepanjang akar dengan merata. Soft glass fiber post adalah jenis pasak lunak yang besifat fleksibel, belum terpolimerisasi sehingga dapat beradaptasi untuk membentuk saluran akar sebelum proses light curin. Soft glass fiber terdiri dari sistem monomer cross-linking Bis-GMA yang dapat meningkatkan penyusutan volumetrik. Glass fiber post merupakan pasak endodontik terbuat dari glass FRC, sifat biomekaniknya baik Tujuan: Penelitian ini bertujuan untuk mengetahui apakah terdapat perbedaan kebocoran mikro soft glass fiber post dan glass fiber post sebagai pasak saluran akar. Bahan dan Metode: Penelitian ini menggunakan rancangan penelitian Post Test Only Control Group Design dengan sampel 20 gigi insisif sentral permanen rahang atas yang sudah dilakukan perawatan saluran akar. Sampel dibagi menjadi 2 kelompok: kelompok I di insersikan pasak soft glass fiber (Everstick®) dan kelompok II di insersikan pasak glass fiber(Dentolic ITENA®), setiap pasak disemen dengan RelyXTM U200 3MTMUSA. Tiap kelompok terdiri dari 10 sampel. Semua kelompok direndam larutan metilen biru 1% selama 24 jam, dibilas dengan air mengalir,dan dipotong menjadi bagian mesial-distal memakai carborundum disk. Setelah itu, kebocoran mikro diamati di bawah mikroskop dengan pembesaran 60x. Data dianalisis menggunakan uji t. Hasil: Hasil uji kebocoran mikro soft glass fiber post dan glass fiber post adalah nilai p = 0.038 (p>0.05). Kesimpulan: Terdapat perbedaan kebocoran mikro soft glass fiber post dan glass fiber post.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

BUSIELLO, G., and R. V. SABUROVA. "SOFT MODE AND SPIN-GLASS LIKE TRANSITION IN INSULATING GLASS." International Journal of Modern Physics B 13, no. 07 (March 20, 1999): 819–31. http://dx.doi.org/10.1142/s0217979299000680.

Повний текст джерела
Анотація:
The spectrum and damping of collective excitations of a system of electric dipole centers with internal degrees of freedom in glass are calculated. It is shown that one of the collective modes becomes soft, signaling a spin-glass like phase transition in insulating glass. The contribution to the specific heat is determined. The possibility of phase transition from paraelectric to electric pseudospin glass phase in dielectric glass is considered.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ramírez-González, P. E., and M. Medina-Noyola. "Glass transition in soft-sphere dispersions." Journal of Physics: Condensed Matter 21, no. 7 (January 5, 2009): 075101. http://dx.doi.org/10.1088/0953-8984/21/7/075101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Warren-Smith, Stephen C., Alastair Dowler, and Heike Ebendorff-Heidepriem. "Soft-glass imaging microstructured optical fibers." Optics Express 26, no. 26 (December 10, 2018): 33604. http://dx.doi.org/10.1364/oe.26.033604.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kotz, Frederik, Klaus Plewa, Werner Bauer, Norbert Schneider, Nico Keller, Tobias Nargang, Dorothea Helmer, et al. "Liquid Glass: A Facile Soft Replication Method for Structuring Glass." Advanced Materials 28, no. 23 (April 9, 2016): 4646–50. http://dx.doi.org/10.1002/adma.201506089.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bian, Zan, Tao Zhang, Wei Zhang, and Akihisa Inoue. "A New Soft Magnetic Bulk Metallic Glass with Dual Glass Phases." MATERIALS TRANSACTIONS 44, no. 11 (2003): 2410–13. http://dx.doi.org/10.2320/matertrans.44.2410.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kvashnin, Vyacheslav I., Dina V. Dudina, Arina V. Ukhina, Guilherme Yuuki Koga, and Konstantinos Georgarakis. "The Benefit of the Glassy State of Reinforcing Particles for the Densification of Aluminum Matrix Composites." Journal of Composites Science 6, no. 5 (May 7, 2022): 135. http://dx.doi.org/10.3390/jcs6050135.

