Дисертації з теми "Snapper"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Snapper.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 дисертацій для дослідження на тему "Snapper".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Topping, Darin Thomas Szedlmayer Stephen T. "The use of ultrasonic telemetry to estimate residency, movement patterns, and mortality of red snapper, Lutjanus campechanus." Auburn, Ala, 2009. http://hdl.handle.net/10415/1771.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shulzitshi, Kathryn. "A genetic assessment of population connectivity in mutton snapper, Lutjanus analis /." Electronic version (PDF), 2005. http://dl.uncw.edu/etd/2005/shulzitskik/kathrynshulzitski.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

McInerny, Stephanie A. "Age and growth of red snapper, Lutjanus campechanus, from the southeastern United States /." Electronic version (PDF), 2007. http://dl.uncw.edu/etd/2007-2/mcinernys/stephaniemcinerny.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

English, Daniel Patrick Phelps Ronald Paul. "Use of primary nursery ponds for red snapper larvae culture and associated zooplankton dynamics." Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SPRING/Fisheries_and_Allied_Aquacultures/Thesis/English_Daniel_53.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Beyer, Sabrina G. Szedlmayer Stephen T. "Age determination through shape analysis and validation of otolith annular increments in red snapper, Lutjanus campechanus." Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SPRING/Fisheries_and_Allied_Aquacultures/Thesis/Beyer_Sabrina_2.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Case, Janelle Elaine. "The feeding biomechanics of juvenile red snapper (Lutjanus campechanus) from the northwestern Gulf of Mexico." Thesis, [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1386.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sumpton, Wayne Donald. "Population biology and management of snapper (Pagrus auratus) in Queensland /." St. Lucia, Qld, 2002. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe16381.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Simmons, Carrie M. Szedlmayer Stephen T. "Gray triggerfish, Balistes capriscus, reproductive behavior, early life history, and competitive interactions between red snapper, Lutjanus campechanus, in the northern Gulf of Mexico." Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SUMMER/Fisheries_and_Allied_Aquacultures/Dissertation/Mackichan_Carrie_37.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Francis, Malcolm 1954. "Population dynamics of juvenile snapper (Pagrus auratus) in the Hauraki Gulf." Thesis, University of Auckland, 1992. http://hdl.handle.net/2292/1976.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The population dynamics of juvenile snapper, Pagrus auratus, were investigated in the Hauraki Gulf, north-eastern New Zealand, between 1982 and 1990. Attention focused on age and growth, temporal and spatial variation in abundance, and recruitment. Daily increment formation was validated in the sagittae of snapper up to about 160 days old. Increment width varied with time of year, and snapper age, and increments were not resolvable with a light microscope during winter. Increment counts inside a prominent metamorphic mark showed that larval duration was 18-32 days, and was inversely related to water temperature. Spawning dates were back-calculated from increment counts in settled juveniles, and ranged from September to March with a peak in November-January. The onset of spawning was temperature dependent. Fast-growing snapper had smaller sagittae than slow-growing snapper, indicating an uncoupling of otolith and somatic growth. Snapper gonads differentiated first as ovaries during the second year of life, and then some juveniles changed sex to become males during their third year. Sex change occurred before maturity, so snapper are functionally gonochoristic. Growth was slow during the larval phase, but increased rapidly after metamorphosis to about 0.6-0.9 mm.day-1. From the first winter, growth followed a well-defined annual cycle, with little or no growth during winter, and linear growth of 0.16-0.43 mm.day-1 during spring-autumn for 0+/1+ and 1+/2+ snapper. Snapper grew faster at higher temperatures. Trawl catch rates were affected by numerous gear and environmental factors, but probably provided reasonable estimates of snapper relative abundance. Recommendations are made for improving snapper trawl survey procedures. There was a strong annual abundance cycle in the Kawau region, peaking in spring, and declining to a minimum in winter. Snapper were patchily distributed at a spatial scale of 1-2 km, probably because of preference for specific micro-habitats. Year class strength of 1+ snapper varied 17-fold over seven years, and was strongly positively correlated with autumn sea surface temperature during the 0+ year. The strengths of the 1991 and 1992 year classes are predicted to be below average, and extremely weak, respectively.
10

Rhodes, Melanie Anne. "Evaluation of Fabrea salina and other ciliates as alternative live foods for first-feeding red snapper, Lutjanus campechanus, larvae." Auburn, Ala., 2005. http://repo.lib.auburn.edu/2005%20Summer/master's/RHODES_MELANIE_33.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Dodd, Suzannah. "The role of non-indigenous benthic macrofauna in the diet of snapper (Pagrus auratus)." AUT University, 2009. http://hdl.handle.net/10292/898.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Snapper, Pagrus auratus is a valuable coastal fish species in New Zealand and forms an important commercial and recreational fishing industry in the north-east of New Zealand. Previous studies revealed evidence that this carnivorous, primarily benthic feeder consumes a non-indigenous macrobenthic species. Many non-indigenous macrobenthic species have now become established in New Zealand waters. For example, in Rangitoto Channel, Hauraki Gulf, non-indigenous macrobenthic species are prolific, with three bivalve species in particular having thriving populations: Limaria orientalis, Musculista senhousia, and Theora lubrica. The role of these species in the diet of snapper, however, is unknown. To assess the availability of indigenous and non-indigenous prey species to snapper, benthic macrofaunal assemblages throughout Rangitoto Channel were surveyed. To do so, sediment samples were collected at 84 sites. At 24 of these sites sediment was also collected for grain size analysis and at 40 of these sites the seafloor was surveyed with video. To investigate the diet of snapper, fish were collected from four monitoring sites within the channel. Bimonthly monitoring of the diet of snapper as well as the benthic macrofauna was completed at these monitoring sites and trends in the abundance of three prey species, two of which were non-indigenous species, within the sediment and the diet of snapper were compared from June to December 2008. A detailed description of the benthic macrofaunal assemblages throughout Rangitoto Channel confirmed that three non-indigenous species are established throughout this area. The analyses revealed that the diet of snapper has shifted compared to previous studies. Snapper now consume large quantities of two non-indigenous species, M. senhousia and L. orientalis. Consumption of the former species apparently results from its dominance and biomass within the sediment. It is therefore not surprising that snapper consumed large amounts of this species. In contrast, L. orientalis occurred disproportionately in the diet of snapper compared to its abundance within the sediment. I suggest that the establishment of some non-indigenous species benefits snapper.
12

Barnett, Beverly Kay. "Distinguishing red snapper, Lutjanus campechanus, nursery regions in the northern Gulf of Mexico with otolith elemental and stable isotope signatures." [Pensacola, Fla.] : University of West Florida, 2008. http://purl.fcla.edu/fcla/etd/WFE0000104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Usmar, Natalie R. "Ontogeny and ecology of snapper (Pagrus auratus) in an estuary, the Mahurangi Harbour." Thesis, University of Auckland, 2010. http://hdl.handle.net/2292/5642.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis examined the use of an estuary by the sparid Pagrus auratus, commonly known as snapper. The density and distribution of snapper (juveniles through to adults) was quantified over multiple spatial and temporal scales and associated with habitat. Juveniles enter or are spawned within the Mahurangi Harbour over the warmer months, with densities highest in March. Ontogenetic shifts in fine-scale habitat occurred. Fine-scale analysis from the beam trawl showed juvenile snapper (< 10 cm) were mostly associated with horse mussels. Larger juveniles (> 4 cm) were also associated with bare areas. The 0+ fish (from the DUV) occupied fine-scale habitat comprised of muddy to sand substrata with structure of sponges and horse mussels with and without epifauna. The remaining year-classes occupied a coarser substratum, with shell hash the major secondary structure. An artificial reef experiment showed juvenile snapper were attracted to artificial horse mussels with and without epifauna rather than bare areas or controls. The 1+ year-class increased their habitat range, occupying areas with more uniform substrata. A growth shift through to the 2+ year-class was not observed, and this may be due to increasing mortality, (natural or predation), or emigration out of the harbour. Densities of the larger year-classes decreased over the cooler months but not all snapper leave permanently, with tagging showing up to 80% of fish to be resident. Ontogenetic shifts occurred in diet with growth. Juveniles < 2 cm consumed planktonic copepods, with > 2 cm consuming benthic copepods, mysid and caridean shrimps and polychaetes. Snapper > 10 cm consumed brachyuran crabs, caridean shrimps, bivalves, polychaetes and hermit crabs, with > 30 cm fish able to consume harder shelled molluscs and bivalves. The a priori habitats were equally productive in terms of prey, and this may be advantageous for juveniles who can then select a habitat for other qualities, i.e. protection from predation. Despite the potential of snapper to utilise any sort of structure as cover or for rest, most structure within the Mahurangi are biogenic and susceptible to anthropogenic effects, especially sedimentation. The loss or decline of these biogenic species may therefore have a significant impact on the way snapper utilise the Mahurangi. Overall, understanding the ontogeny of snapper within estuaries will contribute to better management strategies for snapper in general.
Whole document restricted until June 2011, but available by request, use the feedback form to request access.
14

Usmar, Natalie R. "Ontogeny and ecology of snapper (Pagrus auratus) in an estuary, the Mahurangi Harbour /." e-Thesis University of Auckland, 2009. http://hdl.handle.net/2292/5642.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (PhD--Marine Science)--University of Auckland, 2009.
" A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Marine Science." Includes bibliographical references (leaves 161-173).
15

Serrano, Xaymara M. "Ecophysiology of the Gray Snapper (Lutjanus griseus): Salinity Effects on Abundance, Physiology and Behavior." Scholarly Repository, 2008. http://scholarlyrepository.miami.edu/oa_theses/144.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Mangroves and seagrass beds serve as essential fish habitat for many economically- and ecologically-valuable species. Depending on their location, these shallow-water habitats are often characterized by substantial fluctuation in salinity levels, which can represent a source of osmoregulatory stress for associated organisms. In South Florida, one of the most important fish species that utilizes these habitats is the gray snapper (Lutjanus griseus). Although this species constitutes a significant portion of the region?s total recreational fishery harvest, the effects of salinity on its distribution, physiology and behavior remain poorly understood. The main goal of this thesis was then to investigate the ecophysiological basis of habitat selection by the gray snapper. Specific objectives include to: (1) examine patterns of distribution and abundance across gradients in environmental salinity; (2) measure physiological status and responses to controlled salinity challenges and; (3) conduct behavioral trials to examine for salinity preferenda (if any). To begin investigating if salinity could be a primary factor structuring the gray snapper assemblages, I examined empirical data collected from Biscayne Bay to test the null hypothesis that gray snapper abundances were evenly distributed along the full salinity range at which samples have been collected. Using the delta approach, three abundance metrics (frequency of occurrence, concentration and delta density) were used as an index for the distribution and abundance of this species. Results indicated that abundance patterns for the smaller gray snapper were consistent with a strategy of reducing osmoregulatory costs by selecting intermediate salinities. However, corresponding abundance patterns for subadult gray snapper were inconsistent with this strategy of minimizing energetic costs, suggesting that this life stage may be indifferent to the range of salinities at which they were observed. These patterns helped developed further hypotheses regarding the ecophysiology of juvenile and subadult gray snapper, the latter of which was then tested via laboratory experiments. Subsequently, I challenged fish in the laboratory with six different salinity treatments (0, 5, 30, 50, 60 and 70ppt, including control) for 192 consecutive hours and collected blood samples at different time points. Results indicated that physiological stress to salinity changes is unlikely to occur at a salinity range of 5 to 50 ppt. At salinities of 0 and 60 ppt transient significant changes in plasma osmolality and/or blood haematocrit were observed, but were corrected after an initial adjustment period of approximately 96 hours. At the highest salinity treatment (70 ppt), a constant osmolality could not be maintained, resulting in death for all fish within 48 hours of exposure. Overall, these findings demonstrate the strong euryhalinity and extraordinary tolerance of this species to both extreme hypo- and hypersaline environments. Finally, I investigated the salinity preference and effects on swimming behavior of the gray snapper in an automated salinity choice shuttlebox via 48-hr trials. In general, gray snapper tested displayed either one of two distinctively different salinity preferences. Half of gray snappers displayed a salinity preference in the range of 9-15 ppt, whereas the other half displayed a salinity preference in the range of 19-23 ppt. Recorded swimming speeds in all fish tested reflected a significant, but weak negative linear relationship with salinity during both time periods of the day (light and dark); however, gray snapper were usually most active during the dark period across all salinities. Overall, these findings reveal that gray snapper prefer slightly hyperosmotic salinities that may minimize the physiological costs of osmoregulation compared to extreme salinities.
16

