Статті в журналах з теми "Smoothed particle hydrodynamics"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Smoothed particle hydrodynamics.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Smoothed particle hydrodynamics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Monaghan, J. J. "Smoothed Particle Hydrodynamics." Annual Review of Astronomy and Astrophysics 30, no. 1 (September 1992): 543–74. http://dx.doi.org/10.1146/annurev.aa.30.090192.002551.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Monaghan, J. J. "Smoothed particle hydrodynamics." Reports on Progress in Physics 68, no. 8 (July 5, 2005): 1703–59. http://dx.doi.org/10.1088/0034-4885/68/8/r01.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ritchie, B. W., and P. A. Thomas. "Multiphase smoothed-particle hydrodynamics." Monthly Notices of the Royal Astronomical Society 323, no. 3 (May 21, 2001): 743–56. http://dx.doi.org/10.1046/j.1365-8711.2001.04268.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cullen, Lee, and Walter Dehnen. "Inviscid smoothed particle hydrodynamics." Monthly Notices of the Royal Astronomical Society 408, no. 2 (July 30, 2010): 669–83. http://dx.doi.org/10.1111/j.1365-2966.2010.17158.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tsuji, P., M. Puso, C. W. Spangler, J. M. Owen, D. Goto, and T. Orzechowski. "Embedded smoothed particle hydrodynamics." Computer Methods in Applied Mechanics and Engineering 366 (July 2020): 113003. http://dx.doi.org/10.1016/j.cma.2020.113003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ellero, Marco, Mar Serrano, and Pep Español. "Incompressible smoothed particle hydrodynamics." Journal of Computational Physics 226, no. 2 (October 2007): 1731–52. http://dx.doi.org/10.1016/j.jcp.2007.06.019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Petschek, A. G., and L. D. Libersky. "Cylindrical Smoothed Particle Hydrodynamics." Journal of Computational Physics 109, no. 1 (November 1993): 76–83. http://dx.doi.org/10.1006/jcph.1993.1200.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tavakkol, Sasan, Amir Reza Zarrati, and Mahdiyar Khanpour. "Curvilinear smoothed particle hydrodynamics." International Journal for Numerical Methods in Fluids 83, no. 2 (June 7, 2016): 115–31. http://dx.doi.org/10.1002/fld.4261.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Trimulyono, Andi. "Validasi Gerakan Benda Terapung Menggunakan Metode Smoothed Particle Hydrodynamics." Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan 15, no. 2 (June 6, 2018): 38–43. http://dx.doi.org/10.14710/kpl.v15i2.17802.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Murante, G., S. Borgani, R. Brunino, and S. H. Cha. "Hydrodynamic simulations with the Godunov smoothed particle hydrodynamics." Monthly Notices of the Royal Astronomical Society 417, no. 1 (September 13, 2011): 136–53. http://dx.doi.org/10.1111/j.1365-2966.2011.19021.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Yamamoto, Satoko, Takayuki R. Saitoh, and Junichiro Makino. "Smoothed particle hydrodynamics with smoothed pseudo-density." Publications of the Astronomical Society of Japan 67, no. 3 (April 3, 2015): 37. http://dx.doi.org/10.1093/pasj/psv006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Trimulyono, Andi, and Ardhana Wicaksono. "Simulasi numerik large-deformation surface wave dengan smoothed particle hydrodynamics." Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan 15, no. 3 (February 14, 2019): 102–6. http://dx.doi.org/10.14710/kapal.v15i3.21535.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Liptai, David, and Daniel J. Price. "General relativistic smoothed particle hydrodynamics." Monthly Notices of the Royal Astronomical Society 485, no. 1 (January 17, 2019): 819–42. http://dx.doi.org/10.1093/mnras/stz111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Springel, Volker. "Smoothed Particle Hydrodynamics in Astrophysics." Annual Review of Astronomy and Astrophysics 48, no. 1 (August 2010): 391–430. http://dx.doi.org/10.1146/annurev-astro-081309-130914.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Monaghan, Joseph J., Herbert E. Huppert, and M. Grae Worster. "Solidification using smoothed particle hydrodynamics." Journal of Computational Physics 206, no. 2 (July 2005): 684–705. http://dx.doi.org/10.1016/j.jcp.2004.11.039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Ayal, S., T. Piran, R. Oechslin, M. B. Davies, and S. Rosswog. "Post‐Newtonian Smoothed Particle Hydrodynamics." Astrophysical Journal 550, no. 2 (April 2001): 846–59. http://dx.doi.org/10.1086/319769.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Wong, S., and Y. Shie. "Galerkin based smoothed particle hydrodynamics." Computers & Structures 87, no. 17-18 (September 2009): 1111–18. http://dx.doi.org/10.1016/j.compstruc.2009.04.010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Price, Daniel J. "Smoothed particle hydrodynamics and magnetohydrodynamics." Journal of Computational Physics 231, no. 3 (February 2012): 759–94. http://dx.doi.org/10.1016/j.jcp.2010.12.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Swegle, J. W., D. L. Hicks, and S. W. Attaway. "Smoothed Particle Hydrodynamics Stability Analysis." Journal of Computational Physics 116, no. 1 (January 1995): 123–34. http://dx.doi.org/10.1006/jcph.1995.1010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Liu, M. B., and G. R. Liu. "Restoring particle consistency in smoothed particle hydrodynamics." Applied Numerical Mathematics 56, no. 1 (January 2006): 19–36. http://dx.doi.org/10.1016/j.apnum.2005.02.012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Lastiwka, Martin, Nathan Quinlan, and Mihai Basa. "Adaptive particle distribution for smoothed particle hydrodynamics." International Journal for Numerical Methods in Fluids 47, no. 10-11 (2005): 1403–9. http://dx.doi.org/10.1002/fld.891.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Wang, Jingsi, Shaolin Xu, Keita Shimada, Masayoshi Mizutani, and Tsunemoto Kuriyagawa. "Smoothed particle hydrodynamics simulation and experimental study of ultrasonic machining." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 232, no. 11 (February 20, 2017): 1875–84. http://dx.doi.org/10.1177/0954405417692005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Hard and brittle materials like glass and ceramics are highly demanded in modern manufacturing industries. However, their superior physical and mechanical properties lead to high cost of machining. Ultrasonic machining has been regarded as one of the most suitable fabrication techniques for these kinds of materials. A smoothed particle hydrodynamics model was proposed to study the material removal mechanism of the ultrasonic machining in this study. Influences of abrasive materials and the particle shapes on the crack formation of work substrates were investigated using this smoothed particle hydrodynamics model. Experiments were also conducted to verify the simulation model. Both of the simulation and experimental results show that using hard and spherical abrasive particles is helpful to improve the material removal efficiency. This work was the first to demonstrate the crack formation mechanisms during ultrasonic machining with different abrasive particles using smoothed particle hydrodynamics, which is significant for improving the machining performance of the ultrasonic machining process.
23