Повний текст джерела
Анотація:
In metallic glass-reinforced metal matrix composites, the glassy phase can serve a dual purpose: (i) it can behave as soft binder and porosity remover during consolidation; and (ii) it can act as the hard reinforcing phase after densification. The present work aimed to demonstrate the benefit of the glassy reinforcing particles for the densification of aluminum matrix composites. The consolidation behavior of Al–50 vol.% Fe-based alloy mixtures prepared using a glassy Fe66Cr10Nb5B19 alloy powder (Tg = 521 °C, Tx = 573 °C) or a crystalline Fe62Cr10Nb12B16 alloy powder was studied under spark plasma sintering (SPS) and hot pressing (HP) conditions. The powders were consolidated by heating above the glass transition temperature of the glassy alloy (up to 540 °C in SPS and 570 °C in HP). When the coarse aluminum powder was used, the reinforcing particles formed chains within the microstructure. In composites formed from the fine Al powder, the particles of the Fe-based alloy were separated from each other by the metallic matrix, and the tendency to form agglomerates was reduced. The glassy state of the alloy was shown to be beneficial for densification, as the metallic glass acted as a soft binder. The densification enhancement effect was more pronounced in the case of reinforcing particles forming chains. The hardness of the Al–50 vol.% glassy Fe66Cr10Nb5B19 composites obtained by SPS was twice the hardness of the unreinforced sintered aluminum (110 HV1 versus 45 HV1).
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Schneider, Jens, and Sebastian Schula. "Simulating soft body impact on glass structures." Proceedings of the Institution of Civil Engineers - Structures and Buildings 169, no. 6 (June 2016): 416–31. http://dx.doi.org/10.1680/jstbu.13.00112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Webber, Matthew J. "Dynamic soft materials as tough as glass." Nature Materials 21, no. 1 (December 23, 2021): 6–7. http://dx.doi.org/10.1038/s41563-021-01176-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Oligschleger, C., and H. R. Schober. "Collective jumps in a soft-sphere glass." Physical Review B 59, no. 2 (January 1, 1999): 811–21. http://dx.doi.org/10.1103/physrevb.59.811.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Peroz, C., C. Heitz, E. Barthel, E. So̸ndergård, and V. Goletto. "Glass nanostructures fabricated by soft thermal nanoimprint." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 25, no. 4 (2007): L27. http://dx.doi.org/10.1116/1.2748791.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Man, Qi Kui, Ya Qiang Dong, Chun Tao Chang, Xin Min Wang, and Run Wei Li. "Co-Based Bulk Metallic Glasses with Good Soft-Magnetic Properties and High Strength." Materials Science Forum 898 (June 2017): 703–8. http://dx.doi.org/10.4028/www.scientific.net/msf.898.703.

Повний текст джерела
Анотація:
The thermal stability, glass-forming ability, soft-magnetic properties and mechanical properties of Co46Fe19+xB22.5Si5.5Nb7–x (x=0–2) bulk metallic glasses were investigated. The 5.5 at% Nb addition was found to be effective in approaching alloy to a eutectic point, resulting in an increase in glass-forming ability. By copper mold casting, bulk metallic glass rods with diameters up to 5 mm were produced. Except for high glass-forming ability, the bulk metallic glasses also exhibit good soft-magnetic properties, i.e., low coercive force of 1.34–2.14 A/m, high effective permeability at 1 kHz of 2.26–3.06×104, and high fractures strength (σf) of 4010–4460 MPa. This Co-based bulk metallic glass system with high strengths and excellent soft-magnetic properties is promising for future applications as a new functional material.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

El-Eskandarany, M. Sherif, Wei Zhang, and A. Inoue. "Mechanically induced solid-state reaction for synthesizing glassy Co75Ti25 soft magnet alloy powders with a wide supercooled liquid region." Journal of Materials Research 17, no. 9 (September 2002): 2447–56. http://dx.doi.org/10.1557/jmr.2002.0357.

Повний текст джерела
Анотація:
A single phase of glassy Co75Ti25 alloy powders was synthesized by high-energy ball milling the elemental powders at room temperature, using the mechanical alloying method. The final product of the glassy alloy, which is obtained after ball milling for 86 ks, exhibits soft magnetic properties with polarization and coercivity values of 0.67 T and 2.98 kA/m, respectively. This binary glassy alloy, in which its glass transition temperature (Tg) lies at a rather high temperature (833 K), transforms into face-centered-cubic Co3Ti (ordered phase) at 889 K through a single sharp exothermic reaction with an enthalpy change of crystallization (ΔHx) of −2.35 kJ/mol. The supercooled liquid region before crystallization ΔTx of the synthesized glassy powders shows an extraordinary high value (56 K) for a metallic binary system. The reduced glass transition temperature [ratio between Tg and liquidus temperatures, Tl (Tg/Tl)] was 0.56. We also demonstrated postannealing experiments of the mechanically deformed Co/Ti multilayered composite powders. The results show that annealing of the powders at 710 K leads to the formation of a glassy phase (thermally enhanced glass formation reaction). Its heat formation was measured directly and found to be −0.56 kJ/mol. The similarity in the crystallization and magnetization behaviors between the two classes of as-annealed and as-mechanically alloyed glassy powders implies the formation of the same glassy phase.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Mandal, Rituparno, Pranab Jyoti Bhuyan, Madan Rao, and Chandan Dasgupta. "Active fluidization in dense glassy systems." Soft Matter 12, no. 29 (2016): 6268–76. http://dx.doi.org/10.1039/c5sm02950c.