Booth, Mark Anthony. "Investigation of the Nutritional Requirements of Australian Snapper Pagrus Auratus (Bloch & Schneider, 1801)." Queensland University of Technology, 2005. http://eprints.qut.edu.au/16138/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis describes research designed to increase our knowledge of the nutritional requirements of Australian snapper Pagrus auratus and provide information on the potential of Australian feed ingredients to reduce the level of fishmeal in diets for this species. The apparent digestibility of organic matter (OM), crude protein (CP), crude fat (CF) and gross energy (GE) from selected animal, cereal or oilseed meals incorporated at different inclusion levels was determined. Snapper were extremely efficient at digesting the CP, CF and GE from fishmeal and rendered animal meals (range 80-100%) with the exception of meat meal, where CP and GE digestibility were lower (62-65%). The CP from oilseeds was better digested (87-91%) than OM (57%) or GE (64-67%). Digestibility of nutrients and GE from animal meals and fish oil was not influenced by inclusion level. The CP from extruded wheat was highly digestible (100-105%), but, the OM, CF and GE digestibility of extruded wheat declined as inclusion levels increased. The interactive effects of inclusion level (150, 250, 350 or 450 g kg-1) and fish size (110 vs 375 g snapper) on the apparent digestibility of OM and GE from gelatinised wheat starch were investigated. The OM and GE digestibility of gelatinised wheat starch was high (89%) at low inclusion levels, but declined significantly in both fish sizes as the level of starch increased. There was no interaction between inclusion level and size of fish and the decline in GE digestibility could be predicted by the regression; GEADC = 104.97(±3.39) - 0.109(±0.010) x inclusion level (R2=0.86). Larger fish were more capable of digesting the GE from gelatinised starch than smaller fish. Regardless of fish size, short and longer-term changes in the physiology of snapper fed or injected with carbohydrates were recorded. Liver and tissue glycogen concentrations and the hepatosomatic index (HSI) of snapper fed gelatinised starch were significantly elevated. The plasma glucose concentrations of fish injected intra-peritoneally with D-glucose increased from resting levels (0.4-4.6 mM) to 18.9 mM approximately 3 hours after injection and fish displayed a hyperglycaemic response for nearly 18 hours. In contrast, the post-prandial response to the uptake of glucose from normally digested gelatinised starch was more regulated. A dose-response study to determine the effects of digestible energy (DE) content (15, 18 or 21 MJ kg-1) on the digestible protein (DP) requirements of juvenile snapper was assessed using a four parameter mathematical model for physiological responses (4-SKM). DP content of test diets ranged from 210 to 560 g kg-1. Weight gain and protein deposition was strongly dependent on the ratio of DP:DE. According to the fitted models, diets for snapper weighing between 30-90 g and reared at temperatures ranging from 20-25ºC should contain a minimum of 28 g DP MJ DE-1 to promote optimal weight gain and protein deposition. The effect of varying the absolute content of DP and DE on the weight gain and performance of snapper (100-300 g) fed diets formulated with an optimal ratio of DP:DE was investigated. In addition, non-protein sources of DE were varied by adjusting the ratio of fish oil to gelatinised wheat starch in order to determine if different ratios of these ingredients affected performance. High-energy diets (22-23 MJ DE kg-1) suppressed feed intake, but provided DP intake was not limited by feed intake, maximum weight gain was approached. Lower-energy, lower-protien diets (15-18 MJ DE & 315-390 DP) encouraged higher feed intake but DP intake was restricted, which reduced growth potential. Snapper performed best on high-energy, high-protein diets (490 DP & 21 MJ DE), provided a significant proportion of DE was supplied as DP. Fish oil and pregelatinised wheat starch could be interchanged according to their DE values without unduly affecting fish performance in diets providing 390-490 g DP kg-1. Two utilisation studies were undertaken to investigate the performance of snapper fed diets containing increasing levels of poultry offal meal, meat meal and soybean meal. All diets were formulated with similar DP and DE contents. Snapper readily accepted feeds containing high levels of poultry meal (360 g kg-1), meat meal (345 g kg-1) or soybean meal (420 g kg-1), before weight gain and performance was negatively affected. In combination, these feed ingredients were able to replace all but 160 g fishmeal kg-1 in commercially extruded test feeds for this species. The research described in this thesis has extended knowledge of the nutritional requirements of Australian snapper by providing important information on the digestibility of Australian feed ingredients. These coefficients have been integral in formulating both experimental and semi-commercial test diets for snapper and will increase both the accuracy and flexibility of commercial diet formulations for this species. High performance feeds for snapper will contain high levels of DP, but must provide a significant proportion of DE in the form of protein. These constraints can be satisfied by using alternative, well-digested protein and energy sources that have the potential to replace all but 160 g kg-1 fishmeal.
17

au, corey wakefield@fish wa gov, and Corey Brion Wakefield. "Latitudinal and temporal comparisons of the reproductive biology and growth of snapper, Pagrus auratus (Sparidae), in Western Australia." Murdoch University, 2006. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20080530.105016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This study focused on obtaining sound quantitative data on the reproductive biology, length and age compositions and growth of the snapper Pagrus auratus in the waters off Carnarvon at ca 25oS and Perth at ca 32oS on the west coast of Australia and at ca 34oS on the south coast of Western Australia. Sampling thus encompassed both sub-tropical and temperate waters and the geographical range within which this species is abundant in Western Australia. The resultant data were used to explore the ways in which the biological characteristics of P. auratus differ with latitude and thus water temperature. An intensive sampling regime for eggs and spawning individuals of P. auratus was conducted in Cockburn Sound, a large marine embayment in the Perth region at ca 32oS. The resultant data were used to elucidate where and when spawning occurs in this large marine embayment and to determine more precisely the factors that influence the timing of spawning. The implications of the results presented in this thesis for the management of P. auratus, a species that has been subjected to very heavy fishing pressure in recent years, are discussed. The time and duration of spawning of P. auratus in the subtropical waters of Carnarvon differed markedly from those recorded for this sparid in the temperate and cooler waters of the Perth and the south coast regions. Spawning at Carnarvon occurred predominantly in the five months between late autumn (May) and mid spring (September), whereas it took place mainly in the three months between mid spring (October) and early summer (December) in the Perth region. Spawning of P. auratus on the south coast occurred predominantly in October and November in 2003 and 2004 and scarcely at all in 2005. Gonadal recrudescence was thus initiated when water temperatures were close to their maximum but declining in Carnarvon, and close to their minima and rising in the Perth and south coast regions, respectively. The prevalence of fully mature and spawning females in all three regions was greatest in those months when water temperatures lay between 19 and 21oC. Collation of the data in this thesis and those provided in the literature for other populations showed that the spawning period was related to latitude, occurring far earlier in sub-tropical than temperate waters. The females and males attained maturity at a far smaller total length (L50) in the Carnarvon region, i.e. 378 and 353 mm, respectively, than in the Perth region, 585 and 566 mm, respectively, and also the south coast region, i.e. 600 and 586 mm. The trends exhibited by the age at maturity parallel those for length, with the A50s for the two sexes increasing from ca 4 years in Carnarvon to ca 5.6 years in the Perth region and nearly 7 years in the south coast region. The L50 and A50 at maturity thus both increased with increasing latitude. Marginal increment analysis demonstrated that, irrespective of the number of opaque zones in the otoliths of P. auratus, a single such opaque zone is laid down each year in these otoliths. Furthermore, the trends exhibited by the monthly marginal increments showed that the opaque zone is laid down predominantly in winter in the subtropical waters of Carnarvon, as opposed to mainly in spring in the temperate waters of the Perth and south coast regions. Thus, the timing of formation of the opaque zone in the otoliths of P. auratus along the Western Australian coast is not related to the trends exhibited by water temperature, but, in both the Carnvarvon and Perth regions, was coincident with the timing of spawning. The maximum total lengths recorded for females and males in the Carnarvon region, i.e. 864 and 840 mm, respectively, were considerably less than the corresponding values of 1051 and 1056 mm in the Perth region, and 1083 and 1099 mm in the south coast region. Growth in the Perth and south coast regions was greater than in Carnarvon, as is reflected in, for example, the respective lengths of 820, 720 and 610 mm for females at 10 years of age, as determined from the von Bertalanffy growth equations. The length and age compositions in the Carnarvon and south coast regions were essentially unimodal, whereas those in the Perth region were bimodal. However, the “mode” in the length-frequency distribution for the south coast region was located well to the right of that in the Carnarvon region, reflecting relatively lower contributions by individuals of the age cohorts of 3 to 6 years. The marked bimodality in the length-frequency distribution for P. auratus in the Perth region was due to the presence of a group of mainly smaller individuals caught outside Cockburn Sound and another of mainly larger individuals that were caught in Cockburn Sound and which formed part of a spawning aggregation in that embayment. The proportion of fish > 10 years old in the Carnarvon region declined markedly between 2003 and the following two years, presumably reflecting the effect of heavy fishing pressure. This contributed to the decision by fisheries managers to reduced the TAC in those waters after 2003. Age-frequency data demonstrated that annual recruitment success in Cockburn Sound varied greatly, with the 1991, 1992 and 1996 year classes being particularly strong, and recognizing that the relative numbers of the first two year classes did decline progressively between 2002 and 2004. Annual recruitment was particularly variable in the south coast region, with the catches of the 1996 year class dominating the samples. The relative number of early stage P. auratus eggs in ichthyoplankton samples collected from Cockburn sound on each of four new moons during the spawning seasons of four consecutive years peaked in November in three of those years, i.e. 2001, 2003 and 2004, and in November/December in the remaining year, i.e. 2002. This showed that spawning in this embayment peaked during these months, at which times the mean sea surface temperatures ranged only from 19 to 20oC. The prevalence of spawning fraction females in sequential samples demonstrated that spawning peaks at the new and, to a lesser extent, full moons. This helps account for the strong positive correlation between spawning fraction and tidal regime, with spawning being greatest when the tidal range is greatest. Spawning times, back-calculated from the ages of the eggs collected during ichthyoplankton surveys in Cockburn Sound on each of 16 new moons within the spawning periods of four successive years, demonstrated that, in this embayment, P. auratus spawns at night and within the first three hours of the onset of the ebb tide. The distribution of egg concentrations on the 16 new moons showed that, each year, spawning occurred firstly in the north-eastern area of Cockburn Sound and then in the middle and finally north-western areas of this embayment. In the Perth region, the marine embayments of Cockburn and Warnbro Sound act as nursery areas for P. auratus during the first two years of life. The majority of 2 to 5 year old fish and a large proportion of the 6 year old fish occupy the marine waters outside the embayments. The remaining 6 year old and almost all of the older fish begin to move in September into particularly Cockburn Sound, where they form relatively large spawning aggregations between October and December, before undergoing a massive emigration from this embayment in December/January. The limited returns from fish that were tagged in Cockburn Sound and were subsequently caught outside this embayment indicate that, following spawning, P. auratus does not tend to move in a particular direction. Pagrus auratus stocks are heavily exploited in offshore, oceanic waters and in embayments, such as Cockburn Sound, where they are particularly susceptible to capture because of the tendency of this species to form spawning aggregations in these same easily accessible locations each year. The data obtained during this thesis show that the L50 at maturity of females and males in temperate waters, i.e. nearly 600 mm, is far greater than the current minimum legal length (MLL) of 410 mm TL. There is thus a need to increase the MLL and/or reduce fishing pressure on immature individuals in open waters. However, the effectiveness of an increase in the MLL may be limited because there is evidence that P. auratus suffers from fishing-induced barotrauma. Closures of specific areas during the spawning season of P. auratus, such as those that have been applied in Cockburn Sound and Shark Bay, are potentially a very effective method for reducing the effects of heavy fishing on spawning individuals.
18