Hedayati, Ehsan, and Mohammad Vahedi. "Evaluating Impact Resistance of Aluminum 6061-T651 Plate using Smoothed Particle Hydrodynamics Method." Defence Science Journal 68, no. 3 (April 16, 2018): 251. http://dx.doi.org/10.14429/dsj.68.11635.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Performing various experimental, theoretical, and numerical investigations for better understanding of behavioural characteristics of metals under impact loading is of primary importance. In this paper, application of smoothed particle hydrodynamics (SPH) method in impact mechanics is discussed and effective parameters on impact strength of an aluminum plate are investigated. To evaluate the accuracy of smoothed particle hydrodynamics method for simulating impact, Recht and Ipson model is first provided thoroughly for both Rosenberg analytical model and smoothed particle hydrodynamics method, and then plots of initial velocity-residual velocity and initial velocity-absorbed energy for target of aluminum 6061-T651 are presented. The derived information and simulation results expresses that the maximum error percentage of smoothed particle hydrodynamics method in compared with Rosenberg analytical model is within an acceptable range. Therefore, the results of smoothed particle hydrodynamics method verify the Rosenberg analytical model with high accuracy. Results reveal that higher initial impact velocity decreases the time of projectile penetration, and so penetration depth and length as well as the local damage rate of plate increases.
24