Повний текст джерела
Анотація:
Dense soft glasses show strong collective caging behavior at sufficiently low temperatures. Using numerical simulations, we show that the introduction of activity can induce cage breaking and fluidization in a model of soft glass. The glass phase disappears beyond a critical value of the activity.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Xu, Min, and Qun Jiao Wang. "Fe-Based Bulk Metallic Glass with Good Soft Magnetic Properties." Materials Science Forum 789 (April 2014): 59–63. http://dx.doi.org/10.4028/www.scientific.net/msf.789.59.

Повний текст джерела
Анотація:
Bulk Fe73Nb3Al2Ge2P9C6B4Si1 metallic glass with the diameter of 2 mm was prepared by copper mold casting. The Fe-based metallic glass exhibits good magnetic properties with high saturation magnetization and low saturated magnetostriction. The saturation magnetization and coercive force remains almost unchanged with annealing temperature below the crystallization temperature. The crystallization leads to the decrease in the softness of magnetic properties. The Fe-based glass exhibits a good correspondence between large glass-forming ability and good soft magnetic properties.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Shen, Baolong, and Akihisa Inoue. "Fabrication of large-size Fe-based glassy cores with good soft magnetic properties by spark plasma sintering." Journal of Materials Research 18, no. 9 (September 2003): 2115–21. http://dx.doi.org/10.1557/jmr.2003.0297.

Повний текст джерела
Анотація:
Glassy Fe65Co10Ga5P12C4B4 alloy powders with a large supercooled liquid region of 50 K before crystallization were synthesized in the particle size range below 125 μm by Ar gas atomization. With the aim of developing a large-size Fe-based glassy core with good soft magnetic properties, the consolidation method of spark plasma sintering was applied to the Fe65Co10Ga5P12C4B4 glassy powders. The existence of the supercooled liquid region enabled us to form a large-size glassy alloy disc 20 mm in diameter and 5 mm in thickness with a high relative density of 99.7% at the glass-transition temperature of 723 K and under the external applied pressure of 300 MPa. The resulting glassy core of 18 mm in outer diameter, 10 mm in inner diameter, and 4 mm in thickness exhibits good soft magnetic properties: 1.20 T for saturation magnetization, 6 A/m for coercive force, and 8900 for maximum permeability. The good soft magnetic properties of the Fe-based bulk glassy core are attributed to the combination of the high relative density and the maintenance of the single glassy structure.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Miranda, Pedro, Antonia Pajares, Fernando Guiberteau, Francisco L. Cumbrera, and Brian R. Lawn. "Contact fracture of brittle bilayer coatings on soft substrates." Journal of Materials Research 16, no. 1 (January 2001): 115–26. http://dx.doi.org/10.1557/jmr.2001.0021.

Повний текст джерела
Анотація:
Contact-induced fracture modes in trilayers consisting of a brittle bilayer coating on a soft substrate were investigated. Experiments were performed on model transparent glass/sapphire/polycarbonate structures bonded with epoxy adhesive, to enablein situobservation during the contact. Individual layer surfaces were preferentially abraded to introduce uniform flaw states and so allowed each crack type to be studied separately and controllably. Fracture occurred by cone cracking at the glass top surface or by radial cracking at the glass or sapphire bottom surfaces. Critical loads for each crack type were measured, for fixed glass thickness and several specified sapphire thicknesses. Finite element modeling (FEM) was used to evaluate the critical load data for radial cracking, using as essential input material parameters evaluated from characterization tests on constituent materials and supplemental glass/polymer and sapphirse/polymer bilayer structures. The FEM calculations demonstrated pronounced stress transfer from the applied contact to the underlying sapphire layer, explaining a tendency for preferred fracture of this relatively stiff component. Factors affecting the design of optimal trilayer structures for maximum fracture resistance of practical layer systems were considered.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Kusumastuti, Dyah Pratiwi, and Irma Sepriyanna Sepriyanna. "Pengaruh Penambahan Serbuk Kaca Dan Abu Sekam Pada Tanah Lunak Berdasarkan Uji Konsolidasi." FORUM MEKANIKA 8, no. 2 (November 27, 2019): 63–70. http://dx.doi.org/10.33322/forummekanika.v8i2.882.