Ling, Nicholas. "The development, ultrastructure and biomechanics of the swimbladder of the New Zealand snapper, Pagrus auratus." Thesis, University of Auckland, 1990. http://hdl.handle.net/2292/2012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The eggs and larvae of the New Zealand snapper Pagrus auratus are pelagic with early buoyancy provided by dilute body fluids. The swimbladder begins to develop on the third day after hatch from a dorsal evagination of the gut tube. Communication w1h the gut is lost on about the tenth day following pneumatic inflation at around day eight. At this age the gas gland system appears fully functional and capable of secreting gas. By the age of settlement at around 30 days the swimbladder is a fully functional replica of the adult form except for the lack of a resorbent capillary system which does not develop until later in juvenile life. The swimbladder of the adult is of the euphysoclist form with a dorsally located resorbent oval area and sits high in the pleural cavity. The ventral tunica externa is firmly attached to the connective tissue lining the pleural space. The adult swimbladder displaces 5.6% of the volume of the body and its volume is regulated to provide near neutral buoyancy. The connective tissue integument provides almost no restriction to volume changes brought about by vertical movements of the fish and the swimbladder obeys Boyle's Law for physiological pressure changes. The ability of the connective tissue of the tunica externa to accommodate large tissue strains is due to massive regular crimping of otherwise straight collagen fibrils allowing reversible extensions up to 130%. In all other respects however the tissue structure of the tunica externa is consistent with a tissue providing an active mechanical role. The fibrillar morphology and physicochemical properties of swimbladder collagen is consistent with the vertebrate type I form however there are interesting variations in collagen form distributed throughout the swimbladder. Fibrillar morphology of the highly extensible tunica interna is significantly different to that of the tunica externa and appears to play very little mechanical rote. The extensibilty of the tunica externa appears to be regulated by physiological stress and related to the past history of tissue strain.
19

Guccione, David V. "Hooking mortality of reef fishes in the snapper-grouper commercial fishery of the southeast United States /." Electronic version (PDF), 2005. http://dl.uncw.edu/etd/2005/guccioned/davidguccione.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Gibson, Suzanne Marie. "Culture of red snapper (Lutjanus campechanus) from rearing larvae with naked ciliates to tracking juveniles with otolith chemistry /." [Pensacola, Fla.] : University of West Florida, 2008. http://purl.fcla.edu/fcla/etd/WFE0000110.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Mikulas, Joseph John. "Habitat use, growth, and mortality of post-settlement lane snapper (Lutjanus synagris) on natural banks in the northwestern Gulf of Mexico." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1391.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

McGlennon, David. "The fisheries biology and population dynamics of snapper Pagrus auratus in northern Spencer Gulf, South Australia /." Title page, table of contents and abstract only, 2003. http://web4.library.adelaide.edu.au/theses/09PH/09phm4789.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Isaacs, Rachel. "Real-Time PCR Combined with DNA Barcoding for the Authentication of Red Snapper (Lutjanus campechanus) Fillets." Chapman University Digital Commons, 2019. https://digitalcommons.chapman.edu/food_science_theses/7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Seafood substitution is a worldwide problem due to factors such as limited monitoring coupled with complex supply chains. Red snapper (Lutjanus campechanus) is a highly valued and overfished species that is commonly substituted with other fish, such as tilapia, rockfish, and other snapper species. DNA barcoding is typically used by regulatory agencies to detect seafood substitution; however, it is expensive and time-consuming. A rapid, real-time PCR assay targeting red snapper was developed previously for use in fisheries management; however, it has not been tested for its ability to detect red snapper species substitution. The objective of this study was to assess the ability of the real-time PCR assay to identify red snapper fillets and differentiate red snapper from common substitute fish species in combination with DNA barcoding. A total of 21 fresh/frozen fillets labeled as “red snapper” were tested with real-time PCR, along with 57 fresh/frozen fillets representing 15 of the most common categories of fish mislabeled as red snapper. All samples were tested with DNA barcoding to confirm the identity of fish species. Real-time PCR parameters were optimized to reduce background signals associated with cross-reactivity. Overall, real-time PCR identified 4 samples as red snapper: 3 were authenticated as red snapper with DNA barcoding and 1 was identified as mahi-mahi. Overall, 40% of all samples and 91% of “red snapper” samples were considered mislabeled according to DNA barcoding. Red snapper was substituted with other snapper species (e.g., Lutjanus malabaricus, Lutjanus peru, Ocyurus chrysurus, and Rhomboplites aurorubens), rockfish (Sebastes flavidus and Sebastes brevispinis), sea bream (Pagrus major/Pagrus auratus), and mahi-mahi (Coryphaena hippurus). The real-time PCR assay tested in this study can serve as a rapid screening test for the detection of mislabeled species, which can then be confirmed with sequencing techniques. This species identification technique has the potential to be used by regulatory agencies to rapidly determine the authenticity of red snapper on-site.
24

Paz-García, David A., Adrián Munguía-Vega, Tomas Plomozo-Lugo, and Amy Hudson Weaver. "Characterization of 32 microsatellite loci for the Pacific red snapper, Lutjanus peru, through next generation sequencing." SPRINGER, 2017. http://hdl.handle.net/10150/626030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We developed a set of hypervariable microsatellite markers for the Pacific red snapper (Lutjanus peru), an economically important marine fish for small-scale fisheries in the west coast of Mexico. We performed shotgun genome sequencing with the 454 XL titanium chemistry and used bioinformatic tools to search for perfect microsatellite loci. We selected 66 primer pairs that were synthesized and genotyped in an ABI PRISM 3730XL DNA sequencer in 32 individuals from the Gulf of California. We estimated levels of genetic diversity, deviations from linkage and Hardy-Weinberg equilibrium, estimated the frequency of null alleles and the probability of individual identity for the new markers. We reanalyzed 16 loci in 16 individuals to estimate genotyping error rates. Eighteen loci failed to amplify, 16 loci were discarded due to unspecific amplifications and 32 loci (14 tetranucleotide and 18 dinucleotide) were successfully scored. The average number of alleles per locus was 21 (+/- 6.87, SD) and ranged from 8 to 34. The average observed and expected heterozygosities were 0.787 (+/- 0.144 SD, range 0.250-0.935) and 0.909 (+/- 0.122 SD, range 0.381-0.965), respectively. No significant linkage was detected. Eight loci showed deviations from Hardy-Weinberg equilibrium, and from these, four loci showed moderate null allele frequencies (0.104-0.220). The probability of individual identity for the new loci was 1.46(-62). Genotyping error rates averaged 9.58%. The new markers will be useful to investigate patterns of larval dispersal, metapopulation dynamics, fine-scale genetic structure and diversity aimed to inform the implementation of spatially explicit fisheries management strategies in the Gulf of California.
25

Heery, Eliza Crenshaw. "The impact of bias in length frequency data on an age structured fisheries stock assessment model." Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/32865.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Statistical age-structured models are widely used in fisheries stock assessment. These models have been become increasingly complex over recent decades, allowing them to incorporate a larger variety of fisheries data. These typically include information regarding annual fishery yields, indices of abundance and catch composition data, which reflect the distribution of ages in the harvested population each year. In some fisheries, age composition can be determined annually through the examination of annuli on hard parts, such as otoliths or scales. These methods are, however, costly, time consuming and require a relatively high level of expertise on the part of data collectors. Alternatively, length frequency distributions within the annual catch are relatively simple and inexpensive to acquire, and can be employed to extrapolate age structure given that some information regarding age length relationships in the population is known. This type of data is therefore critical for many age-structured fisheries models. Length frequency data are compiled from length measurements of a sub-sample of the commercial catch. Even when they derive from a relatively large sample size, however, these data depend on a number of biological, economic and logistical factors. In some fisheries, for example, larger, more valuable fish may be separated from the overall catch and sold quickly, before port samplers have chance to gather sub-samples (Burns et al. 1983). This can reduce the relative frequency of large individuals in length frequency data. Alternatively, fish may become stratified in holding bins or storage containers according to size, due to their slippery texture and body shape (Hilborn and Walters 1992). With smaller, shorter individuals falling to the bottom where they are less likely to be picked up and measured, length frequency data may contain a disproportionately high frequency of large fish. This study used simulations to examine the impact of these two types of bias in length frequency data on a statistical age-structured model. The model, which was similar to those used in stock assessments for black sea bass (Centropristis striata) and gag (Mycteroperca microlepis) in the southeastern United States, produced erroneous population estimates when given biased data. Length frequency data that contained too many small fish caused stock status estimates to became overly pessimistic, indicating that populations were more heavily depleted than was actually the case. This type of bias supported overly conservative management measures, which posed an unnecessary cost to fishermen. Conversely, when the data included too many large fish, estimates of stock status were overly optimistic, and supported management actions that did not effectively protect the stock from overfishing. These results indicate that the quantity of length frequency data alone does not protect against bias when using complex age-structured models. The likelihood and magnitude of bias in these must also be examined in order to determine whether results are likely to be biased. For a given fishery, it is therefore critical that potential sources of bias in length frequency data be thoroughly inspected, and that the modeling approach used to assess the stock be appropriate based on the availability and accuracy of the data.
Master of Science
26

Tugiyono. "Metabolic enzymes and mixed-function oxygenase (MFO) system in pink snapper (Pagrus auratus) : biochemical and histological relationships /." Curtin University of Technology, Department of Environmental Biology, 2001. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=13744.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The environmental health of aquatic ecosystems depends amongst others, on the chemical pollution coming from activities in the catchment's area. In the Swan River Estuary, Western Australia, the chemical pollutants of concern released into the river are petroleum hydrocarbons and sodium pentachlorophenate (NaPCP). Decreased water quality causes a loss of biotic diversity especially amongst fish populations. The health of aquatic ecosystems can be monitored by fish health, especially fish located at higher levels in the food chain. Pink snapper (Pagrus auratus), an endemic Western Australian fish species, was tested for its potential as a bioindicator of aquatic environmental health. This thesis presents data on the responsiveness of pink snapper to the contaminants of concern, using biomarkers such as serum sorbitol dehydrogenase (SDH), mixed function oxygenase (MFO), metabolic enzymes such as citrate synthase (CS), cytochrome C oxidase (CCO) and lactate dehydrogenase (LDH) and the histological alteration such as hepatic cell lesions (hyperplasia and hypertrophy), and glycogen and lipid droplets. The metabolic enzymes CCO and LDH as well as the hepatic MFO induction and histopathology were proven to be the most suitable biomarkers for use for routine monitoring of the Swan River Estuary using pink snapper as a bioindicator. However, CS activity and hepatic cell lesions (hyperplasia and hypertrophy) did not respond to exposure to contamination and are therefore not suited as biomarkers of effects in pink snapper. The first phase of the study aimed at investigating the responsiveness of juvenile pink snapper to an MFO inducer. Polychlorinated biphenyl isomer # 126 was selected as a model MFO inducer for this study. In the initial experiment, MFO activity was measured as a biomarker of exposure, and serum SDH activity was assessed as a biomarker of liver damage.
MFO and SDH activities were of special interest as these biochemical tools have not previously been validated for any Western Australia fish species. Juvenile pink snapper were injected intraperitoneally (i.p.) with 0, 10, 100, 500, 1000 microgram PCB-126 per kilogram. Fish were sacrificed 10 days postinjection, and liver and blood were collected for MFO and SDH analysis, respectively. Doses of 10 and 100 microgram PCB-126 per kilogram caused the highest MFO induction, while doses of 0 and 1000 microgram PCB-126 per kilogram did not result in higher MFO activity relative to carrier-injected (peanut oil) control fish. SDH activities were not significantly different among treatments indicating that hepatocellular damage was not responsible for the reduced MFO activity at the highest dose. Metabolic enzymes in pink snapper exposed by NaPCP were studied in the second phase of the experiment. The aim of this second experiment was to test the responsiveness of pink snapper to contaminants known to cause metabolic perturbations in vertebrates. Juvenile pink snapper were intraperitoneally (i.p.) injected with 0, 5, 10, 20 mg per kilogram. Oxidative enzymes were assessed by measuring CS and CCO activities and glycolytic enzyme was assessed by measuring LDI-1 activity in liver and white muscle tissues. CS activity remained unchanged in both the white muscle and in the liver. CCO activity was significantly enhanced in liver in all treated fish relative to control fish, but not in the white muscle. LDH activity was also higher in liver in all treated fish as compared to control fish, while in white muscle, LDH activity significantly increased at the highest dose injected.
The use of a suite of biochemical markers is useful in determining the effects of xenobiotic exposure of aquatic organisms, because it provides a holistic approach with biomarkers at different levels of biological organization. For the third and final phase of the study the suite of biomarkers selected were MFO, metabolic enzyme (CS, CCO and LDH) activities, and histological alternations in combination with physiological indices. The aim of this last experiment was to investigate if a modified liver metabolic activity would alter the MFO induction potential. To test if altered liver metabolism would influence liver detoxication capacities, juvenile pink snapper were i.p. injected with peanut oil (control), or pentachlorobiphenyl # 126 (PCB 126), with sodium pentachlorophenate (NaPCP), or combination of PCB 126+NaPCP. Relative to controls, ethoxyresorufin-O-deethylase (EROD) activity was induced in the PCB 126 and PCB 126+NaPCP fish, but not in the NaPCP group. In the liver, CCO activity was enhanced by the treatments while CS activity remained unchanged and LDH activity was increased in the NaPCP treatment only. In the white muscle, only the PCB 126+ NaPCP treatment enhanced CCO activity, with all other enzymatic activities remaining unchanged. Low serum sorbitol dehydrogenase (sSDH) activity and histopathology of the liver indicated no significant alteration of cellular structure, albeit the lipid droplet size was increased in the PCB 126 and in the PCB 126+NaPCP treatments.
It is concluded that the hepatic metabolic changes correspond to histopathological observations, but an altered metabolic capacity does not influence the metabolism of xenobiotics by liver enzymes, as measured by EROD activity. These experiments answered the need to identify a suitable fish species for routine monitoring of the aquatic environment in Western Australia. It also identified the most suitable biochemical markers of exposure and effects, and the suitability of the pink snapper as a bioindicator. Finally, the experiments investigated interactions between biomarkers and provided new knowledge useful to scientists using MFO and/or metabolic enzymes in field or laboratory toxicology.
27