LIU, M. B., G. R. LIU, and Z. ZONG. "AN OVERVIEW ON SMOOTHED PARTICLE HYDRODYNAMICS." International Journal of Computational Methods 05, no. 01 (March 2008): 135–88. http://dx.doi.org/10.1142/s021987620800142x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper presents an overview on smoothed particle hydrodynamics (SPH), which is a meshfree, particle method of Lagrangian nature. In theory, the interpolation and approximations of the SPH method and the corresponding numerical errors are analyzed. The inherent particle inconsistency has been discussed in detail. It has been demonstrated that the particle inconsistency originates from the discrete particle approximation process and is the fundamental cause for poor approximation accuracy. Some particle consistency restoring approaches have been reviewed. In application, SPH modeling of general fluid dynamics and hyperdynamics with material strength have been reviewed with emphases on (1) microfluidics and microdrop dynamics, (2) coast hydrodynamics and offshore engineering, (3) environmental and geophysical flows, (4) high-explosive detonation and explosions, (5) underwater explosions, and (6) hydrodynamics with material strength including hypervelocity impact and penetration.
25

Daropoulos, Viktor, Matthias Augustin, and Joachim Weickert. "Sparse Inpainting with Smoothed Particle Hydrodynamics." SIAM Journal on Imaging Sciences 14, no. 4 (January 2021): 1669–705. http://dx.doi.org/10.1137/20m1382179.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Wissing, Robert, Sijing Shen, James Wadsley, and Thomas Quinn. "Magnetorotational instability with smoothed particle hydrodynamics." Astronomy & Astrophysics 659 (March 2022): A91. http://dx.doi.org/10.1051/0004-6361/202141206.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The magnetorotational instability (MRI) is an important process in driving turbulence in sufficiently ionized accretion disks. It has been extensively studied using simulations with Eulerian grid codes, but remains fairly unexplored for meshless codes. Here, we present a thorough numerical study on the MRI using the smoothed particle magnetohydrodynamics method with the geometric density average force expression. We performed 37 shearing box simulations with different initial setups and a wide range of resolution and dissipation parameters. We show, for the first time, that MRI with sustained turbulence can be simulated successfully with smoothed-particle hydrodynamics (SPH), with results consistent with prior work with grid-based codes, including saturation properties such as magnetic and kinetic energies and their respective stresses. In particular, for the stratified boxes, our simulations reproduce the characteristic “butterfly” diagram of the MRI dynamo with saturated turbulence for at least 100 orbits. On the contrary, traditional SPH simulations suffer from runaway growth and develop unphysically large azimuthal fields, similar to the results from a recent study with meshless methods. We investigated the dependency of MRI turbulence on the numerical Prandtl number (Pm) in SPH, focusing on the unstratified, zero net-flux case. We found that turbulence can only be sustained with a Prandtl number larger than ∼2.5, similar to the critical values for the physical Prandtl number found in grid-code simulations. However, unlike grid-based codes, the numerical Prandtl number in SPH increases with resolution, and for a fixed Prandtl number, the resulting magnetic energy and stresses are independent of resolution. Mean-field analyses were performed on all simulations, and the resulting transport coefficients indicate no α-effect in the unstratified cases, but an active αω dynamo and a diamagnetic pumping effect in the stratified medium, which are generally in agreement with previous studies. There is no clear indication of a shear-current dynamo in our simulation, which is likely to be responsible for a weaker mean-field growth in the tall, unstratified, zero net-flux simulation.
27