Повний текст джерела
Анотація:
It can not be avoided when the construction must stand on soft soil, then the construction will suffer damage due to subsidence or congestion from soft soil. To improve soft soils as one part of the construction of them is the method of chemical stabilization of the soil. The stabilizer material mixed was 10% glass powder and the percentage of husk ash was 0%, 2.5%, 5%, 7.5% and 10% of the dry weight of the original soil sample. Changes in the characteristics of soft soil and stabilized soils are reviewed based on the consolidation test. Based on the results of the study, the value of the void ratio decreases with increasing glass dust and husk ash, where the lowest void ratio is 0.5328 obtained in the addition of 10% glass powder and 7.5% husk ash. A decrease in the void ratio indicates a decrease in the compression index (Cc) and the swelling index (Cs). The lowering of the compression index and the swelling index indicate that the addition of glass powder and husk ash causes the soft soil sample to become denser. The lowest compressive index and swelling index values ​​were obtained in soil sample specimens with the addition of 10% glass powder and 10% husk ash, which respectively decreased by 35.165% and 75.757% when compared to the condition of the original soil sample.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Li, Tian, and Guangping Zheng. "The influences of glass–glass interfaces and Ni additions on magnetic properties of transition-metal phosphide nano-glasses." AIP Advances 12, no. 8 (August 1, 2022): 085229. http://dx.doi.org/10.1063/5.0088043.

Повний текст джерела
Анотація:
In this work, a novel kind of non-crystalline materials, the metallic nano-glasses (NGs), is synthesized, and the influences of glass–glass interfaces (GGIs) and Ni additions on the structural and thermodynamics properties, as well as the magnetism of (Co, Fe, Ni)–P NGs with various sizes of glassy grains (Davg) are studied systematically. The addition of Ni and the reduction of Davg are found to improve the glass forming abilities of NGs. The influences of volume fractions of GGIs on the magnetism of NGs are analyzed by Mössbauer spectroscopy and magnetization hysteresis measurements. It is found that the soft magnetic properties of (Co, Fe)–P NGs with reduced Davg can be dramatically improved, as compared with micro-structured samples. Thus, this work has an in-depth understanding of the structural properties and magnetism of NGs as affected by the glass–glass interfaces in magnetic NGs.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Zhang, Wei, Fei Jia, Xingguo Zhang, Guoqiang Xie, Hisamichi Kimura, and Akihisa Inoue. "Two-stage-like glass transition and the glass-forming ability of a soft magnetic Fe-based glassy alloy." Journal of Applied Physics 105, no. 5 (March 2009): 053518. http://dx.doi.org/10.1063/1.3080139.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Folena, Giampaolo, and Pierfrancesco Urbani. "Marginal stability of soft anharmonic mean field spin glasses." Journal of Statistical Mechanics: Theory and Experiment 2022, no. 5 (May 1, 2022): 053301. http://dx.doi.org/10.1088/1742-5468/ac6253.

Повний текст джерела
Анотація:
Abstract We investigate the properties of the glass phase of a recently introduced spin glass model of soft spins subjected to an anharmonic quartic local potential, which serves as a model of low temperature molecular or soft glasses. We solve the model using mean field theory and show that, at low temperatures, it is described by full replica symmetry breaking. As a consequence, at zero temperature the glass phase is marginally stable. We show that in this case, marginal stability comes from a combination of both soft linear excitations—appearing in a gapless spectrum of the Hessian of linear excitations—and pseudogapped non-linear excitations—corresponding to nearly degenerate two level systems. Therefore, this model is a natural candidate to describe what happens in soft glasses, where quasi localized soft modes in the density of states appear together with non-linear modes triggering avalanches and conjectured to be essential to describe the universal low temperature anomalies of glasses.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Wu, Jian Peng, Shan Dong Li, Mei Mei Liu, Xin Le Cai, Yi Hu, Jie Qiu, and Jian Hua Lin. "Effects of C Addition on Glass-Forming in FeCPSiBMoMn Bulk Metallic with Good Soft-Magnetic Properties." Advanced Materials Research 399-401 (November 2011): 1012–15. http://dx.doi.org/10.4028/www.scientific.net/amr.399-401.1012.

Повний текст джерела
Анотація:
The effect of C substitution on the glass forming ability (GFA) and soft magnetic properties of Fe-based bulk metallic glasses (BMG) Fe79.4-xCxSi3.5B5.1P8.9Mo3Mn0.1(x = 4.2, 5.2, and 7.0) alloys have been investigated. It is revealed that fully glassy alloy rods with diameters up to 4 mm can be prepared by conventional copper mold casting method even using the low-cost industrial Fe-P master alloy. Properly substituting of Fe by C gives rise to an enhancement of GFA. Moreover, all the samples exhibit good soft magnetic properties with high saturation magnetization up to 1.16 T and low coercivity of 204 A/m.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Dong, Ya Qiang, Qi Kui Man, and Bao Long Shen. "Effect of Nb Addition on the Glass-Forming Ability, Soft-Magnetic Properties and Mechanical Properties of CoFeNiBSiNb Bulk Glassy Alloys." Materials Science Forum 745-746 (February 2013): 815–22. http://dx.doi.org/10.4028/www.scientific.net/msf.745-746.815.