Kiper, Ilkser Erdem. "Phylogeography of the snapper kob Otolithes ruber (Bloch & Schneider 1801) from the South West Indian Ocean." Diss., University of Pretoria, 2014. http://hdl.handle.net/2263/79259.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Studying the distribution and demography of marine species is challenging due to the open nature of the oceans. This latter was historically believed to facilitate extensive gene flow among populations when clear barriers to gene flow were not apparent. Gene flow between populations could be mediated directly by adult migration across large distances for reproduction purposes, feeding and habitat preference or via larval dispersal with the aid of ocean currents, in order to recruit to optimal areas for development and to increase survival. Hence, gene flow among localized populations across large geographic distances most likely results in weak or no genetic differentiation. This recognized model has changed in recent years, as limited gene flow has been demonstrated for many species even in the absence of physical barriers to genetic mixing. To understand fish population dynamics and to manage marine resources sustainably, assessing the degree of population connectivity has become an important focus. It has been reported globally that many marine species are exposed to intensive fishing activities. One such species from the South West Indian Ocean (SWIO) region is the widespread fish species, Otolither ruber. Based on our knowledge, there are no genetic investigations conducted for this species to date. Hence, I studied the evolutionary and ecological processes influencing genetic diversity and the population genetic structure of O. ruber throughout the region based on mitochondrial and nuclear data analyses. Before attempting large scale data generation, critical consideration should be given to marker selection. I was able to find the most suitable mitochondrial gene from three evaluated genes. The cytochrome b gene gave consistently good amplification and showed the most variation within and among O. ruber sampling locations. The advantageous cross-species amplification approach yielded seven microsatellites, previously developed in other sciaenid fishes, with relatively high levels of polymorphism in O. ruber. Two distinct O. ruber populations in the north and the south of the SWIO region were identified based on statistical analyses of cytochrome b sequences and microsatellite genotypes. Low, unidirectional, female gene flow (based on mtDNA) and overall asymmetrical gene flow (based on nuclear DNA markers) were inferred from north to south between these evolutionary units. The isolation with migration model demonstrated a recent past population divergence and a low level of ongoing gene flow. The observed genetic differentiation in this shallow-water demersal sciaenid is mostly likely determined by the oceanography of the region, historical processes and life history traits, such as male-biased dispersal. The biology of the species in terms of reproductive and migratory behaviour should be further investigated to substantiate these findings. The results obtained from this study contribute to improved biological knowledge of O. ruber and its genetic status in the SWIO region, and will be used for future studies undertaking a management assessment of O. ruber. The observed variation among these populations should be maintained by management interventions. The study will also add to comparative phylogeograpic studies of co-distributed species, particularly other sciaenids.
Dissertation (MSc)--University of Pretoria, 2013.
Genetics
MSc
Unrestricted
28

Kim, Hwa Nyeon. "Transferable rights in a recreational fishery: an application to the red snapper fishery in the Gulf of Mexico." Texas A&M University, 2003. http://hdl.handle.net/1969.1/5865.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Overfishing of red snapper in the Gulf of Mexico has significantly increased lately. A major regulation to reduce the overfishing is Total Allowable Catches (TAC) in combination with a season closure. The restrictions on entry lead to an inefficient outcome, however, because the resource is not used by the fishermen who value it the most. As an alternative to restricting entry, transferable rights (TR) programs are being increasingly considered. Under a TR program, a market is created to trade a right to use a resource and the total benefits of the participants are maximized through such a trade. The principal objective of this dissertation is to comprehensively assess economic and biological consequences of the red snapper fishery for the TR program. To date the literature lacks sufficient discussion of how recreational TR programs would function. I, therefore, propose an economically desirable institutional framework for the TR program in the recreational fishery. I draw some lessons from hunting programs and applications of other TR programs to find better schemes for the TR program in the recreational fishery.This dissertation uses theoretical and empirical models as well as institutional settings to develop the TR program. A theoretical model is provided to investigate which unit of measurement for the TRs is preferable. For empirical models I first estimate an empirically based recreation demand that incorporates TR permit demand and then develop a simulation submodel using the estimated demand. I find price instruments, such as fees or TR programs, are very efficient to reduce fishing trips but they also lead to distributional impacts on trips by low income (or low cost) anglers. Partial simulation results indicate that an efficiency benefit of the TR program would be significant because recreational trip demand in the current closed season is not trivial. I conclude that the TR program in the recreational fishery will economically and biologically provide a great deal of merit to reduce the overfishing situation and a substantial efficiency gain to Gulf anglers. Some institutional barriers, especially from the large transaction cost can also be overcome if electronic systems or the Internet are used.
29

au, gjackson@fish wa gov, and Gary Jackson. "Fisheries biology and management of pink snapper, Pagrus auratus, in the inner gulfs of Shark Bay, Western Australia." Murdoch University, 2008. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20081222.105104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This study explored an important aspect of the basis for the highly complex population structure of pink snapper (Pagrus auratus) within the inner gulfs of Shark Bay, investigated how growth and reproduction differ among these closely-adjacent but separate stocks, and obtained biomass estimates for each stock that are essential for the sustainable management of the regionally-important recreational pink snapper fishery. Using ichthyoplankton data in combination with hydrodynamic modelling, P. auratus eggs and larvae were shown to be retained within localized meso-scale eddies that were coincident with the main inner gulf spawning areas. Such hydrodynamic retention, in conjunction with tagging and otolith chemistry data that indicates very limited movement of juvenile and adult fish, explains how separate pink snapper populations can exist in the adjacent waters of the Eastern Gulf, Denham Sound and Freycinet Estuary. The study found significant variation in maximum age, growth, maturity and spawning time at fine spatial scales. Such variation, unusual for a large, potentially mobile fish inhabiting a marine environment with no obvious physical barriers, is linked to the inner gulfs’ marked environmental heterogeneity, the low levels of mixing and historic differences in fishing pressure among the three areas. The daily egg production method (DEPM) was used, for the first time with this species in Western Australia, to provide estimates of spawning biomass of the three separate inner gulf P. auratus stocks. While relatively imprecise, mostly due to imprecision in estimation of daily egg production, these estimates demonstrated that these stocks are very small (measured in tens of tonnes) compared with P. auratus stocks elsewhere in Australia and New Zealand. Biological data and DEPM estimates obtained from this study were incorporated in age-based stock assessment models that have been used to determine the status of inner gulf pink snapper stocks since 2002.
30

Wakefield, Corey Brion. "Latitudinal and temporal comparisons of the reproductive biology and growth of snapper, Pagrus auratus (Sparidae), in Western Australia." Wakefield, Corey Brion (2006) Latitudinal and temporal comparisons of the reproductive biology and growth of snapper, Pagrus auratus (Sparidae), in Western Australia. PhD thesis, Murdoch University, 2006. http://researchrepository.murdoch.edu.au/382/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This study focused on obtaining sound quantitative data on the reproductive biology, length and age compositions and growth of the snapper Pagrus auratus in the waters off Carnarvon at ca 25oS and Perth at ca 32oS on the west coast of Australia and at ca 34oS on the south coast of Western Australia. Sampling thus encompassed both sub-tropical and temperate waters and the geographical range within which this species is abundant in Western Australia. The resultant data were used to explore the ways in which the biological characteristics of P. auratus differ with latitude and thus water temperature. An intensive sampling regime for eggs and spawning individuals of P. auratus was conducted in Cockburn Sound, a large marine embayment in the Perth region at ca 32oS. The resultant data were used to elucidate where and when spawning occurs in this large marine embayment and to determine more precisely the factors that influence the timing of spawning. The implications of the results presented in this thesis for the management of P. auratus, a species that has been subjected to very heavy fishing pressure in recent years, are discussed. The time and duration of spawning of P. auratus in the subtropical waters of Carnarvon differed markedly from those recorded for this sparid in the temperate and cooler waters of the Perth and the south coast regions. Spawning at Carnarvon occurred predominantly in the five months between late autumn (May) and mid spring (September), whereas it took place mainly in the three months between mid spring (October) and early summer (December) in the Perth region. Spawning of P. auratus on the south coast occurred predominantly in October and November in 2003 and 2004 and scarcely at all in 2005. Gonadal recrudescence was thus initiated when water temperatures were close to their maximum but declining in Carnarvon, and close to their minima and rising in the Perth and south coast regions, respectively. The prevalence of fully mature and spawning females in all three regions was greatest in those months when water temperatures lay between 19 and 21oC. Collation of the data in this thesis and those provided in the literature for other populations showed that the spawning period was related to latitude, occurring far earlier in sub-tropical than temperate waters. The females and males attained maturity at a far smaller total length (L50) in the Carnarvon region, i.e. 378 and 353 mm, respectively, than in the Perth region, 585 and 566 mm, respectively, and also the south coast region, i.e. 600 and 586 mm. The trends exhibited by the age at maturity parallel those for length, with the A50s for the two sexes increasing from ca 4 years in Carnarvon to ca 5.6 years in the Perth region and nearly 7 years in the south coast region. The L50 and A50 at maturity thus both increased with increasing latitude. Marginal increment analysis demonstrated that, irrespective of the number of opaque zones in the otoliths of P. auratus, a single such opaque zone is laid down each year in these otoliths. Furthermore, the trends exhibited by the monthly marginal increments showed that the opaque zone is laid down predominantly in winter in the subtropical waters of Carnarvon, as opposed to mainly in spring in the temperate waters of the Perth and south coast regions. Thus, the timing of formation of the opaque zone in the otoliths of P. auratus along the Western Australian coast is not related to the trends exhibited by water temperature, but, in both the Carnvarvon and Perth regions, was coincident with the timing of spawning. The maximum total lengths recorded for females and males in the Carnarvon region, i.e. 864 and 840 mm, respectively, were considerably less than the corresponding values of 1051 and 1056 mm in the Perth region, and 1083 and 1099 mm in the south coast region. Growth in the Perth and south coast regions was greater than in Carnarvon, as is reflected in, for example, the respective lengths of 820, 720 and 610 mm for females at 10 years of age, as determined from the von Bertalanffy growth equations. The length and age compositions in the Carnarvon and south coast regions were essentially unimodal, whereas those in the Perth region were bimodal. However, the 'mode' in the length-frequency distribution for the south coast region was located well to the right of that in the Carnarvon region, reflecting relatively lower contributions by individuals of the age cohorts of 3 to 6 years. The marked bimodality in the length-frequency distribution for P. auratus in the Perth region was due to the presence of a group of mainly smaller individuals caught outside Cockburn Sound and another of mainly larger individuals that were caught in Cockburn Sound and which formed part of a spawning aggregation in that embayment. The proportion of fish > 10 years old in the Carnarvon region declined markedly between 2003 and the following two years, presumably reflecting the effect of heavy fishing pressure. This contributed to the decision by fisheries managers to reduced the TAC in those waters after 2003. Age-frequency data demonstrated that annual recruitment success in Cockburn Sound varied greatly, with the 1991, 1992 and 1996 year classes being particularly strong, and recognizing that the relative numbers of the first two year classes did decline progressively between 2002 and 2004. Annual recruitment was particularly variable in the south coast region, with the catches of the 1996 year class dominating the samples. The relative number of early stage P. auratus eggs in ichthyoplankton samples collected from Cockburn sound on each of four new moons during the spawning seasons of four consecutive years peaked in November in three of those years, i.e. 2001, 2003 and 2004, and in November/December in the remaining year, i.e. 2002. This showed that spawning in this embayment peaked during these months, at which times the mean sea surface temperatures ranged only from 19 to 20oC. The prevalence of spawning fraction females in sequential samples demonstrated that spawning peaks at the new and, to a lesser extent, full moons. This helps account for the strong positive correlation between spawning fraction and tidal regime, with spawning being greatest when the tidal range is greatest. Spawning times, back-calculated from the ages of the eggs collected during ichthyoplankton surveys in Cockburn Sound on each of 16 new moons within the spawning periods of four successive years, demonstrated that, in this embayment, P. auratus spawns at night and within the first three hours of the onset of the ebb tide. The distribution of egg concentrations on the 16 new moons showed that, each year, spawning occurred firstly in the north-eastern area of Cockburn Sound and then in the middle and finally north-western areas of this embayment. In the Perth region, the marine embayments of Cockburn and Warnbro Sound act as nursery areas for P. auratus during the first two years of life. The majority of 2 to 5 year old fish and a large proportion of the 6 year old fish occupy the marine waters outside the embayments. The remaining 6 year old and almost all of the older fish begin to move in September into particularly Cockburn Sound, where they form relatively large spawning aggregations between October and December, before undergoing a massive emigration from this embayment in December/January. The limited returns from fish that were tagged in Cockburn Sound and were subsequently caught outside this embayment indicate that, following spawning, P. auratus does not tend to move in a particular direction. Pagrus auratus stocks are heavily exploited in offshore, oceanic waters and in embayments, such as Cockburn Sound, where they are particularly susceptible to capture because of the tendency of this species to form spawning aggregations in these same easily accessible locations each year. The data obtained during this thesis show that the L50 at maturity of females and males in temperate waters, i.e. nearly 600 mm, is far greater than the current minimum legal length (MLL) of 410 mm TL. There is thus a need to increase the MLL and/or reduce fishing pressure on immature individuals in open waters. However, the effectiveness of an increase in the MLL may be limited because there is evidence that P. auratus suffers from fishing-induced barotrauma. Closures of specific areas during the spawning season of P. auratus, such as those that have been applied in Cockburn Sound and Shark Bay, are potentially a very effective method for reducing the effects of heavy fishing on spawning individuals.
31