Quinlan, Nathan J., and Mingming Tong. "Industrial Applications of Smoothed Particle Hydrodynamics." International Journal of Computational Fluid Dynamics 35, no. 1-2 (February 7, 2021): 1–2. http://dx.doi.org/10.1080/10618562.2021.1946946.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Wang, Mengdi, Yitong Deng, Xiangxin Kong, Aditya H. Prasad, Shiying Xiong, and Bo Zhu. "Thin-film smoothed particle hydrodynamics fluid." ACM Transactions on Graphics 40, no. 4 (August 2021): 1–16. http://dx.doi.org/10.1145/3476576.3476675.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Wang, Mengdi, Yitong Deng, Xiangxin Kong, Aditya H. Prasad, Shiying Xiong, and Bo Zhu. "Thin-film smoothed particle hydrodynamics fluid." ACM Transactions on Graphics 40, no. 4 (August 2021): 1–16. http://dx.doi.org/10.1145/3450626.3459864.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Kodama, T., C. E. Aguiar, T. Osada, and Y. Hama. "Entropy-based relativistic smoothed particle hydrodynamics." Journal of Physics G: Nuclear and Particle Physics 27, no. 3 (February 20, 2001): 557–60. http://dx.doi.org/10.1088/0954-3899/27/3/336.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Krištof, P., B. Beneš, J. Křivánek, and O. Št'ava. "Hydraulic Erosion Using Smoothed Particle Hydrodynamics." Computer Graphics Forum 28, no. 2 (April 2009): 219–28. http://dx.doi.org/10.1111/j.1467-8659.2009.01361.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Oxley, S., and M. M. Woolfson. "Smoothed particle hydrodynamics with radiation transfer." Monthly Notices of the Royal Astronomical Society 343, no. 3 (August 11, 2003): 900–912. http://dx.doi.org/10.1046/j.1365-8711.2003.06751.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Kessel-Deynet, O., and A. Burkert. "Ionizing radiation in smoothed particle hydrodynamics." Monthly Notices of the Royal Astronomical Society 315, no. 4 (July 11, 2000): 713–21. http://dx.doi.org/10.1046/j.1365-8711.2000.03451.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Oger, L., and S. B. Savage. "Smoothed particle hydrodynamics for cohesive grains." Computer Methods in Applied Mechanics and Engineering 180, no. 1-2 (November 1999): 169–83. http://dx.doi.org/10.1016/s0045-7825(99)00054-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Imaeda, Yusuke, and Shu‐ichiro Inutsuka. "Shear Flows in Smoothed Particle Hydrodynamics." Astrophysical Journal 569, no. 1 (April 2002): 501–18. http://dx.doi.org/10.1086/339320.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Abadi, Mario G., Diego G. Lambas, and Patricia B. Tissera. "Cosmological Simulations with Smoothed Particle Hydrodynamics." Symposium - International Astronomical Union 168 (1996): 577–78. http://dx.doi.org/10.1017/s0074180900110757.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We have developed and tested a code that computes the evolution of a mixed system of gas and dark matter in expanding world models. The gravitational forces are calculated with the Adaptative P3M algorithms developed by H. Couchmann, 1993. The calculation of gas forces follow the standard SPH formalism (Monaghan, 1989).
37

Fulk, David A., and Dennis W. Quinn. "Hybrid Formulations of smoothed particle hydrodynamics." International Journal of Impact Engineering 17, no. 1-3 (January 1995): 329–40. http://dx.doi.org/10.1016/0734-743x(95)99859-p.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Zhou, Dai, Si Chen, Lei Li, Huafeng Li, and Yaojun Zhao. "Accuracy Improvement of Smoothed Particle Hydrodynamics." Engineering Applications of Computational Fluid Mechanics 2, no. 2 (January 2008): 244–51. http://dx.doi.org/10.1080/19942060.2008.11015225.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Owen, J. Michael, Jens V. Villumsen, Paul R. Shapiro, and Hugo Martel. "Adaptive Smoothed Particle Hydrodynamics: Methodology. II." Astrophysical Journal Supplement Series 116, no. 2 (June 1998): 155–209. http://dx.doi.org/10.1086/313100.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

OBARA, Haruki, Mariko HONDA, and Akinori KOYAMA. "Fundamental Study of Smoothed Particle Hydrodynamics." Journal of Computational Science and Technology 2, no. 1 (2008): 101–10. http://dx.doi.org/10.1299/jcst.2.101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