Повний текст джерела
Анотація:
The effect of Nb addition on the glass-forming ability (GFA), soft-magnetic properties and mechanical properties of [(Co0.65Fe0.35)0.9Ni0.1]73-xB21.9Si5.1Nbx(x=36) alloy system were investigated. The results showed that by adjusting the content of Nb, the thermal stability of the supercooled liquid and the GFA increased effectively. With increasing the amount of Nb, the supercooled liquid region (ΔTx) increased from 45 to 65 K and the reduced glass transition temperature (Trg=Tg/Tl) was located in the range of 0.5840.644. As a result, the [(Co0.65Fe0.35)0.9Ni0.1]73-xB21.9Si5.1Nbx bulk glassy alloys (BGAs) with diameters up to 5.0 mm were produced by copper mold casting. In addition to the high GFA, the Co-based glassy alloys exhibited excellent soft-magnetic properties, i.e., saturation magnetization of 0.530.81 T, low coercive force of 0.511.75 A/m, and high effective permeability of (1.522.53)×104 at 1 kHz under a field of 1 A/m. Besides, the Co-based BGAs also exhibited super high fracture strength of 42704490 MPa and vickers hardness of 11271182.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Li, Xue, Yan Zhang, Hidemi Kato, Akihiro Makino, and Akihisa Inoue. "The Effect of Co Addition on Glassy Forming Ability and Soft Magnetic Properties of Fe-Si-B-P Bulk Metallic Glass." Key Engineering Materials 508 (March 2012): 112–16. http://dx.doi.org/10.4028/www.scientific.net/kem.508.112.

Повний текст джерела
Анотація:
We Successfully Prepared the Rod Glassy Samples of (Fe1-xCox)76Si9B10P5 (x = 0~0.4) Bulk Metallic Glass (BMG) with the Diameters up to 3.0 mm by Substituting Fe for a Small Amount of Co Element. A Certain Amount of Co Substitution for Fe Contributes to the Increase of the Glass-Forming Ability (GFA) while Maintaining Good Mechanical Properties (the Fracture Strength up to 3700 MPa). This Co-Added Ferromagnetic Bulk Glassy Alloy System Also Exhibits a Higher Saturation Magnetization of 1.49 T and Lower Coercive Force (Hc, 1.2 A/m). The Fe-Based BMGs with Alloying a Small Amount of Co Element Demonstrate Excellent Combination of High GFA, Good Soft-Magnetic Properties as Well as High Strength.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Yao, Lijuan, Man Zhu, Kun Li, Zengyun Jian, and Fang’e Chang. "Glass formation, nanocrystallisation and magnetic properties of the (Fe1–xCox)79Nb3B18 (x = 0, 0.15, 0.3, 0.45, 0.6, 0.75) metallic glasses." International Journal of Materials Research 111, no. 7 (August 1, 2020): 600–606. http://dx.doi.org/10.1515/ijmr-2020-1110710.

Повний текст джерела
Анотація:
Abstract The glass-forming ability (GFA), nanocrystallisation, electrical resistivity and soft magnetic properties of (Fe1-xCox)79Nb3B18 (x = 0, 0.15, 0.3, 0.45, 0.6, 0.75) glassy alloys were investigated. We found that the substitution of Fe by Co is beneficial for improving the GFA. As-spun (Fe0.55Co0.45)79Nb3B18 glassy alloys show the best GFA, along with excellent soft magnetic properties in the supercooled liquid region, with a saturation magnetisation and coercivity of 140 A · m2 · kg-1 and 19.9 A · m-1, respectively, at 60 K. With increasing Co content, the electrical resistivity initially decreases rapidly, and then fluctuates around approximately 70 ± 4 μΩ cm. With increasing the annealing temperature, the saturation magnetisation improves initially, but then decreases for the (Fe0.4Co0.6)79Nb3B18 alloy, and the coercivity does not significantly improve. These newly developed FeCoNbB multicomponent alloys exhibit appreciable GFA, good magnetic properties and low material cost, and they can serve as a promising soft magnetic material for use in industrial applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Figuli, Lucia, Romana Erdelyiová, Daniel Papán, and Zuzana Papánová. "Resistance of glass window subjected to high velocity soft impact." MATEC Web of Conferences 313 (2020): 00027. http://dx.doi.org/10.1051/matecconf/202031300027.