Jackson, Gary. "Fisheries biology and management of pink snapper, Pagrus auratus, in the inner gulfs of Shark Bay, Western Australia." Jackson, Gary (2008) Fisheries biology and management of pink snapper, Pagrus auratus, in the inner gulfs of Shark Bay, Western Australia. PhD thesis, Murdoch University, 2008. http://researchrepository.murdoch.edu.au/664/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This study explored an important aspect of the basis for the highly complex population structure of pink snapper (Pagrus auratus) within the inner gulfs of Shark Bay, investigated how growth and reproduction differ among these closely-adjacent but separate stocks, and obtained biomass estimates for each stock that are essential for the sustainable management of the regionally-important recreational pink snapper fishery. Using ichthyoplankton data in combination with hydrodynamic modelling, P. auratus eggs and larvae were shown to be retained within localized meso-scale eddies that were coincident with the main inner gulf spawning areas. Such hydrodynamic retention, in conjunction with tagging and otolith chemistry data that indicates very limited movement of juvenile and adult fish, explains how separate pink snapper populations can exist in the adjacent waters of the Eastern Gulf, Denham Sound and Freycinet Estuary. The study found significant variation in maximum age, growth, maturity and spawning time at fine spatial scales. Such variation, unusual for a large, potentially mobile fish inhabiting a marine environment with no obvious physical barriers, is linked to the inner gulfs' marked environmental heterogeneity, the low levels of mixing and historic differences in fishing pressure among the three areas. The daily egg production method (DEPM) was used, for the first time with this species in Western Australia, to provide estimates of spawning biomass of the three separate inner gulf P. auratus stocks. While relatively imprecise, mostly due to imprecision in estimation of daily egg production, these estimates demonstrated that these stocks are very small (measured in tens of tonnes) compared with P. auratus stocks elsewhere in Australia and New Zealand. Biological data and DEPM estimates obtained from this study were incorporated in age-based stock assessment models that have been used to determine the status of inner gulf pink snapper stocks since 2002.
32

Jackson, Gary. "Fisheries biology and management of pink snapper, Pagrus auratus, in the inner gulfs of Shark Bay, Western Australia /." Murdoch University Digital Theses Program, 2007. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20081222.105104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Dias, Junior Eurico Azevedo. "Estrutura gen?tica populacional de Lutjanus analis cioba e Lutjanus jocu dent?o (Lutjanidae) ao longo do litoral brasileiro." Universidade Federal do Rio Grande do Norte, 2012. http://repositorio.ufrn.br:8080/jspui/handle/123456789/12644.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Made available in DSpace on 2014-12-17T14:05:21Z (GMT). No. of bitstreams: 1 EuricoADJ_TESE.pdf: 2589936 bytes, checksum: be1dedfbfc2d5720f10af387bc96dda3 (MD5) Previous issue date: 2012-06-01
Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior
Esp?cies da fam?lia Lutjanidae representam um importante recurso pesqueiro em todas as ?reas de sua ocorr?ncia. No Brasil a explora??o comercial se iniciou na d?cada de 60 e nos anos 80, j? demonstrava decl?nio nos volumes de captura. A diminui??o de capturas aponta que os lutjan?deos devem ser manejados conservativamente. Estudos sobre a estrutura gen?tica das popula??es e dados gen?ticos para monitoramento dos estoques ao longo da costa brasileira atrav?s de marcadores moleculares, s?o escassos. Nesta regi?o, as esp?cies Lutjanus analis e L. jocu desempenham papel social para a subsist?ncia das comunidades de pescadores artesanais. O presente trabalho avaliou a variabilidade gen?tica inter e intrapopulacional, assim como o n?vel de estrutura??o gen?tica populacional de L. analis ( cioba) e L. jocu ( dent?o) ao logo do litoral brasileiro, analisando a regi?o hipervari?vel 1 da regi?o controle D-loop do DNAmt. Ambas as esp?cies demonstram constituir um ?nico grande estoque que permite compreend?-los como popula??es panm?ticas. De fato, a elevada variabilidade gen?tica demonstrada pelos altos ?ndices de diversidade nucleot?dica e haplot?pica, n?o revelam sinais de deprecia??o gen?tica frente a explora??o pesqueira. Os padr?es demogr?ficos hist?ricos destas esp?cies demonstram concord?ncia com eventos ocorridos no Pleistoceno. Os dados gen?ticos n?o excluem riscos futuros para ambas as esp?cies decorrentes da cont?nua explora??o destes estoques
34

Davis, Michelle Leigh. "Assessment of the South Atlantic Red Porgy (Pagrus pagrus) Population Under a Moratorium." Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/30825.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Red porgy Pagrus pagrus is a reef fish important to both recreational and commercial fisheries off the coast of the southeastern United States. Stock assessments performed on this species since 1985 have shown a population in decline. As a result, a number of management actions were put in place, including a harvest moratorium in 1999. Stock assessments for many marine species, including red porgy, rely on a combination of fishery-dependent and fishery-independent data. When a moratorium is in place, the flow of fishery-dependent data is interrupted, making assessments more reliant on fishery-independent information.

To investigate how loss of fishery-dependent data, as during a moratorium, would affect stock assessment results for red porgy, I conducted model simulations to represent moratoria of various durations. The most recent red porgy stock assessment model developed during a 2002 workshop was used as a tool in these simulations. I found that biological reference points, such as biomass and fishing mortality, and population projections were more variable for longer simulated moratoria. When fishery-dependent data were removed, minor fluctuations in length and age frequencies resulted in larger fluctuations in estimates of biological reference points. The simulated moratoria also resulted in a slight bias toward over-estimating stock productivity.

Similar simulations and analyses were conducted to determine the effects of reducing fishery-independent data from the Marine Resources Monitoring, Assessment, and Prediction (MARMAP) program. Length and age data of reduced MARMAP sample sizes were bootstrapped from original data, and used as input for the stock assessment model. Biological reference points and population projections were more variable for small MARMAP sample sizes, due to the incomplete representation of the length and age frequencies of the population. Reduced sample sizes also showed a slight bias toward predicting a more productive population. These types of simulations emphasize the benefits of investigating potential effects of data reduction on assessment results prior to implementing management strategies, such as a moratorium or sampling change, that cause data loss.

Although decreasing red porgy data resulted in slight changes in assessment results, there are more data available for this species than other species in the snapper-grouper complex. For these lesser-studied species, reducing data could dramatically affect assessment capabilities. To investigate this, I compiled available data for these species and identified the stock assessment method used. I then predicted assessment capabilities for each species under a moratorium and if the MARMAP survey was eliminated. A moratorium could reduce assessment capabilities for 37 of the 73 species, and 63 species would require management based on key species. Removing MARMAP data would reduce assessment capabilities of eight species, many of which are economically important. There was an overwhelming need for a reliable catch-per-effort index, information that could improve assessment capabilities of 67 species. This index could be obtained by expanding the MARMAP survey, from a fishery observer program, or from commercial logbooks. By linking the red porgy stock assessment, an evaluation of sampling regimes and data loss during a moratorium, and the expansion of this stock assessment strategy to multiple species, managers will ultimately benefit from increased ability to manage stocks experiencing varying regulations and data availability.
Master of Science

35

Coxon, Sarah Elizabeth. "The exercise physiology of snapper (Pagrus auratus): implications for the better commercial harvesting of an iconic New Zealand finfish." Thesis, University of Canterbury. Biological Sciences, 2014. http://hdl.handle.net/10092/9430.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Worldwide, an increasing demand for fish and fisheries products, together with socioeconomic pressure for industry expansion, is placing considerable pressure on wild fish stocks – more than 80% of which are considered by the Food and Agriculture Organisation of the United Nations (FAO) to be either maximally- or over-exploited. Adding value to the existing catch and/or improving the sustainability of current wild capture methods may offer a means of providing industry growth while negating the need for increased landings. In particular, the peri-mortem condition of a fish plays an integral role in the condition of the tissues post-mortem and hence in product quality, with harvesting techniques that result in stress or fatigue yielding a lower quality product. An understanding of the physiology of the target species and its response to harvest is therefore essential to implementing targeted improvements in harvesting technologies. For species harvested using trawl-based technologies, this includes knowledge of their exercise physiology, in particular their swimming capacity, since this is a key determinant of the interaction between fish and trawl gears, and hence of the nature and severity of stress experienced and of the condition of fish at landing. This thesis describes a series of discrete studies relating to the exercise physiology of juvenile snapper, Pagrus auratus, an iconic New Zealand finfish that comprises important recreational and commercial fisheries. In particular, we sought to characterise the capacity of snapper for sustained swimming activity, including how performance may differ between fish of different size or with environmental temperature; to determine the consequences of exhaustive exercise for both subsequent swimming activity, an important determinant of survival in escaping or discarded catch, and for tissue biochemistry, which ultimately determines product quality in harvested fish; to validate the use of laboratory-based simulations for the study of capture-related stress by comparing the response of laboratory-exercised snapper with commercially caught fish; and to determine the tolerance of snapper to environmental hypoxia, and further, the possible consequences of hypoxia for swimming capacity and for recovery in fish retained for subsequent rested-type harvest. The capacity of snapper for sustained swimming activity was characterised through the use of incremental exercise tests to determine critical swimming speeds, Ucrit. Juvenile snapper (94-107 mm length, 16-157 g mass) demonstrated a strong swimming capacity, with individual fish attaining critical swimming speeds of up to 7.1 body lengths per second (bl s⁻¹). Swimming performance demonstrated an allometric association, with absolute critical speeds increasing with fish size, whilst relative performance favoured smaller fish. The relation was described by the function Ucrit (m s⁻¹) = 0.003412 [length (mm)] + 0.2669. Critical swimming performance also exhibited variation in response to environmental variables. Thermal performance curves were evident in snapper acclimated to 12, 18 and 24 °C, with the suggestion of optimal performance at acclimation temperatures between 18 and 24 °C. Critical swimming performance was also significantly reduced during exposure to ambient oxygen tensions below 80 mmHg; at 40 mmHg, snapper attained only 21% of the critical swimming speeds observed under normoxic (150 mmHg) conditions. In juvenile snapper (~75 g), exhaustive exercise resulted in severe metabolic, acid-base, haematological and hormonal perturbations, the nature of which were similar to those classically demonstrated in other strong-swimming fish species, especially salmonids. These included the depletion of glycogen from within the white muscle (WM) and the concomitant production of lactate, with a resultant lactacidosis of the plasma; recruitment of erythrocytes from the spleen; and the release of cortisol to the plasma. The recovery of these disturbances required 6 hours under laboratory conditions. As the stresses experienced by fish during commercial capture are often considered to be greater than those which can be induced during laboratory-based simulations, it was necessary to investigate whether the magnitude of the perturbations observed in laboratory-exercised snapper were an appropriate model of those of trawl-caught fish. In trawl-caught snapper (1100 g, 38 cm) obtained under commercially-relevant conditions (tow speed ~3.0 knots; duration 2.25-2.75 hours), the magnitude of the perturbations were greater than for laboratory-exercised fish. While the recovery of some metabolites was evident within the first 18 hours post-capture, their recovery was prolonged relative to laboratory-exercised fish; other metabolites, namely muscle glycogen and plasma cortisol, exhibited no signs of recovery. These observations suggest that the response of snapper to exhaustive exercise within the laboratory may underestimate the severity of the response induced by commercial harvest. This is further suggested by post-capture mortality rates of 14%, whereas no mortality was observed following fatigue at Ucrit. Exhaustive exercise also resulted in the impairment of subsequent critical swimming performance. Immediately following fatigue, snapper (85-160 g) were capable of sustained swimming activity at speeds of up to 60-70% Ucrit; however, critical swimming performance was reduced 30%, presumably due to limitations in WM function. There was no suggestion of the recovery of WM function within the first 30 minutes post-fatigue; thereafter, Ucrit was progressively restored, such that snapper were able to repeat their initial swimming performance in a second Ucrit test performed 2 hours after the conclusion of the first. Snapper were moderately tolerant of hypoxia, oxygen-regulating at reduced oxygen tensions (<100 mmHg) by virtue of increased ventilatory rate and stroke volume, with a distinct bradycardia developing at PO₂ below 60 mmHg. Larger snapper appeared to possess a greater hypoxia tolerance than did smaller fish, with Pcrit resolved to 77 in 20 g fish, and 50 mmHg in 150 and 230 g fish. Exposure to moderate hypoxia (60-80 mmHg) during recovery from an exhaustive exercise event constrained MO₂ max to 78% of that of normoxic fish, however did not appear to impede the return of MO₂ to routine levels. The present study is the first to examine in detail the swimming performance of snapper, and the consequences of exhaustive exercise for physiological condition. By understanding the swimming capacities of snapper, it may be possible to refine harvesting practices (i.e. tow speeds) or utilise technologies (i.e. net design) such that the water velocities through the trawl net are within the range at which the fish can swim sustainably, minimising the extent of stress and fatigue experienced by fish, and hence their effects on both quality and survival. The study also demonstrates that whilst snapper experience significant physiological disturbance during commercial harvesting, including significant mortality, some fish demonstrate the potential for metabolic recovery, which may permit their retention in an on-board tank facility for subsequent rested-type harvest. Finally, the present work highlights a number gaps in our understanding of the link between harvesting conditions and fish condition, and makes a number of suggestions for future studies or directions.
36