OBARA, Haruki, Jhun SUEMURA, and Mariko HONDA. "Fundamental Study of Smoothed Particle Hydrodynamics." Journal of Computational Science and Technology 2, no. 1 (2008): 92–100. http://dx.doi.org/10.1299/jcst.2.92.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Zhu, Qirong, Lars Hernquist, and Yuexing Li. "NUMERICAL CONVERGENCE IN SMOOTHED PARTICLE HYDRODYNAMICS." Astrophysical Journal 800, no. 1 (February 2, 2015): 6. http://dx.doi.org/10.1088/0004-637x/800/1/6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Rosswog, Stephan. "Conservative, special-relativistic smoothed particle hydrodynamics." Journal of Computational Physics 229, no. 22 (November 2010): 8591–612. http://dx.doi.org/10.1016/j.jcp.2010.08.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Liu, M. B., G. R. Liu, and Shaofan Li. "?Smoothed particle hydrodynamics ? a meshfree method?" Computational Mechanics 33, no. 6 (May 1, 2004): 491. http://dx.doi.org/10.1007/s00466-004-0573-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Cleary, Paul W., and Joseph J. Monaghan. "Conduction Modelling Using Smoothed Particle Hydrodynamics." Journal of Computational Physics 148, no. 1 (January 1999): 227–64. http://dx.doi.org/10.1006/jcph.1998.6118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Domínguez, J. M., A. J. C. Crespo, M. Gómez-Gesteira, and J. C. Marongiu. "Neighbour lists in smoothed particle hydrodynamics." International Journal for Numerical Methods in Fluids 67, no. 12 (November 29, 2010): 2026–42. http://dx.doi.org/10.1002/fld.2481.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Sun, Wei-Kang, Lu-Wen Zhang, and K. M. Liew. "Adaptive particle refinement strategies in smoothed particle hydrodynamics." Computer Methods in Applied Mechanics and Engineering 389 (February 2022): 114276. http://dx.doi.org/10.1016/j.cma.2021.114276.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

WANG, Jingsi, Keita SHIMADA, Masayoshi MIZUTANI, and Tsunemoto KURIYAGAWA. "B014 Influence of Process Parameters on Ultrasonic Machining using Smoothed Particle Hydrodynamics." Proceedings of International Conference on Leading Edge Manufacturing in 21st century : LEM21 2013.7 (2013): 214–19. http://dx.doi.org/10.1299/jsmelem.2013.7.214.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Su, Chong, Li Da Zhu, and Wan Shan Wang. "Simulation Research on Cutting Process of Single Abrasive Grain." Advanced Materials Research 239-242 (May 2011): 3123–26. http://dx.doi.org/10.4028/www.scientific.net/amr.239-242.3123.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cutting processes of single abrasive grain were simulated respectively by fluid-solid interaction method and Smoothed Particle Hydrodynamics method. Advantages and disadvantages of the two methods were compared. Smoothed Particle Hydrodynamics method is superior to fluid-solid interaction method in simulating the deformation behavior of workpiece material for the motion of SPH particles. According to the simulation results, it is concluded that workpiece material occurs plastic deformation, flows to the side and front owing to the extrusion of abrasive grain, and finally forms chip in front of abrasive grain.
50

Tao, Kaidong, Xueqian Zhou, and Huilong Ren. "A Local Semi-Fixed Ghost Particles Boundary Method for WCSPH." Journal of Marine Science and Engineering 9, no. 4 (April 13, 2021): 416. http://dx.doi.org/10.3390/jmse9040416.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Due to the convenience and flexibility in modeling complex geometries and deformable objects, local ghost particles methods are becoming more and more popular. In the present study, a novel local semi-fixed ghost particles method is proposed for weakly compressible smoothed particle hydrodynamics (WCSPH). In comparison with the previous local ghost particles methods, the new boundary method can effectively reduce spurious pressure oscillations and smooth the flow field. Besides, the new generation mechanism of fictitious particles is simple and robust, which is suitable for all kinds of kernel functions with different sizes of the support domain. The numerical accuracy and stability of the new smoothed particle hydrodynamics (SPH) scheme are validated for several typical benchmark cases. A detailed investigation into the pressure on solid walls and the surface elevation in dynamic simulations is also conducted. A comparison of numerical results shows that the new boundary method helps reduce the oscillations in the numerical solutions and improves the numerical accuracy of the pressure field.

До бібліографії