Повний текст джерела
Анотація:
Nowadays glass as a structural material is spread use not only for buildings in form of façade, windows and columns, but as well as for the protection of displays of electronical devices, or windows used in aeroplanes. In all cases is essential to describe the behaviour of glass panels under the high velocity soft impact caused for example by bird strike, icicles impact and bumps. In this paper the aim is to describe method to estimate the resistance of glass against drop soft impact and the comparison with the real tests.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Chiriac, B., C. M. Oprisan, V. Carlescu, and D. N. Olaru. "Friction coefficient between glass surfaces and soft materials." IOP Conference Series: Materials Science and Engineering 1262, no. 1 (October 1, 2022): 012004. http://dx.doi.org/10.1088/1757-899x/1262/1/012004.

Повний текст джерела
Анотація:
The dry sliding friction between glass surface and soft materials like paper, towel and cloth for wiping glasses was explored experimentally. The UMT- 2 Tribometer has been fitted with a unidirectional oscillator including a mass-spring system. With a linear speed ranging from 0.05 to 8mm/s, a mass weighing 242 grams was sliding across planar surfaces covered with soft materials. The values of static and dynamic friction coefficients have significant variation as a function of linear speed and soft materials. The transition between the stick-slip process and continuum sliding has also been demonstrated experimentally. A theoretical model for variation of the dynamic friction coefficient as function of linear speed has been included in the dynamic equations of mass displacement. The dynamic equations have been solved by Runge Kuta method and compared with experimental results.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Skallevold, Hans Erling, Dinesh Rokaya, Zohaib Khurshid, and Muhammad Sohail Zafar. "Bioactive Glass Applications in Dentistry." International Journal of Molecular Sciences 20, no. 23 (November 27, 2019): 5960. http://dx.doi.org/10.3390/ijms20235960.

Повний текст джерела
Анотація:
At present, researchers in the field of biomaterials are focusing on the oral hard and soft tissue engineering with bioactive ingredients by activating body immune cells or different proteins of the body. By doing this natural ground substance, tissue component and long-lasting tissues grow. One of the current biomaterials is known as bioactive glass (BAG). The bioactive properties make BAG applicable to several clinical applications involving the regeneration of hard tissues in medicine and dentistry. In dentistry, its uses include dental restorative materials, mineralizing agents, as a coating material for dental implants, pulp capping, root canal treatment, and air-abrasion, and in medicine it has its applications from orthopedics to soft-tissue restoration. This review aims to provide an overview of promising and current uses of bioactive glasses in dentistry.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Li, Wei, Pan Wang, Zhifang Hu, and Limin Tong. "Fusion Splicing Soft Glass Microfibers for Photonic Devices." IEEE Photonics Technology Letters 23, no. 12 (June 2011): 831–33. http://dx.doi.org/10.1109/lpt.2011.2140369.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Ebendorff-Heidepriem, H., Y. Li, and T. M. Monro. "Reduced loss in extruded soft glass microstructured fibre." Electronics Letters 43, no. 24 (2007): 1343. http://dx.doi.org/10.1049/el:20072562.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Orava, Jiri, Tomas Kohoutek, A. Lindsay Greer, and Hiroshi Fudouzi. "Soft imprint lithography of a bulk chalcogenide glass." Optical Materials Express 1, no. 5 (August 3, 2011): 796. http://dx.doi.org/10.1364/ome.1.000796.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Erwin, Brian M., Dimitris Vlassopoulos, and Michel Cloitre. "Rheological fingerprinting of an aging soft colloidal glass." Journal of Rheology 54, no. 4 (July 2010): 915–39. http://dx.doi.org/10.1122/1.3442901.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Akutagawa, J., D. Yamamoto, and W. Pong. "Soft X-ray induced darkening of glass surfaces." Journal of Electron Spectroscopy and Related Phenomena 82, no. 1-2 (November 1996): 75–77. http://dx.doi.org/10.1016/s0368-2048(96)03050-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Liu, Yuchu, GengXin Liu, Wei Zhang, Chen Du, Chrys Wesdemiotis, and Stephen Z. D. Cheng. "Cooperative Soft-Cluster Glass in Giant Molecular Clusters." Macromolecules 52, no. 11 (May 31, 2019): 4341–48. http://dx.doi.org/10.1021/acs.macromol.9b00549.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Cardenas, M., and M. P. Tosi. "Glass transition in supercooled fluids of soft spheres." Physics Letters A 336, no. 4-5 (March 2005): 423–27. http://dx.doi.org/10.1016/j.physleta.2004.12.085.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Burns, Gerald, and F. H. Dacol. "Soft phonons in a ferroelectric polarization glass system." Solid State Communications 58, no. 9 (June 1986): 567–71. http://dx.doi.org/10.1016/0038-1098(86)90220-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Petersen, Christian, Sune Dupont, Christian Agger, Jan Thøgersen, Ole Bang, and Søren Rud Keiding. "Stimulated Raman scattering in soft glass fluoride fibers." Journal of the Optical Society of America B 28, no. 10 (August 31, 2011): 2310. http://dx.doi.org/10.1364/josab.28.002310.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Kantsyrev, V. L., A. P. Inozemtsev, O. V. Komardin, T. I. Korotkova, and A. S. Shlyaptseva. "Simple glass-capillary converters of soft x rays." Quantum Electronics 25, no. 7 (July 31, 1995): 700–705. http://dx.doi.org/10.1070/qe1995v025n07abeh000447.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