Miller, Nathan. "The Gulf of Mexico Red Snapper Individual Fishing Quota Program: The Effects on the Fishing Industry and Potential Outlook." Scholar Commons, 2010. http://scholarcommons.usf.edu/etd/3626.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In January 2007, the Gulf of Mexico red snapper fishery took a step toward sustainability and began management under an individual fishing quota (IFQ) system. The hope is that direct ownership stakes by fishers brings more direct involvement on behalf of the boat owners and fishermen as well as more responsible and sustainable fishing practices on depressed fish populations. The research was conducted in order to study the welfare of local fishing communities as well as the effects on the red snapper fishery itself. Traditional fisheries and economic data were analyzed. In addition a Data Envelopment Analysis (DEA) of the Florida Gulf Coast communities involved in the red snapper fishery was performed to compare to the analysis of fishing communities prepared by the National Marine Fisheries Service (NMFS). Finally, online and phone surveys of fishermen involved in the red snapper fishery were performed to gauge their responses to the change in management. The study reveals a strong correlation between the DEA analysis of fishing communities affected and the analysis performed by NMFS, and reinforces DEA as a method of determining involvement in a fishery. Additionally, the thesis indicates the red snapper IFQ has performed as expected in some areas by its supporters – an average gulf-wide ex-vessel price per pound increase of 10% in just three years; elimination of the rush to fish due to guaranteed quota; and a shift in fleet composition as the number of share owners owning less than 2.00% have dwindled, and the number of shareholders possessing greater than 2.00% of the quota has increased gulf-wide by 50%. However, in other areas such as effort reduction and bycatch rates, the IFQ appears to have mixed results. A reported decline in effort is likely attributable to a reduction in the overall gulf-wide red snapper quota between 2007 and 2008 rather than the IFQ, and even NMFS doubts the bycatch data that are being reported by fishermen. Most importantly, current IFQ shareholders were surveyed via phone and internet revealing not only an overall disapproval by most fishers of the IFQ design process, but also effects contrary to those publicized by IFQ supporters, and a general distrust in fisheries management.
37

Previero, Marília. "The snapper and grouper fisheries of the Abrolhos Bank, East Brazil shelf: fleet patterns, exploitation status and risk assessment." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/21/21134/tde-18022019-134135/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The fishery is a complex and dynamic socio-ecological system involving several actors and knowledge areas. Along the Brazilian coast the small-scale fisheries are very common and provide important ecosystem services. This fishery modality are usually data-poor in terms of catch and abundance data, landing records, quantification of vessels and fishing gear used. This data-limited condition frequently hampers fishery assessments and effective managements. That is the case in the Abrolhos Bank, East Brazil, a wide portion of the shallow continental shelf that encompass a complex benthic habitat with coral reefs, rhodoliths, buracas, mangroves, seaweed banks and with a great biodiversity. Over this area the small-scale fisheries are a traditional activity, extremely diverse in terms of exploitation capacity, fishing gears, target stocks and operating areas. On the Abrolhos Bank, snappers and groupers are very common resources, besides being predators important for the ecosystem equilibrium. However, these stocks are not evaluated or continuously monitored in the fishing landings and any regional fishery management is currently in place. The overall goal of this thesis was to elucidate questions on three snappers (Lutjanus jocu, Lutjanus synagris and Ocyurus chrysurus) and three groupers (Cephalopholis fulva, Epinephelus morio and Mycteroperca bonaci) fishery characteristics, impacts and sustainability in the Abrolhos Bank. The specific objectives were (1) to assess, organize, and analyze these fisheries to find out patterns on stocks occurrence, on fishing fleets and fishing areas, and to propose management units; (2) to examine the abundance trends and the exploitation status of the six stocks through indicators of size, biomass landed, mortality, spawning and yield, and (3) to evaluate the stocks risk to overexploitation and their fishery sustainability considering biological, environmental social and economic aspects. The study was conducted in four coastal communities of the Abrolhos Bank. The data were obtained by interviews with fishers, experts and stakeholders, from fishery landings monitoring databases, by specimens\' measures in landings and from literature. Groups of stocks co-occurring in landings and groups of stocks co-occurring in fishing grounds were discovered. Seven similar fishing areas were determined and suggested as spatial management units. Overfishing and decline in the relative abundance were detected to five stocks. The major causes of overfishing were high fishing mortality, low spawning potential ratio, low mega-spawners and high juveniles in landings. The fishery has led some stocks on alert to overexploitation and the results revealed that coral reefs habitat and ecosystem are also threaten by mining waste and dredging. Furthermore, there is a weak environmental governance in the region and insufficient community participation in the construction of management proposals. The results reveal a concerning situation regarding the stocks exploitation status but provide the key points to be worked on together the fishing communities. This thesis emphasizes the need for urgent elaboration of fishery regulation measures in the region and may contribute in the delineating of management proposals in this complex and threatened fishery system.
A pesca é um sistema sócio ecológico complexo e dinâmico, envolvendo vários atores e áreas de conhecimento. Ao longo da costa brasileira as pescarias de pequena escala são muito comuns e provém importantes serviços ecossistêmicos. Essa modalidade de pesca frequentemente é pobre em dados de captura e abundância, registros de desembarques, quantificação de embarcações e de artes de pesca utilizadas. Essa condição frequentemente dificulta avaliações pesqueiras e o manejo eficaz. Isso ocorre no Banco dos Abrolhos, leste do Brasil, uma ampla porção da plataforma continental rasa que compreende um complexo habitat bentônico com recifes de corais, rodolitos, buracas, mangues, bancos de algas e com grande biodiversidade. Nesta área, a pesca de pequena escala é uma atividade tradicional extremamente diversificada em termos de capacidade de explotação, artes de pesca, estoques alvo e áreas de operação. No Banco dos Abrolhos vermelhos e garoupas são recursos muito comuns, além de predadores importantes para o equilíbrio do ecossistema. No entanto, estes estoques não são avaliados ou monitorados nos desembarques pesqueiros, e nenhuma gestão pesqueira regional está atualmente em vigor. O objetivo geral desta tese foi elucidar questões sobre as características, impactos e sustentabilidade da pesca de três vermelhos (Lutjanus jocu, Lutjanus synagris and Ocyurus chrysurus) e três garoupas (Cephalopholis fulva, Epinephelus morio and Mycteroperca bonaci) no Banco dos Abrolhos. Os objetivos específicos foram (1) avaliar, organizar e analisar essas pescarias para descobrir padrões de ocorrência de estoques, padrões de frotas e áreas de pesca, e propor unidades de manejo; (2) examinar as tendências na abundância e o status de explotação dos seis estoques por meio de indicadores de tamanho, biomassa desembarcada, mortalidade, desova e rendimento; e (3) avaliar o risco de sobreexplotação dos estoques e a sustentabilidade pesqueira considerando aspectos biológicos, ambientais, sociais e econômicos. O estudo foi realizado em quatro comunidades costeiras do Banco dos Abrolhos. Os dados foram obtidos em entrevistas com pescadores e especialistas locais, em bases de dados de monitoramentos pesqueiros, em medições de espécimes em desembarques e na literatura. Grupos de estoques co-ocorrendo em desembarques e grupos de estoques co-ocorrendo em áreas de pesca foram descobertos. Sete áreas de pesca semelhantes foram determinadas e sugeridas como unidades de manejo espaciais. Sobrepesca e declínio na abundância relativa foram detectados em cinco estoques. As principais causas da sobrepesca foram alta mortalidade por pesca, baixo potencial de desova, poucos mega-reprodutores e muitos juvenis nos desembarques. A pesca deixou alguns estoques em alerta de sobreexplotação e os resultados revelaram que o habitat recifal e o ecossistema são ameaçados também por resíduos de mineração e pela dragagem. Além disso, a governança ambiental na região é fraca e a participação comunitária em propostas de gestão é insuficiente. Os resultados revelam uma situação preocupante quanto ao estado de exploração dos estoques, mas fornecem os pontos-chave a serem trabalhados em conjunto com as comunidades pesqueiras. Esta tese enfatiza a necessidade de elaboração urgente de medidas de regulação pesqueira na região e pode contribuir para o delineamento de propostas de manejo neste complexo e ameaçado sistema pesqueiro.
38

Lounder, Cecelia. "Recruitment dynamics and otolith chemical signatures of juvenile gray snapper, Lutjanus griseus, among West Florida estuarine and coastal marine ecosystems." [Pensacola, Fla.] : University of West Florida, 2009. http://purl.fcla.edu/fcla/etd/WFE0000156.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

au, p. coulson@murdoch edu, and Peter Coulson. "The biology of three teleost species with divergent life cycle characteristics and their implications for fisheries management." Murdoch University, 2008. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20090324.143252.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The overall aim of this thesis was to determine the size and age compositions, growth and reproductive biology of Western Blue Groper (Achoerodus gouldii), Blue Morwong (Nemadactylus valenciennesi) and Yellowtail Flathead (Platycepahlus endrachtensis) in south-western Australian waters, in which these three species have divergent life cycle characteristics. As A. gouldii and N. valenciennesi are commercially and recreationally important in coastal waters and P. endrachtensis is one of the most recreationally important species in the Swan River Estuary, these biological data were then used to produce estimates of mortality and spawning stock biomass per recruit for each of these species. The biological data and stock assessment parameters were finally employed comparatively to ascertain whether any of the three species possessed characteristics that would make them particularly susceptible to the effects of fishing and whether there was evidence that any of the species is fully or even overexploited. Achoerodus gouldii typically uses reefs in protected inshore waters along the coast and around neighbouring islands as a nursery habitat and then, as it increases in size, moves to deeper, offshore reefs, where it spawns between early winter and mid-spring. The maximum total length and age of A. gouldii were 1162 mm and 70 years, the latter being the greatest age by far yet recorded for any species of labrid. However, most growth occurs in the first 20 years of life. Histological and demographic analyses demonstrated that all individuals begin life as females and, after attaining maturity, many become males, i.e. A. gouldii is a monandric protogynous hermaphrodite. The L50 at maturity and sex change were 653 and 821 mm, respectively, which correspond to ages of c. 17 and 37 years, respectively. As sex change took place over a narrower range in lengths (650 to 900 mm) than in ages (15 to 49 years), that change is apparently related more to size than age. Since sex change is typically accompanied by a change from green to blue, body colour can be used as a proxy for determining the length (L50) at which females change to males. von Bertalanffy growth curves fitted to the lengths at age of individuals of each sex of this hermaphroditic species using a novel technique demonstrated that, with increasing age, the lengths of males became increasingly greater than those of females. Thus, at ages 15, 30 and 60 years, the estimated lengths at age of females were c. 600, 670 and 680 mm, respectively, whereas those of males were c. 695, 895 and 975 mm, respectively. As A. gouldii is very long-lived and sexual maturity, and even more particularly sex change, occur late, this labrid is potentially very susceptible to overfishing. Thus, because the mortality estimates and per recruit analyses indicated that, at present, this species is close to or fully exploited, fisheries managers will need to take a precautionary and watchful approach to managing and thus conserving the stocks of this species. As with A. gouldii, N. valenciennesi moves to deeper, offshore waters as it increases in size and then matures and spawns in those waters. Although N. valenciennesi has a maximum length of nearly 1 m and thus, like A. gouldii, is moderately large, it has a far shorter life span, i.e. 19 vs 70 years. While female N. valenciennesi does not grow to as large a size as its males (max. lengths = 846 and 984 mm, respectively), the maximum age of both sexes was 19 years. From the growth curves, the females by ages 3, 6 and 10 years havd attained, on average, lengths of 435, 587 and 662 mm, respectively, compared with 446, 633 and 752 mm, respectively, for males. Both sexes grew little after 10 years of age. Juvenile N. valenciennesi < 400 mm in total length were found exclusively in shallow, coastal waters on the south coast, whereas their adults were abundant in offshore waters of both the south and lower west coasts. The females and males typically mature in offshore waters of the south coast at lengths of c. 600-800 mm and ages of c. 7-9 years. In contrast, the vast majority of females caught in offshore waters of the lower west coast (where they were of a similar length and age range to those in offshore waters on the south coast) became mature at lengths of 400-600 mm and 3-4 years of age. The attainment of maturity by N. valenciennesi at far lesser lengths and ages on the lower west coast than south coast suggests that the former coast provides better environmental conditions for the gonadal maturation and spawning of this species. Furthermore, the contrast between the almost total absence of the juveniles of N. valenciennesi in nearshore waters on the lower west coast and their substantial numbers in comparable waters on the south coast indicates that the larvae of this species produced on the lower west coast are transported southwards to the south coast, where they become juveniles. As spawning occurs between mid-summer and late autumn, the larvae, which spend a protracted period in the plankton, would be exposed, on the lower west coast, to the influence of the southwards-flowing Leeuwin Current at the time when that current is at its strongest. Although N. valenciennesi is caught by recreational line fishing and commercial gillnet fishing when they are as young as 3-4 years old, they do not become fully vulnerable to these fisheries until they are about 9 years old. Consequently, the individuals of this species can potentially breed over a number of years before they become particularly prone to capture by fishers. Mortality estimates and per recruit analyses suggested that N. valenciennesi in south-western Australia is not currently overfished. A greater resilience to fishing by N. valenciennesi than A. gouldii presumably reflects, in part, its far shorter lifespan, earlier maturity and possession of gonochorism rather than hermaphroditism. Platycephalus endrachtensis spawns in the Swan River Estuary between late spring and early autumn and completes the whole of its life cycle in this system. Although females attain a far larger length (615 mm) than males (374 mm), females and males were present in each age class. These data, together with a detailed examination of histological sections of a wide size and age range of individuals, demonstrated that this species, unlike some of its relatives, is not a protandrous hermaphrodite, i.e. it does not change from male to female with increasing body size. The combination of the presence of females and males in all age classes and the observation that all of the large number of individuals between 374 and 615 mm were females shows that the far greater length attained by that sex is largely related to its faster growth rate. The fact that females outnumbered males in each age class of P. endrachtensis in which the sample size was substantial, i.e. > 25, with the overall sex ratio being 2.7 females: 1 male, indicate that there has been strong selection for egg production in this species. As the minimum legal length for retention of P. endrachtensis is 300 mm, and relatively few males exceeded this length, the recreational fishery which targets this species is based largely on its females. The estimates of mortality and results of per recruit analyses provided no evidence that P. endrachtensis is currently overfished. From a management point of view, it is advantageous that the current size limit for this species exceeds the average length at which its females (259 mm) attain maturity. Furthermore, this species appears to be resilient to capture and release. The data presented in this thesis demonstrate that A. gouldii possesses biological characteristics which make it potentially more prone to the effects of fishing than is the case with either N. valenciennesi or P. endrachtensis. This presumably accounts, at least in part, for the indications that A. gouldii is the only one of these three species that is likely to be close to or at full exploitation.
40

Ellis, Jeffrey M. "A Quantitative Assessment of the January 2010 Cold Spell Effect on Mangrove Utilizing Coral Reef Fishes from Biscayne National Park, Florida." NSUWorks, 2015. http://nsuworks.nova.edu/occ_stuetd/377.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This study examined the effects of the January 2010 cold spell on mangrove utilizing coral reef fishes off the southeast coast of Florida, USA, in the vicinity of Biscayne National Park (BNP). An ongoing, fishery-independent mangrove visual survey documenting fish assemblages in BNP provided data from the years 1998 to 2014 for examination. Of particular interest were the presence, abundance, and size structure for five mangrove utilizing coral reef fishes: sergeant major (Abudefduf saxatilis), yellowfin mojarra (Gerres cinereus), schoolmaster snapper (Lutjanus apodus), gray snapper (Lutjanus griseus), and great barracuda (Sphyraena barracuda). These species were selected for analysis due to their economic and ecologic importance, their potential as environmental indicators, their connectedness to multiple habitats, and their abundance within the available data set. Data were collected using a modified visual ‘belt transect’ method, consisting of 60 m2 transects running parallel to the mangrove shorelines. Data for average length of fish were reconstructed to form standard normal distributions and the resulting lengths were assigned to various age-classes to create species-specific length-frequency distributions. Variations in presence and abundance were examined across three time periods (1998-2009; 2010-2011; 2012-2014), as well as comparisons of length-frequency distributions. Following the January 2010 cold spell, the presence and abundance values for the two years immediately following the event were significantly decreased compared to the years prior to the cold spell for most of the five species at either mainland (ML) or leeward key (LK) locations. Additionally, the presence and abundance estimates typically remained statistically decreased when compared against the remaining years in the available data set. The size structures for the majority of the five species at either location, however, were not consistently significantly different between the three time periods, as was hypothesized. Instead, the analyses showed mixed results, with the size structure typically shifting towards smaller individuals immediately following the event. These findings suggest that drops in water temperature resulting from cold spells are capable of directly impacting mangrove utilizing reef fish species, albeit to varying degrees depending on various factors, such as physiological tolerances, ecological life history strategies, and habitat requirements.
41

TinHan, Thomas Christian. "Long-term movement patterns of Yellow Snapper (Lutjanus argentiventris) and Leopard Grouper (Mycteroperca rosacea ) at Los Islotes Reserve, Gulf of California." Thesis, California State University, Long Beach, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=1527347.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:

Between August 2010 and September 2012, acoustic telemetry was used to monitor movements of 31 Yellow Snapper and 25 Leopard Grouper at Los Islotes reserve, a small rocky reef and reported spawning site for both species in the southwest Gulf of California. Overall, both species exhibited site fidelity to Los Islotes (grouper: present 64 f 30% of days; snapper: 49 ± 30%). Both species frequented rock and wall habitats; though snapper showed greater site attachment to specific portions of the reserve, grouper exhibited greater site fidelity to the entire reserve. Approximately 30% of snapper showed indications of spawning-related migrations elsewhere in the Gulf, though no clear seasonal pattern of migration was found for grouper. The limited degree of spawning-related emigration and moderate-high levels of site fidelity indicate that if properly placed, small reserves such as Los Islotes may yet adequately protect small, resident populations of snapper and grouper.

42

Herdter, Elizabeth Shea. "Growth Rates in Gulf of Mexico Red Snapper, Lutjanus campechanus, Before and After the Deepwater Horizon Blowout." Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5419.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Deepwater Horizon blowout occurred on April 20th, 2010 and released nearly 5 million barrels of crude oil into the northern Gulf of Mexico causing pollution of the water and sediment inhabited by many fishes for at least 87 days while the wellhead went uncapped. Populations of the Gulf of Mexico Red snapper, Lutjanus campechanus, an important fish to the ecology and economy in the region, exhibit affinity to shallow water oil infrastructure such as the Deepwater Horizon making them especially vulnerable to crude oil contamination. The objective of this study is to determine growth of Red snapper before, during and after the DWH spill and to assess factors potentially explaining such growth variation. Sagittal otoliths were collected from individuals sampled in 2011 - 2013 from scientific, demersal long-line surveys in the northern Gulf of Mexico (GoM) and West Florida Shelf (WFS). Age and otolith increment width analyses were performed. No annual variation in von Bertalanffy growth parameters was determined among the three catch years. The L∞ , K and t0 estimated from the complete data set (2011-2013) were 82.91, 0.20 and 0.43, respectively. However, significant differences in otolith increment width-at-age were observed in increment numbers three - seven in years following the DWH event, with declines of 13%, 15% and 22% occurring in the fourth -sixth increments. To asses the potential significance of exogenous environmental variables to observed yearly growth variation I evaluated five parameters - meridional (V) winds, zonal (U) winds, wind stress curl which is a measure of upwelling, Mississippi River discharge, and mean sea level anomaly - using a linear mixed effects model. Hypothesis testing via reduced maximum likelihood estimates indicated that variation in U winds and River discharge could significantly explain the variation in increment width. However, further work must be done in order to determine the natural, inter-annual variability in age specific growth before the results from model fitting can be considered conclusive. Mean back-calculated weight-at-age measurements were obtained in order to assess potential variation in productivity changes. Results from forward difference and reverse helmert contrast-coding indicated that weight at age three+, four+ and five+ declined by 16%, 15% and 11% in 2010, respectively. These analyses indicate a significant decline in fish growth in 2010 coincident with the DWH event, followed by a return to pre-spill rates.
43

Farmer, Nicholas Alexander. "Reef Fish Movements and Marine Reserve Designs." Scholarly Repository, 2009. http://scholarlyrepository.miami.edu/oa_dissertations/243.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Movement patterns and space use by mature fishes are critical in determining the effectiveness of marine reserves in conserving spawning stock biomass and/or providing biomass to adjacent fisheries through 'spillover'. Home range sizes, activity patterns, site fidelity and habitat preferences were determined for acoustically-tagged snappers and groupers using a rigorously-calibrated array of omnidirectional hydroacoustic receivers deployed in the diverse coral reef environments of a no-take marine reserve (NTMR) network in the Dry Tortugas, Florida. An individual-based localizing tendency model of reef fish movement was parameterized from fine-scale acoustic telemetry data and integrated into a Spatial Management Performance Assessment (SMPA) simulation model for reef fish populations developed to quantitatively evaluate performance of no-take marine reserves in the Dry Tortugas, Florida. Spatially-explicit SMPA models were parameterized for three overfished stocks in the lucrative snapper-grouper fishery: red grouper (Epinephelus morio), black grouper (Mycteroperca bonaci), and mutton snapper (Lutjanus analis). SMPA models were used to evaluate the impacts of a variety of life histories, movement strategies and speeds, and management regulations upon long-term stock sustainability, as measured by annual changes in spawning potential ratio (SPR), and long-term stock productivity, as measured by annual changes in fisheries yield-in-weight per recruit (Yw/R). Under assumptions of constant regional fishing pressure, constant recruitment, and 'realistic' fish movement, SMPA simulation runs from initial conditions in 2000 suggested that by 2014, the Tortugas NTMR network should function to restore red grouper populations to 30% SPR, a Federal management benchmark for sustainability. Mutton snapper were the most mobile of the species investigated; if mutton snapper movements are ignored, their population is predicted to attain 30% SPR by 2014, but given 'realistic' mobility, they may not attain this target by 2021 without additional protections. Black grouper are currently fished at over 9 times sustainable levels. SMPA simulations suggest coupling an increase in minimum size at capture of 20 - 25 cm with NTMR implementation would result in substantial short term losses in yield, but would restore both black grouper and mutton snapper populations to 30% SPR by 2021 and lead to increased long-term yields. Although marine reserve sites are often chosen opportunistically, these findings strongly suggest that reserve designs (e.g. proper sizes and configurations) must take into account the scales and patterns of movement exhibited by the exploited stocks they are intended to protect. These modeling efforts also suggested reserves are not a panacea; in order to promote sustainability for severely depleted stocks, they must be accompanied by an overall reduction in fishing capacity. Although important questions remain concerning the movements of reef fish in response to habitat and density dependent processes, our analyses of realistic reef fish behaviors suggest that the NTMRs of the Dry Tortugas promote substantial gains in SPR, promoting long-term stock sustainability and enhanced egg production. Increased rates of movement diminish these benefits, but may also mitigate short-term losses in yield associated with NTMR establishment.
44

Vincent, Matthew Timothy. "Estimability of natural mortality within a statistical catch-at-age model: a framework and simulation study based on Gulf of Mexico red snapper." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/52244.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Estimation of natural mortality within statistical catch-at-age models has been relatively unsuccessful and is uncommon within stock assessments. The models I created estimated population-dynamics parameters, including natural mortality, through Metropolis-Hastings algorithms from Gulf of Mexico red-snapper Lutjanus campechanus data. I investigated the influences of assumptions regarding model configuration of natural mortality and selectivity-at-age parameters by comparing multiple models. The results of this study are preliminary due to parameter estimates being bounded by uniform priors and thus a potential lack of convergence to the posterior distribution. Estimation of a natural-mortality parameter at age 0 or a Lorenzen natural-mortality parameter could be confounded with selectivity-at-age-1 parameters for bycatch from the shrimp fisheries. The Lorenzen natural-mortality curve was calculated by dividing the parameter by red snapper length at age. An age-1 natural-mortality parameter might not be estimable with the currently available data. Values of the natural-mortality parameter for ages 2 and older appear to be slightly less influenced by assumptions regarding selectivity-at-age parameters. We conducted a simulation study to determine the accuracy and precision of natural-mortality estimation assuming the selectivity-at-age-1 parameter for bycatch from the shrimp fisheries equaled 1.0 and a Lorenzen natural-mortality curve. The simulation study indicated that initial abundance-at-age parameters may be inestimable within the current model and may influence other parameter estimates. The preliminary simulation results showed that the Lorenzen natural-mortality parameter was consistently slightly underestimated and apical-fishing-mortality parameters were considerably underestimated. The estimation of natural mortality within a statistical catch-at-age model for Gulf of Mexico red snapper has many caveats and requires additional investigation.
Master of Science
45

Nahas, Elizabeth Leila. "Physical processes controlling circulation and frontal zones in Shark Bay, Western Australia." University of Western Australia. Centre for Water Research, 2005. http://theses.library.uwa.edu.au/adt-WU2005.0011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Shark Bay is a large inverse estuary, located in Western Australia. It has a number of unique habitats that support important species. The dynamics of circulation in Shark Bay have an influence on the species that inhabit the region, on small, local scales as well as on large Bay-wide scales. Numerical modeling and field data were used to examine small-scale dynamics in relation to an important recreational fish, pink snapper (Pagrus auratus). Icthyoplankton surveys collected and recorded egg density in regions where snapper are found. A barotropic three-dimensional hydrodynamic model was coupled with a two-dimensional Lagrangian particle-tracking program to simulate the passive transport of eggs through regions where spawning is known to occur. Circulation modeling results indicated residual flows on small scales that served to retain the eggs in the region where they were originally spawned. Results corroborate genetic work on adult snapper, which found no evidence intermixing of populations in Shark Bay. The numerical model was then further refined to run in a baroclinic mode. Simulations of salinity and temperature gradients were used to recreate frontal systems in Shark Bay. Frontal regions divide the Bay into a northern and a southern section as well as separate it from the ocean. Application of an analytical method for calculating front locations was consistent with the observed results and indicated that the primary forces determining frontal locations in the Bay are tides and gravitational circulation. Winds are a secondary influence, and solar heating is minimal in influence
46

Truelove, Nathan. "The conservation genetics of ecologically and commercially important coral reef species." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/the-conservation-genetics-of-ecologically-and-commercially-important-coralreef-species(8195a828-2305-430c-9997-548030e417ca).html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Identifying the extent to which coral reef species are connected by dispersal is a fundamental challenge for developing marine conservation strategies. Many coral reef species are relatively sedentary as adults, yet have a pelagic larval phase where larvae can potentially be widely dispersed by ocean currents. This thesis focuses on the role of ocean currents in driving spatially explicit patterns of population connectivity among ecologically and commercially important coral reef species by combining research tools from population genetics, oceanography, and biophysical modeling. Despite the substantial differences among the life histories of each coral reef species in this thesis, some similarities in connectivity patterns were found among all species. The results of the kinship and genetic outlier analyses consistently found high levels of connectivity among distant populations separated by hundreds to thousands of kilometers. Despite the high levels of connectivity among distant populations, there was substantial variation in gene flow among the populations of each species. The findings of this thesis highlight the importance of international cooperation for the sustainable management of ecologically and commercially important coral reef species in the Caribbean. In conclusion, the findings of this thesis suggest that marine conservation strategies should conservatively plan for uncertainty, particularly since the many of ecological and physical drivers of connectivity among coral reef species in the Caribbean remain uncertain.
47

Gleason, Arthur C. R. "Single-Beam Acoustic Seabed Classification in Coral Reef Environments with Application to the Assessment of Grouper and Snapper Habitat in the Upper Florida Keys, USA." Scholarly Repository, 2009. http://scholarlyrepository.miami.edu/oa_dissertations/228.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A single-beam acoustic seabed classification system was used to map coral reef environments in the upper Florida Keys, USA, and the Bahamas. The system consisted of two components, both produced by the Quester Tangent Corporation. A QTCView Series V, operating with a 50 kHz sounder, was used for data acquisition, and IMPACT software was used for data processing and classification. First, methodological aspects of system performance were evaluated. Second, the system was applied to the assessment of grouper and snapper habitat. Two methodological properties were explored: transferability (i.e. mapping the same classes at multiple sites) and reproducibility (i.e. surveying one site multiple times). The transferability results showed that a two-class scheme of hard bottom and sediment could be mapped at four sites with overall accuracy ranging from 73% to 86%. The locations of most misclassified echoes had one of two characteristics: a thin sediment veneer overlying hard bottom or within-footprint relief on the order of 0.5 m or greater. Reproducibility experiments showed that consistency of acoustic classes between repeat transects over the same area on different days varied, for the most part, between 50% and 65%. Consistency increased to between 78% and 92% when clustering was limited to two acoustic classes, to between approximately 70% and 100% when only echoes acquired within two degrees of nadir in the pitch direction were used, and to between 81% and 87% when a limited set of features was used for classification. The assessment of grouper and snapper habitat addressed the question whether areas of high fish abundance were associated with characteristic acoustic or geomorphological signatures. The results showed, first, that the hard bottom / sediment classification scheme was a useful first step for stratifying survey areas to increase efficiency of grouper census efforts. Second, an index of acoustic variability complemented the hard bottom / sediment classification by further targeting areas of potential grouper habitat. Finally, five grouper and snapper spawning aggregation sites were all found to have similar associations with drowned shelf edge reefs in the upper Florida Keys.
48

Deak, Kristina L. "Cloning and Characterization of IL-1β, IL-8, IL-10, and TNFα from Golden Tilefish (Lopholatilus chamaeleonticeps) and Red Snapper (Lutjanus campechanus)". Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5416.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cytokines are pleiotropic and redundant signaling molecules that govern the inflammatory response and immunity, a critical ecological parameter for organism success and population growth. Produced at the site of injury or pathogen intrusion by a variety of cell types, cytokines mediate cell-signaling in either an autocrine or paracrine manner. The type and magnitude of the cytokine milieu produced subsequently dictates the strength and form of immune response. As the most diverse vertebrate group, with a high sensitivity to contaminants, fish represent an important foci for the evaluation of immune system evolution, function, and alteration upon toxicant exposure. While many cytokines have been identified in teleosts, primary study has been limited to model species (e.g. zebrafish and fugu). However, evidence exists for several variations of cytokine genes within taxa, underscoring the need for species-specific evaluation. In this study, two pro-inflammatory cytokines (IL-1β and TNFα ), one chemokine (IL-8), and one anti-inflammatory cytokine (IL-10) were cloned, sequenced, and characterized for the first time in two commercially relevant Perciformes in the Gulf of Mexico, golden tilefish (Lopholatilus chamaeleonticeps) and red snapper (Lutjanus campechanus). The complete amino acid sequence was obtained and confirmed for IL-β and IL-8 from golden tilefish and for IL-8, IL-10, and TNFα from red snapper, with partial sequences obtained for the remaining proteins. The results indicate high homology among Perciformes for all cytokines studied, but divergence with other teleost orders, and low conservation when compared to birds, amphibians, and mammals. The sequences will be used to create a multi-plexed antibody-based assay for the routine detection of cytokines in teleost serum. This would allow the biochemical response to fish health challenges, such as oil spills and other contamination events, to be monitored at the protein level, building upon the current regime of genetic biomarkers. Thus, this work will aid in the understanding of how oil spills and other contamination events may alter the immune response in fishes.
49

Susko, Emily Clare. "The effects of life history strategy and uncertainty on a probability-based approach to managing the risk of overfishing." Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/76939.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Recent U.S. legislation applies a precautionary approach to setting catch regulations in federal fisheries management. A transparent approach to complying with federal guidelines involves calculating the catch recommendation that corresponds to a specified probability, P*, of exceeding the "true" overfishing limit (OFL) located within an estimated distribution. The P* methodology aims to manage the risk of overfishing explicitly, but choice of P* alone does not provide sufficient information on all of the risks associated with a control rule—both the probability of overfishing and the severity of overfishing. Rather, the ramifications of P* choices depend on the amount of uncertainty in the stock assessment and on the life history of the species in question. To evaluate these effects on the risks associated with P* rules, my study simulated fishing three example species under three levels of uncertainty. Trends identified among example species were consistent with predictions from life history. Periodic strategists, which have highly variable recruitment, experienced probabilities of overfishing which exceeded P* and which increased in time. Equilibrium strategists showed more predictable risks of overfishing but may have less capacity to recover from depleted biomass levels. Differences in the size of the OFL distribution—representing differences in levels of uncertainty—led to mixed results depending on whether the distribution was biased or whether uncertainty was fully characterized. Lastly, because OFL distributions are themselves estimates and subject to uncertainty in their shape and size, lower P* values closer to the tails of the estimated distribution produced more variable resulting risks.
Master of Science
50

Thorson, James Turner. "Multi-Species Models of Time-Varying Catchability in the U.S. Gulf of Mexico." Thesis, Virginia Tech, 2009. http://hdl.handle.net/10919/32662.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The catchability coefficient is used in most marine stock assessment models, and is usually assumed to be stationary and density-independent. However, recent research has shown that these assumptions are violated in most fisheries. Violation of these assumptions will cause underestimation of stock declines or recoveries, leading to inappropriate management policies. This project assesses the soundness of stationarity and density independence assumptions using multi-species data for seven stocks and four gears in the U.S. Gulf of Mexico. This study also develops a multi-species methodology to compensate for failures of either assumption. To evaluate catchability assumptions, abundance-at-age was reconstructed and compared with catch-per-unit-effort data in the Gulf. Mixed-effects, Monte Carlo, and bootstrap analyses were applied to estimate time-varying catchability parameters. Gulf data showed large and significant density dependence (0.71, s.e. 0.07, p<0.001) and increasing trends in catchability (2.0% annually compounding, s.e. 0.6%, p < 0.001). Simulation modeling was also used to evaluate the accuracy and precision of seven different single-species and multi-species estimation procedures. Imputing estimates from similar species provided accurate estimates of catchability parameters. Multi-species estimates also improved catchability estimation when compared with the current assumptions of density independence and stationarity. This study shows that multi-species data in the Gulf of Mexico have sufficient quantity and quality to accurately estimate catchability model parameters. This study also emphasizes the importance of estimating density-dependent and density-independent factors simultaneously. Finally, this study shows that multi-species imputation of catchability estimates decreases errors compared with current assumptions, when applied to single-species stock assessment data.
Master of Science

До бібліографії