SCHOBER, H. R., and BRIAN B. LAIRD. "LOCALIZED LOW-FREQUENCY VIBRATIONAL MODES IN A SIMPLE MODEL GLASS." Modern Physics Letters B 05, no. 11 (May 10, 1991): 735–39. http://dx.doi.org/10.1142/s0217984991000903.

Повний текст джерела
Анотація:
By molecular dynamics we produce a glass of soft spheres quenched to zero temperature. Normal mode analysis of the vibrational spectrum shows the existence of (quasi)localized modes at low frequencies. The structure of the glass around the centers of these modes deviates significantly from the average. The effective masses of these soft modes range upward from about 10 atomic masses.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Makino, Akihiro, Takeshi Kubota, Masahiro Makabe, Chun Tao Chang, and Akihisa Inoue. "Fe-Metalloid Metallic Glasses with High Magnetic Flux Density and High Glass-Forming Ability." Materials Science Forum 561-565 (October 2007): 1361–66. http://dx.doi.org/10.4028/www.scientific.net/msf.561-565.1361.

Повний текст джерела
Анотація:
Fe-based bulk metallic glasses with good soft magnetic softness, high strength and relatively low material cost should have greatest potential for wide variety of applications among many kinds of bulk metallic glasses (BMGs). However, the glass-forming metal elements such as Al, Ga, Nb, Mo and so forth in the Fe-based BMGs significantly decrease saturation magnetization (Js) which is a essential property as soft magnetic materials. Since the coexistence of high Js and high glass-forming ability (GFA) has been earnestly desired from academia to industry, however, has been left unrealized over many years. Here, we present a Fe76Si9B10P5 bulk glassy alloy exhibiting with unusual combination of high Js of 1.51 T comparable to the Fe-Si-B amorphous alloy ribbons with thickness of about 25 μm in now practical use, because of not-containing the glass-forming metal elements, and high GFA leading to a rod with a diameter of 2.5 mm. This alloy composed of familiar and low-priced elements also has extremely low coercivity which should enable ultra-high efficient transformers, therefore, has a great advantage for engineering and industry, and thus significantly improves energy saving, conservation of earth resources and environment.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Li, Jiawei, He Men, and Baolong Shen. "Soft-ferromagnetic bulk glassy alloys with large magnetostriction and high glass-forming ability." AIP Advances 1, no. 4 (December 2011): 042110. http://dx.doi.org/10.1063/1.3654397.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Matsumoto, Hiroyuki, Akiri Urata, Yasunobu Yamada, and Akihisa Inoue. "FePBNbCr Soft Magnetic Glassy Alloys “SENNTIX” with Low Loss Characteristics for Commercial Inductor Cores." Materials Science Forum 654-656 (June 2010): 1098–101. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.1098.

Повний текст джерела
Анотація:
The inductor for a power supply is expected to have higher efficiency and capability of dealing satisfactorily with large current. Additionally, high corrosion resistance characteristics are also required for commercial inductors in practical use of. Thereby, we focused on Fe-based glassy metal alloys with both high magnetization and low magnetic anisotropy [1], and developed the novel glassy metal alloys with a chemical composition Fe97-x-yPxByNb2Cr1. In this glassy metal alloy, 1 at % Cr is the optimum composition for the realization of higher corrosion resistance as well as a high magnetic flux density. The glassy Fe97-x-yPxByNb2Cr1 (x=5-13, y=7-15) alloy exhibits the high glass-forming ability leading to the large thickness of 110-150 μm and low coercive force of 2.5-3.1 A/m due to higher structural homogeneity in wide range of composition. The large critical thickness of this alloy should be caused by the high glass-forming ability (GFA) due to the existence of the super cooled liquid region (Tx) of roughly 30 K. Therefore a Fe77P7B13Nb2Cr1 powder/resin composite core displays a much lower core loss of 650 W/m3 than the conventional amorphous Fe75Si10B12Cr3 powder/resin composite core by approximately 1/3.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Rainone, Corrado, Eran Bouchbinder, and Edan Lerner. "Pinching a glass reveals key properties of its soft spots." Proceedings of the National Academy of Sciences 117, no. 10 (February 24, 2020): 5228–34. http://dx.doi.org/10.1073/pnas.1919958117.

Повний текст джерела
Анотація:
It is now well established that glasses feature quasilocalized nonphononic excitations—coined “soft spots”—, which follow a universal ω4 density of states in the limit of low frequencies ω. All glass-specific properties, such as the dependence on the preparation protocol or composition, are encapsulated in the nonuniversal prefactor of the universal ω4 law. The prefactor, however, is a composite quantity that incorporates information both about the number of quasilocalized nonphononic excitations and their characteristic stiffness, in an apparently inseparable manner. We show that by pinching a glass—i.e., by probing its response to force dipoles—one can disentangle and independently extract these two fundamental pieces of physical information. This analysis reveals that the number of quasilocalized nonphononic excitations follows a Boltzmann-like law in terms of the parent temperature from which the glass is quenched. The latter, sometimes termed the fictive (or effective) temperature, plays important roles in nonequilibrium thermodynamic approaches to the relaxation, flow, and deformation of glasses. The analysis also shows that the characteristic stiffness of quasilocalized nonphononic excitations can be related to their characteristic size, a long sought-for length scale. These results show that important physical information, which is relevant for various key questions in glass physics, can be obtained through pinching a glass.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

El-Eskandarany, Mohamed Sherif, Naser Ali, and Maryam Saeed. "Glass-Forming Ability and Soft Magnetic Properties of (Co75Ti25)100−xFex (x; 0–20 at.%) Systems Fabricated by SPS of Mechanically Alloyed Nanopowders." Nanomaterials 10, no. 5 (April 28, 2020): 849. http://dx.doi.org/10.3390/nano10050849.

Повний текст джерела
Анотація:
Due to their outstanding mechanical properties and soft magnetic characteristics, cobalt-based metallic glassy alloys have stimulated much interesting research. These metastable ferromagnetic materials possess very small magnetocrystalline anisotropy, and almost zero magnetostriction. They reveal low coercivity, extremely low core loss, moderate saturation polarization, and very high magnetism. Despite these attractive physical behaviors, Co-based metallic glasses are difficult to obtain by the melting/casting and conventional rapid solidification techniques due to their poor glass-forming ability. In the present study, we succeed in preparing (Co75Ti25)100−xFex (x; 0–20 at.%) metallic glassy powders, using a mechanical alloying approach. The end product of the as-prepared powders was consolidated into full dense cylinders with large-diameter and thickness (2 × 2 cm), using spark plasma sintering technique. The results have shown that the consolidation step did not lead to any undesired crystallizations or phase transformations, and the as-consolidated buttons maintained their unique short-range order structure. These bulk metallic glassy systems possessed high glass-transition and crystallization temperatures, suggesting their high thermal stability. However, they showed low values of the reduced glass-transition temperatures, indicating that this system is difficult to prepare by the conventional way of preparations.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Shen, Baolong, and Akihisa Inoue. "Soft magnetic properties of bulk nanocrystalline Fe–Co–B–Si–Nb–Cu alloy with high saturated magnetization of 1.35 T." Journal of Materials Research 19, no. 9 (September 2004): 2549–52. http://dx.doi.org/10.1557/jmr.2004.0360.

Повний текст джерела
Анотація:
Bulk nanocrystalline body-centered cubic- (bcc) (Fe,Co) alloy with high saturated magnetization and good soft magnetic properties was synthesized by the simple process of casting and annealing for the glass-type Fe62.8Co10B13.5Si10Nb3Cu0.7 alloy. It crystallizes through two exothermic reactions. The cylindrical glassy rod with the diameter of 1.5 mm was produced by copper mold casting. The subsequent annealing at the temperature higher than that of the first exothermic peak causes the formation of bcc-(Fe,Co) nanocrystalline with particle sizes between 10 and 15 nm. The bcc-(Fe,Co) alloy rods exhibit good soft magnetic properties of 1.35 T for saturation magnetization and 5 A/m for coercive force.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Zhou Xue, 周雪, 闫欣 Yan Xin, 张学楠 Zhang Xuenan, 王方 Wang Fang, 李曙光 Li Shuguang, 郎雷 Lang Lei та 程同蕾 Cheng Tonglei. "软玻璃光纤在生物传感领域应用的研究进展". Laser & Optoelectronics Progress 58, № 15 (2021): 1516019. http://dx.doi.org/10.3788/lop202158.1516019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

LI, LI, HUAIJUN SUN, YUNZHANG FANG, and JIANLONG ZHENG. "Co-based soft magnetic bulk glassy alloys optimized for glass-forming ability and plasticity." Bulletin of Materials Science 39, no. 3 (June 2016): 691–95. http://dx.doi.org/10.1007/s12034-016-1207-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії